
receptor-2 targeted therapy, marked a new era of breast 
cancer treatment. However, except for chemotherapy, an 
efficient drug treatment to improve the overall survival 
of breast cancer patients is still lacking for triple negative 
breast cancer. Furthermore, a certain proportion of 
breast cancer patients present with resistance to drug 
therapy, making it much more difficult to control the 
deterioration of the disease. Recently, altered energy 
metabolism has become one of the hallmarks of cancer, 
including breast cancer, and it may be linked to drug 
resistance. Targeting cellular metabolism is becoming a 
promising strategy to overcome drug resistance in cancer 
therapy. This review discusses metabolic reprogramming 
in breast cancer and the possible complex mechanism of 
modulation. We also summarize the recent advances in 
metabolic therapy targeted glycolysis, glutaminolysis and 
fatty acids synthesis in breast cancer.
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Core tip: Breast cancer cells display distinct metabolic 
characteristics according to different molecular phe­
notypes. There may be crosstalk with the estrogen 
receptor and human epidermal growth factor receptor-2 
signal pathways in the metabolic regulation in breast 
cancer cells that make it more complex to evaluate the 
efficiency of an anti-metabolic drug. On the other hand, 
the research on target metabolism in breast cancer 
will also largely help us to understand the complicated 
mechanism by which an anti-metabolic drug impro­
ves the efficacy of cancer therapy or overcomes drug 
resistance.
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Abstract
Adjuvant therapies for breast cancer have achieved great 
success in recent years and early breast cancer is now a 
curable or chronic disease. Targeted therapies, including 
endocrine therapy and human epidermal growth factor 
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INTRODUCTION
Breast cancer now has the highest incidence of cancer in 
women. This is attributed to the molecular classification 
of breast cancer based on the hormonal receptor and 
human epidermal growth factor receptor-2 (HER-2), 
targeted therapy and other adjuvant therapies that 
prolong the overall survival and greatly decrease the 
mortality of this disease. However, mortality remains 
high for locally advanced and metastatic cancer. We still 
lack effective methods for treatment when drug resis
tance occurs and recurrence and metastasis develop, 
especially in triple negative breast cancer (TNBC).

Females have a specific energy metabolic pattern 
compared to males[1]. Estrogens, progesterone-to-
estrogen ratio and androgen levels affect the energy 
material transporter and metabolic enzyme expressions 
in cells[2]. Estrogens may increase the expression of 
peroxisome proliferator activated receptor, Akt and 
activate AMP-activated protein kinase (AMPK), which 
consequently influence the metabolic process, including 
glucose utility, lipid uptake, storage, lipogenesis and 
lipid oxidation[3,4]. Endocrine therapy plays a pivotal 
role in estrogen receptor (ER) positive breast cancer 
treatment. Rapamycin, which inhibits the mammalian 
target of rapamycin (mTOR), is a downstream target 
of Akt and enhances the susceptibility of breast cancer 
cells to endocrine therapy[5]. However, there is still a 
certain proportion of breast cancer patients that present 
with primary resistance to endocrine therapy and some 
patients could develop secondary resistance which 
makes it much more difficult to control the disease pro­
gress[6]. A similar condition occurs in chemotherapy and 
HER-2 targeted therapy in breast cancer. Therefore, 
researchers are looking for new strategies or compounds 
to reduce drug resistance and enhance the efficacy of 
therapy. 

Metabolic reprogramming is the primary and basic 
factor during cell transformation[7,8]. Foreign stress 
forces tumor cells to accommodate new circumstances 
through metabolic reprogramming caused by epigenetic 
change and gene mutation. Altered energy metabo
lism has become one of the hallmarks of cancer[7]. 
Mounting evidence also attributes the drug resistance 
to dysregulated cellular metabolism[9,10]. Recently, 
much more interest has focused on targeting meta
bolic enzymes for cancer therapy or reversing drug 
resistance[11-13]. Cancer cells have distinct metabolic 
properties, including enhanced aerobic glycolysis, fatty 
acid synthesis and glutaminolysis, to sustain immortal 
proliferation[7,14]. This review will discuss the metabolic 
reprogramming and advances in metabolic targeted 
therapy in breast cancer.

