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Abstract
The identification of driver mutations and drugs that 
inhibit their activity has been a major therapeutic ad-
vance for patients with advanced lung adenocarcinoma. 
Unfortunately, the success of these drugs is limited by 
the universal development of resistance. Treatment 
failure can result from inadequate drug exposure or se-
lection of resistant malignant clones. Clinically distinct 
mechanisms of disease progression have been identi-
fied and can inform treatment decisions. Investigations 
into the biochemical mechanisms of tyrosine kinase 
inhibitor resistance may provide additional therapeutic 
targets by which the efficacy of targeted therapy can 
be improved. 
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Core tip: The causes of epidermal growth factor recep-
tor tyrosine kinase inhibitor (TKI) treatment failure 
including pharmacokinetic failure, intrinsic resistance 
and acquired resistance are discussed. We review the 

molecular mechanisms of resistance and the options for 
clinical management of disease progression. Promising 
investigational strategies for overcoming TKI resistance 
are highlighted. 
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INTRODUCTION
In the treatment of  lung adenocarcinoma, drugs that 
inhibit unique driver mutations have proven superior to 
conventional chemotherapy in molecularly-defined sub-
groups, altering treatment paradigms and research agen-
das. The observation that dramatic responses to erlotinib 
or gefitinib occurred in patients with epidermal growth 
factor receptor (EGFR) mutations affirmed the concept 
of  “oncogene addiction[1]” in non-small cell lung cancer: 
despite the complexity of  genetic and epigenetic changes 
in malignant cells, interfering with the activity of  a single 
dominant oncogene can induce tumor regression. Trans-
lating this concept into clinical benefit required identifi-
cation of  the driver mutations to which the cancers are 
“addicted” and the development of  drugs capable of  se-
lectively blocking their activity. Mutually exclusive driver 
mutations can be detected in approximately 60% of  
lung adenocarcinomas through multiplexed testing tech-
niques[2]. Single agent anti-tumor activity has been report-
ed with drugs that inhibit the kinase activity of  EGFR, 
EML4-ALK, ROS1, HER-2, BRAF, RET and MET[3-9]. 
Moreover, targeted therapy with afatinib, gefitinib or erlo-
tinib in EGFR-mutated lung cancer and crizotinib in lung 
cancer harboring EML4-ALK translocations have dem-
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onstrated clinically significant improvements in response 
rates, progression-free survival (PFS) and quality of  life 
when compared with standard chemotherapy[3,4,10-12]. In 
the LUX-Lung 3 trial, for example, afatinib produced 
longer PFS (11.1 mo vs 6.9 mo) and higher response rates 
(56% vs 23%) compared with pemetrexed and cisplatin 
in the first-line treatment of  patients with EGFR muta-
tions[3]. Based on these results, practice guidelines recom-
mend targeted therapy as first-line treatment for lung 
cancers with EGFR mutations or ALK translocations[13]. 
Unfortunately, this therapeutic success is invariably 
temporary as all patients ultimately develop resistance 
to currently available targeted therapies. The goals of  
this review are therefore to (1) examine the mechanisms 
of  failure of  tyrosine kinase inhibitors (TKIs); and (2) 
discuss the strategies for preventing or overcoming resis-
tance that are currently in development. We will focus on 
resistance to targeted therapy in lung cancers harboring 
EGFR mutations where these concepts are best charac-
terized, though some concepts may be applicable to tar-
geted therapy in general. 

DIFFERENTIATING DRUG RESISTANCE 
FROM PHARMACOKINETIC FAILURE 
The first step in identifying the mechanism of  treatment 
failure is to differentiate pharmacokinetic failure from 
true drug resistance. Pharmacokinetic failure refers to 
disease progression due to inadequate drug exposure. 
True drug resistance occurs when malignant cells survive 
and divide in the presence of  therapeutic drug levels and 
can be further characterized as intrinsic or acquired. In 
cases of  pharmacokinetic failure, interventions to achieve 
therapeutic drug levels may effectively halt or prevent 
disease progression. 

Interactions 
Gefitinib and erlotinib are metabolized by the cyto-
chrome p450 system and therefore have the potential for 
numerous interactions (Table 1). Concurrent medications 
and homeopathic remedies that induce p450 enzymes 
may lower systemic drug levels of  these targeted thera-
pies. The clinical significance of  such interactions is 
demonstrated in the published case of  a patient with ad-
vanced EGFR-mutated lung cancer that did not respond 
to initial treatment with erlotinib while concurrent medi-
cations included fenofibrate, a CYP3A4 inducer[14]. Se-
rum trough levels of  erlotinib were sub-therapeutic and 
disease regression was achieved after dose escalation re-

sulting in therapeutic drug concentrations. Furthermore, 
current smokers have increased clearance of  erlotinib, 
likely due to induction of  CYP1A2 and CYP1A1[15] and 
similar interactions are possible with gefitinib based on 
pharmacokinetic studies[16]. In a study to determine the 
maximum tolerated dose of  erlotinib in patients currently 
smoking at least 10 cigarettes daily, the trough plasma 
concentration and toxicity profile at 300 mg daily was 
similar to the standard dose of  150 mg in non-smokers[15]. 
In patients taking erlotinib who cannot achieve smoking 
cessation, dose escalation to 300 mg daily as tolerated is 
recommended[17]. Afatinib undergoes minimal metabo-
lism by the cytochrome P450 system but is a substrate of  
p-glycoprotein. P-glycoprotein inducers may therefore 
lower systemic drug concentrations of  afatinib[18]. As oral 
drugs, gastric contents and pH may also impact bioavail-
ability. Afatinib absorption is reduced when taken with 
a high fat meal whereas erlotinib absorption is increased 
and patients are directed to take both medications on an 
empty stomach. Drugs that increase gastric pH can re-
duce absorption of  erlotinib and gefitinib, and have been 
shown to lower drug levels[17,19]. When patients require 
antacid therapy, twice-daily histamine receptor blockers 
are recommended over proton pump inhibitors when 
possible and patients are advised to take erlotinib ten 
hours after the last dose and two hours prior to the next 
dose to minimize the effect on absorption[17].

Blood-brain barrier
Central nervous system (CNS) involvement in the form 
of  brain or leptomeningeal metastases is common in pa-
tients with advanced non-small cell lung cancer, either at 
the time of  diagnosis or as a site of  disease progression. 
The blood-brain barrier restricts most large and hydro-
philic substances from passing from the circulation into 
the CNS. The cerebrospinal fluid (CSF) to plasma con-
centration ratios for erlotinib and gefitinib have each been 
shown to be less than 0.01[20,21]. While confirming the 
reduced penetration of  these drugs into the CNS, these 
measurements likely underestimate the exposure of  brain 
metastases to each of  these drugs due to local disruption 
of  the blood-brain barrier in abnormal tumor vascula-
ture. Despite CSF concentrations that would predict sub-
therapeutic drug exposure, radiographic responses have 
been observed in brain metastases treated with erlotinib, 
gefitinib and afatinib at standard doses[22,23]. Moreover, 
dose escalation of  gefitinib or high-dose weekly erlotinib 
can increase drug levels in the CSF and reverse CNS dis-
ease progression that occurred during standard dosing. 
In one case report, a patient with an exon 19 mutation 
exhibited progressive brain and leptomeningeal metasta-
ses despite systemic disease control on gefitinib. The gefi-
tinib concentration in the CSF was found to be less than 
that required to inhibit the growth of  a cell line derived 
from the patient’s tumor. After dose escalation to 1000 
mg daily, the CSF concentration of  gefitinib exceeded the 
half  maximal inhibitory concentration and the patient 
experienced radiographic and symptomatic improvement 
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Table 1  Drugs that may lower serum levels of targeted therapies