METABOLIC REPROGRAMMING IN 
BREAST CANCER
To meet the abundant requirement of energy and 
materials for proliferation, most malignant cells present 

with increased aerobic glycolysis, fatty acid synt
hesis and glutaminolysis, which are distinctive from 
normal cells[15] (Figure 1). In 1956, Warburg[16] first 
postulated that cancer cells had a significantly higher 
rate of glycolysis than normal cells to produce ATP 
for proliferation. He also hypothesized that due to the 
defective function of mitochondria (this was proved 
wrong afterwards), pyruvate produced from glycolysis 
was converted to lactate more than acetyl CoA through 
the tricarboxylic acid (TCA) cycle. This phenomenon is 
now called the Warburg effect and it exists regardless 
of oxygen availability. For the adaption of the Warburg 
effect, cancer cells exhibit altered expression of diff
erent glucose transporters and glycolysis enzymes. 
Glucose crosses the plasma membrane via glucose 
transporter proteins (GLUTs) and fourteen types have 
been identified. Although little is known about the 
role of glucose transporters in cancer biology, GLUT1, 
GLUT2, GLUT3, GLUT4, GLUT5 and GLUT12 have been 
detected in breast cancer cells[17-20]. Different expression 
patterns of GLUT isoforms in breast cancer may have 
an association with pathological grade, cancer cell 
differentiation and prognosis. According to the molecular 
subtype of invasive breast cancer, HER-2 positive and 
TNBC mostly exhibit higher levels of glycolysis which 
need higher levels of expression of GLUT[21]. As the most 
invasive type in breast cancer, TNBC had the highest 
expression of GLUT-1 when compared to other types[21]. 
Increased activity of enzymes involved in glycolysis, like 
hexokinase (HK) and lactate dehydrogenase-A (LDHA), 
have also been studied and their expression may affect 
cancer cell growth[22,23]. 

Increased glutamine metabolism is another altern
ative energy origin for cancer cells, including breast 
cancer, and is thought to be a central metabolic pathway 
cooperating with glycolysis[24,25]. Most cancer cells cannot 
proliferate without a glutamine supply and glutamine 
addiction provides intermediates for amino acid and 
lipid synthesis[26]. Under hypoxic conditions, prolifera
ting cells, including breast cancer cells, mostly employ 
reductive metabolism of glutamine-derived alpha-
ketoglutarate to synthesize acetyl CoA for lipid synthesis 
that normally enters into the canonical TCA cycle. That 
pathway is isocitrate dehydrogenase 1 dependent[27,28]. 
Intermediate metabolites derived from glutamine meta
bolism, such as antioxidants NADH, glutathione and 
ammonia, could change the reduction-oxidation status 
in cancer cells, promote stromal cell autophagy and 
increase tumor growth and drug resistance[25,29]. Cell 
studies showed that a high glutamine supply protected 
MCF7 cells from tamoxifen-induced apoptosis[30]. Amino 
acid transporter-2, glutaminase 1 (GLS) and glutamate 
dehydrogenase are three key enzymes involved in gluta
mine metabolism[31]. Immunohistochemical staining 
of breast cancer tissues indicated that HER-2 positive 
and TNBC exhibited the most frequent expression 
of glutamine metabolism related proteins than other 
types[32]. Glutamine produces glutamate under the cata
lytic effect of glutaminase, thus the ratio of glutamate 
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to glutamine may indicate the glutamine metabolic 
activity[33]. Asiago et al[34] reported that an elevated level 
of glutamate was associated with disease outcome in 
breast cancer patients. Metabolomic analysis of 270 clini
cal breast cancer samples and 97 normal breast samples 
showed that breast cancer cells had a higher glutamate-
to-glutamine ratio than normal cells, particularly ER-
tumor cells[35]. A cell study showed that highly invasive 
and drug-resistant breast cancer cells were characterized 
by increased glutamine metabolism with an increased 
glutamate-to-glutamine ratio and greater expression of 
glutaminase compared with noninvasive breast cancer 
cells[36]. 