Erlotinib/gefitinib          Afatinib

Rifampin, rifabutin, rifapentine, phenytoin, 
phenobarbital, carbamazepine, St. John’s 
wort, proton pump inhibitors, H2-blockers, 
antacids, tobacco

Rifampin, phenytoin, 
carbamazepine, St. 
John’s wort, primidone, 
tipranavir



with clearing of  malignant cells from the CSF[20]. Since 
sustained escalated doses of  erlotinib are poorly toler-
ated, high-dose weekly administration was investigated as 
a strategy to improve erlotinib CNS penetration. In a ret-
rospective series of  nine patients with CNS progression 
while on standard dose erlotinib, the CNS response rate 
to 1500 mg once weekly was 67%[24].

DEFINING MECHANISMS OF DRUG 
RESISTANCE
True drug resistance, the survival and proliferation of  
malignant cells in the presence of  therapeutic drug levels, 
is observed to varying degrees in all EGFR-mutated lung 
cancers. The complete response rates for currently avail-
able agents are less than 5% suggesting the presence of  
intrinsic resistance in a population of  tumor cells of  most 
patients at the time of  treatment initiation. Furthermore, 
disease progression after initial response occurs due to 
emergence of  acquired resistance with median PFS rang-
ing from 9 to 13 mo in clinical trials. Given that some 
factors present at the time of  diagnosis can predict both 
reduced probability of  response and shorter duration 
of  response, there is clearly overlap between the mecha-
nisms of  intrinsic and acquired resistance. 

The response to EGFR-targeted therapy varies 
according to EGFR mutation
Both the probability and the duration of  response to 
EGFR-targeted therapy vary according to the specific 
EGFR mutation. Activating EGFR mutations occur 
within exons 18-21 of  the tyrosine kinase binding do-
main. Exon 19 deletions and L858R point mutations in 
exon 21 comprise 85%-90% of  EGFR mutations and 
most reliably predict response to EGFR-targeted thera-
py[25]. For this reason, FDA approval for first-line therapy 
with erlotinib or afatinib is limited to cancers harboring 
these mutations. However, differential sensitivity within 
this group has been observed: patients harboring exon 19 
deletions show longer progression free survival compared 
with patients with L858R mutations[26,27], despite similar in 
vitro activity[28]. The reasons for the differences in clinical 
activity observed are not clear.

The efficacy of  EGFR TKIs in the treatment of  
uncommon EGFR mutations is less predictable, in part 
due to their relative rarity. This is a heterogeneous group 
that includes exon 20 mutations, exon 19 insertions, 
exon 21 missense mutations (other than L858R), and 
exon 18 point mutations[25]. The data on TKI efficacy in 
these cancers is limited to subset analyses of  larger trials, 
small series and case reports. No partial responses were 
observed in patients with uncommon EGFR mutations 
in a phase II trial of  first-line gefitinib, although some 
patients achieved prolonged stable disease[29]. In the 
LUX-lung 3 trial of  first-line treatment with afatinib vs 
pemetrexed and cisplatin, the progression free survival 
of  patients treated with afatinib was improved when less 
common mutations were excluded from the analysis, sug-

gesting a higher prevalence of  intrinsic or acquired resis-
tance in this group[3]. Exon 20 mutations in particular are 
generally associated with clinical resistance to all currently 
available EGFR TKIs. However, even within the group 
of  tumors bearing exon 20 mutations there is heteroge-
neity and responses to EGFR TKIs have been observed 
with selected mutations[30]. 