Under normal conditions, breast cells utilize circu
lating lipids for the synthesis of new structural lipids, 
while breast cancer cells mostly synthesize fatty acids by 
themselves. The biosynthetic enzyme fatty acid synthase 
(FASN) is the key enzyme required for the synthesis. 
FASN expression in breast cancer was first explored 
during the 1980s when its expression was increased 

after progestin treatment[37]. Recently, FASN expression 
has been recognized as an oncogene for its role in 
carcinogenesis. Upregulation of FASN has been reported 
in many different tumors, including breast cancer, and it 
may be associated with tumor development, recurrence 
and prognosis[38]. Immunohistochemistry staining 
revealed the highest FASN expression in HER-2 breast 
tumors and lowest in TNBC tumors, with the studies 
in breast cancer cells obtaining the same results[39,40]. 
Vazquez-Martin et al[41] postulated a ‘‘HER2-FASN axis’’ 
that indicated the bidirectional regulation mechanism 
between FASN and HER2 which could enhance cancer 
cell proliferation, survival, chemoresistance and metas
tasis in breast carcinomas.

MODULATION OF METABOLIC 
REPROGRAMMING IN BREAST CANCER
Breast cancer is classified into four molecular subtypes: 
Luminal A, luminal B, HER-2 overexpression and basal 
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resistance. The crosstalk between ER and HER2 may 
regulate MYC-mediated glutamine metabolism[52]. ER 
downregulator fulvestrant may decrease glutamine 
consumption through inhibition of MYC and glutaminase 
and consistent expression of MYC may abrogate the 
effect of rapamycin on glutaminase[52,56], although the 
highest glutamine metabolic activity was seen in HER2-
type breast cancer, which meant a possible correla
tion between glutamine activity and the HER-2 signal 
pathway[32]. 

Although the mechanism of overexpression of FASN 
in breast cancer cells is still uncertain, it has been proved 
that the potent lipogenic transcription factor sterol 
regulatory element-binding protein 1 (SREBP-1), can 
regulate FASN expression through binding with the site 
of the FASN promoter with co-activating transcription 
factors such as NF-γ Sp1 and Spot14[57,58]. Dietary 
polyunsaturated fatty acids suppress FASN expression 
through the modulation of NF-γ binding to the FASN 
promoter by SREBP-1c[59]. PI3k-Akt and the MAPK signal 
transduction pathway are also thought to be involved in 
FASN modulation[60,61]. Under hypoxic conditions, FASN 
gene is upregulated via the activation of Akt followed 
by the induction of the SREBP-1 gene[62]. Inhibition 
of MAP kinase also decreases transcription from the 
FASN promoter and reduces FASN expression in MCF7 
cells[63]. The mTOR inhibitor rapamycin may also inhibit 
FASN in breast cancer cells[64]. Recently, a “HER2-FASN 
axis” is thought to exist which indicates the bidirectional 
regulation mechanism between FASN and HER2. The 
highest level of FASN expression in the HER-2 positive 
breast cancer type also confirms this hypothesis. FASN 
could also be regulated by estrogen in ER-positive breast 
cancer cells. Estrogen stimulates FASN expression and 
inhibiting FASN augments E2-stimulated transcriptional 
activity and enhances the E2-mediated ER expression 
synergistically[65]. 

TARGETING GLYCOLYTIC ENZYMES
As a basic energy resource for cancer cells, many 
enzymes are involved in glucose metabolism. The effi­
ciency of target metabolism therapy has been proved 
in enhancing anticancer treatments or overcoming drug 
resistance in breast cancer cells, including chemotherapy 
resistance, endocrine therapy resistance and HER-2 
targeted therapy resistance. Besides searching for a new 
agent to block glucose metabolism or induce a switch 
from glycolysis to mitochondrial respiration, researchers 
are also making much effort to find the underlying effect 
of existing agents on metabolic changes. Sorafenib is 
a multikinase inhibitor and may downregulate GLUT-1 
expression in breast cancer cells through AMPK-
dependent inhibition of the mTORC1 pathway, inhibit cell 
proliferation and induce apoptosis[66]. 

The glucose transporter family consists of 14 sodium-
independent facilitative glucose transporters (SLC2A1-14 
or GLUT1-14). GLUT1 appears to be the predominant 
glucose transporter in many types of cancer cells, inclu

types, with type luminal A accounting for about 70%[42]. 
The estrogen and HER-2 signal pathways play critical 
roles in breast cancer carcinogenesis, progression and 
prognosis. They may interact with each other as well as 
other signal pathways. Since most cancer cells have a 
high nutrition intake requirement to accommodate cell 
proliferation and altered metabolism may be a hallmark 
of cancer development, different molecular subtypes of 
breast cancer should exhibit distinct metabolic pheno
types. However, to date, we still know much less about 
the modulation mechanism of tumor-specific metabolic 
changes, especially in breast cancer[43]. We also know 
less about how these changes may change molecular 
phenotypes of breast cancer and affect response to drug 
treatment.