EGFR mutation abundance and heterogeneity
EGFR activating mutations occur de novo during tumor 
development and heterogeneity with regard to EGFR 
mutation status in a particular tumor nodule has been re-
ported[31,32]. While conventional DNA sequencing can de-
tect an EGFR mutation present in at least 10% of  tumor 
cells, a more sensitive method, the Scorpion amplification 
refractory mutation system (ARMS; DxS, Manchester, 
United Kingdom) uses unimolecular fluorescent probes 
to detect mutations present in 1%-10% of  cells[33]. In a 
retrospective study of  100 randomly selected archived 
cases, treatment with EGFR TKIs achieved a longer 
progression free survival of  11.3 mo in patients whose 
tumor demonstrated high EGFR mutation abundance 
(more than 10%) than those with low EGFR mutation 
abundance (1%-10%, PFS 6.9 mo) and the PFS in both 
cases were longer than that in patients with wild type tu-
mors (PFS 2.1 mo)[34]. This notion that higher EGFR mu-
tation abundance in the tumor correlates with treatment 
effect in prolonging tumor control requires prospective 
validation. The heterogeneity of  EGFR mutation status 
is not only observed in the primary tumor, but also be-
tween the primary and the metastatic lung nodules, with a 
discordance rate as high as 24%[35]. The cases with discor-
dance appear to show mixed response to EGFR TKIs[35]. 
Therefore, genetic heterogeneity could be another mech-
anism for apparent TKI resistance at tumor progression. 

Additional pathways that modulate response to targeted 
therapy
Several additional pathways appear to influence the 
depth and duration of  response to TKIs in patients 
with EGFR-mutated tumors and provide new targets 
for improving therapeutic efficacy. The pro-apoptotic 
protein BIM has been shown to be necessary for EGFR 
TKI-induced apoptosis and tumor regression in EGFR-
mutated cell lines and xenograft models[36,37]. In a small 
retrospective series, treatment with an EGFR TKI was 
associated with a higher response rate (57% vs 29%, P 
= 0.04) and longer PFS (13.7 mo vs 4.7 mo, P = 0.007) 
in patients whose tumors showed higher pre-treatment 
levels of  BIM RNA[38]. An intronic deletion polymor-
phism of  BIM found in 12% of  East Asian patients and 
associated with reduced anti-apoptotic activity correlated 
with inferior response to EGFR TKIs[39]. In cell lines and 
xenografts with this polymorphism, restoration of  BIM 
function with BH3-mimetic drugs or HDAC inhibition 
overcame TKI resistance[39,40]. This suggests that thera-
peutic strategies to augment BIM function, particularly 
in low-BIM expressing tumors, may reduce the problem 

562 October 10, 2014|Volume 5|Issue 4|WJCO|www.wjgnet.com

Becker K et al . Management of TKI-resistant lung cancer 



management decisions. While it is standard practice to 
discontinue chemotherapy at the time of  disease progres-
sion, there is definitely a rationale for TKI continuation 
as discussed below. Treatment options include adding 
local therapy or conventional chemotherapy, or TKI con-
tinuation alone. Two hypotheses guide current strategies 
for treatment of  TKI-resistant disease: (1) a population 
of  TKI-sensitive clones remains at the time of  disease 
progression; and (2) Resistant clones may be detected ra-
diographically before widespread dissemination occurs.

As discussed above, the T790M secondary mutation 
is by far the most common mechanism of  resistance, 
responsible for disease progression in more than half  of  
patients treated with erlotinib or gefitinib. In vitro data has 
demonstrated that cells that acquire T790M second site 
mutations grow at a slower rate than parental cells with-
out the mutations[48]. Furthermore, the same study sug-
gested that in the presence of  TKIs, resistant cell popu-
lations are heterogeneous and consist of  slow-growing 
cells harboring T790M along with quiescent cells without 
the secondary mutation. Clinical observations support 
these in vitro results. In two patients with acquired TKI 
resistance and T790M mutations, serial biopsies during 
treatment with and without TKIs showed that T790M 
becomes undetectable after a period without TKI treat-
ment[42]. Moreover, patients with T790M mutations 
identified at the time of  disease progression have longer 
post-progression survival than those without the muta-
tion[49]. Presumably, continuation of  the original TKI ex-
erts selective pressure that inhibits more aggressive TKI-
sensitive clones and allows only the indolent T790M-
harboring cells to proliferate. Therefore, in patients with 
T790M-mediated resistance or asymptomatic patients 
with radiographic evidence of  progression and limited 
overall increase in disease burden, immediate change of  
systemic therapy may not be necessary and continuation 
of  targeted therapy may still provide some measure of  
disease control. 

It is conceivable that TKI-resistant clones develop in 
a single site of  disease and can be detected on imaging 
before widespread dissemination. Patients who initially 
achieve disease control with EGFR-targeted therapy may 
subsequently show signs of  disease progression in only 
one or a few sites of  disease while other sites remain 
suppressed. Several groups have described their experi-
ence with the use of  local therapies such as radiation 
or surgery to these sites of  limited disease progression 
and have observed prolonged disease control after local 
therapy without a change in systemic therapy[50-52]. Pro-
gression-free-survival after local therapy of  6-10 mo[50,51] 
has been reported and the time until change in systemic 
therapy in one study was 22 mo[50]. Clearly, patient selec-
tion is key to the success of  this strategy. Factors that 
might predict prolonged stable disease after local therapy 
include EGFR exon 19 deletions and longer duration of  
initial disease control on targeted therapy[52]. These ob-
servational studies suggest that local therapy may be of  
benefit, though prospective trials are needed to determine 

of  TKI resistance in oncogene-addicted tumors. In addi-
tion, activation of  the NF-kB pathway has been shown 
to confer in vitro resistance to erlotinib in EGFR-mutant 
cell lines. Patients whose tumors showed high expression 
of  the NF-kB inhibitor I-kB were more likely to respond 
to treatment with erlotinib and had longer progression 
free and overall survival, suggesting that NF-kB signal-
ing may have a clinically significant role in EGFR TKI 
resistance[41]. Therefore, combined EGFR and NF-kB 
inhibition presents another potential opportunity for im-
proving the efficacy of  targeted therapy.

Acquisition of secondary EGFR mutations 
An important strategy for defining mechanisms of  resis-
tance to EGFR TKIs has been to re-biopsy the tumor at 
the time of  disease progression. In two reported series 
comprising 192 patients treated with erlotinib or gefitinib, 
a distinct histologic change or molecular mechanism of  
resistance could be identified in the majority of  cases[42,43]. 
Importantly, all TKI-resistant tumors retained the origi-
nal EGFR mutation. In over half  of  tumors analyzed, a 
second EGFR point mutation, T790M in exon 20, was 
newly detected. T790M mutations are thought to reacti-
vate EGFR signaling by increasing the receptor’s affinity 
for ATP over TKIs[44]. Though a systematic analysis of  
the mechanisms of  resistance to afatinib has not yet been 
published, resistance due to emergence of  T790M has 
been reported[45]. 

EGFR-independent mechanisms of acquired resistance
Signaling through alternate oncogenic kinases can by-
pass EGFR inhibition to re-activate proliferation and 
survival pathways in EGFR-mutated cells. Amplifica-
tions of  MET and HER2 were identified in a minority 
of  resistant tumors examined in the two re-biopsy series 
mentioned above[42,43,46]. In one of  the studies, PIK3CA 
mutations were also identified in two patients[42]. Fur-
thermore, an analysis of  a large tissue database identified 
BRAF mutations as a possible mechanism of  resistance 
in 2% of  specimens[47]. In addition, histologic changes 
such as transformation to small cell histology and epithe-
lial to mesenchymal transition have also been observed, 
though the mechanisms by which they develop and lead 
to resistance are incompletely understood[42,43]. So far, 
mechanisms of  resistance have been studied in a limited 
number of  tumors and therefore the prevalence of  each 
resistance mechanism is likely to change as more data ac-
crues. 

CLINICAL MANAGEMENT OF TKI-
RESISTANT DISEASE
When a patient who previously responded to a TKI de-
velops progression of  disease, acquired TKI resistance 
occurs due to the various mechanisms described above. 
Although its clinical utility is debated, re-biopsy at pro-
gression in selected cases could be critical to understand-
ing the mechanism of  TKI resistance and hence guide 
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whether local therapy can truly alter disease course.  
In patients with symptomatic or rapid radiographic 

progression, re-biopsy of  a rapidly growing lesion should 
be considered. If  transformation to small cell histol-
ogy is discovered, small cell chemotherapy regimens are 
appropriate for those patients. The remaining major-
ity of  patients are generally treated with chemotherapy. 
In this group of  patients, the question of  whether the 
original TKI should be continued is under investigation. 
Although no benefit was observed with the addition of  
TKIs to chemotherapy in unselected non-small cell lung 
cancer populations[53,54], several observations suggest 
benefit in the treatment of  patients with EGFR muta-
tions and acquired TKI resistance. A retrospective series 
reported higher response rates in patients who continued 
the original TKI after initiating chemotherapy, though no 
difference in progression-free survival was observed[55]. 
Furthermore, accelerated disease progression or “disease 
flair,” defined by hospitalization or death attributable 
to disease progression, was observed in the short wash 
out period in some patients who stopped TKIs await-
ing further chemotherapy[56]. These results suggest that 
some clones remain sensitive to EGFR blockade at the 
time of  disease progression and that maintaining EGFR 
suppression is beneficial. Clinical trials are underway to 
prospectively assess the benefit of  continuing TKI when 
chemotherapy is initiated (NCT01544179, NCT01928160 
clinicaltrials.gov). If  the TKI is not continued during 
chemotherapy, re-responses to erlotinib can be seen after 
post-progression “drug holidays[57].” 

FUTURE DIRECTIONS
The identification of  common recurring mechanisms of  
resistance to TKIs provides the opportunity for rationally 
designed treatment of  resistant disease. One strategy 
is the development of  new TKIs with activity against 
secondary resistance mutations. Though there was initial 
optimism based on preclinical data that afatinib, an ir-
reversible TKI, would overcome resistance to erlotinib or 
gefitinib including T790M, the response rate was only 7% 
in a phase Ⅱb/Ⅲ trial in patients with disease progres-
sion after initial disease control on erlotinib or gefitinib[58]. 
CO-1686, a third-generation EGFR TKI, has shown in 
vitro and in vivo activity against cells and tumors harbor-
ing T790M mutations and is currently being studied in a 
phase 1/2 clinical trial of  EGFR TKI-resistant disease[59]. 
In addition, an alternate dosing regimen incorporating 
intermittent high-dose afatinib showed in vitro activity 
against T790M and is being studied in a phase Ib clini-
cal trial (NCT01647711 clinicaltrials.gov). Furthermore, 
combination therapy with afatinib and cetuximab showed 
promising activity in erlotinib resistant disease including 
cancers harboring the T790M mutation[60]. Other strate-
gies to prevent or treat TKI-resistant disease include the 
addition of  an inhibitor of  one of  the bypass pathways 
(MET, AKT, PI3K, IGFR) and HSP-90 inhibitors, which 
may decrease signaling through EGFR by decreasing the 

stability of  the protein[61]. 
The identification of  driver mutations in lung adeno-

carcinoma and the subsequent development of  drugs 
that inhibit their oncogenic activity has been a major 
therapeutic advance benefitting patients with advanced 
disease. An understanding of  the reasons for drug failure 
enables the optimal use of  currently available EGFR tar-
geted TKIs and maximizes their clinical benefit. Current 
evidence to guide management of  TKI-resistant disease 
is limited but suggests that new principles may apply in 
the era of  targeted therapy. The field of  targeted therapy 
of  lung cancer is rapidly evolving and the full potential 
of  this treatment strategy is yet to be realized. 
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