Although scientists are trying hard to find how 
signal pathways control the energy metabolism of 
cancer cells, little is known about the complex network. 
Hypoxia-inducible factors (HIF) and the proto-oncogene 
c-Myc are two major regulators in energy metabolism, 
including glucose, protein and fatty acid metabolisms[44]. 
Other genes, including Akt, Ras, Raf, Src and EGFR, 
may also be involved in glycolysis and activating these 
genes could cause increased glucose uptake. mTOR 
inhibitor rapamycin may inhibit cancer cell glucose me
tabolism by downregulating pyruvate kinase M2 and 
restoring the susceptibility of breast cancer cells to 
tamoxifen treatment effectively may be one mechanism 
of rapamycin[45]. On the other hand, estrogen-induced 
HIF-1 accumulation in breast cancer cells stimulates 
glucose uptake via the PI3K/Akt signaling pathway[19,46] 
which also leads to increased mTOR phosphorylation[47]. 
Another clinical study found that HIF-1 had the highest 
expression in HER-2 positive breast cancer[21]. It indi
cated that HIF-1 has crosstalk with the ER and HER-2 
signal pathways. 

The c-MYC gene controls cancer cell glutaminolysis 
through several targeted genes. MYC is overexpressed in 
30%-50% of high-grade breast tumors[48,49]. Increased 
MYC expression often indicates increased dependency 
on glutamine and glucose for survival, may have a 
correlation with drug resistance in breast cancer cells and 
inhibition of MYC could reverse the drug resistance[50-52]. 
In antiestrogen resistant breast cancer cells, MYC could 
activate an unfolded protein response through glucose-
regulated protein-78 (GRP78/HSP5A/BiP) and inositol-
requiring enzyme-1α (IRE1α/ΕRΝ1) and increase c-Jun 
N-terminal kinase activation and spliced X-box protein-1 
to support cell survival[45]. The inhibition of MYC was 
shown to decrease glutaminase activity, although there 
were different results in drug resistant breast cancer 
cells and other cells[50,53,54]. Inhibition of glutaminase 
reversely could decrease MYC expression[51]. Activation 
of the Akt/mTOR signal pathway also stimulates uptake 
of glutamine through increased glutaminase activity[55] 
and the underlying mechanism may be through eIF4B 
dependent control of c-Myc translation[56]. In both ER and 
HER-2 positive breast cancer cells, upregulation of HER-2 
is one possible mechanism for endocrine treatment 
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ding breast cancer[67]. A small compound, WZB117, 
has shown its inhibitory activity on GLUT1 in MCF-7 
breast cancer cells[68]. Synergistic anticancer effects 
of combined WZB117 with other anticancer drugs, 
cisplatin or paclitaxel, were also observed. Added to 
the mitochondrial inhibitor, WZB117 was more efficient 
in inhibiting cell proliferation, which indicated WZB117 
may be more effective in aggressive cancer cells that 
invariably had mitochondrial dysfunction[68].

HK-2, the first regulatory enzyme in glycolysis, has 
an important role in glycolysis. 2-DG, a glucose analog, 
binds with HK competitively and inhibits glycolysis. 
Although as a single agent the antitumor effect was 
not significant, a study showed that 2-DG combined 
with trastuzumab inhibited trastuzumab-sensitive and 
resistant breast cancers in in vitro and in vivo models 
of HER-2 positive breast cancers with more efficient 
inhibition of glycolysis via downregulation of heat shock 
factor 1 and LDHA[69]. 

LDHA is the enzyme that catalyzes the conversion 
of pyruvate to lactate. LDHA knockdown stimulates 
the switch of HER-2-initiated breast cancer cells to 
mitochondrial oxidative phosphorylation, decreases cell 
proliferation to hypoxic conditions and interferes with 
tumorigenicity[70]. Dichloroacetate (DCA), an inhibitor 
of pyruvate dehydrogenase kinase (PDK), may activate 
pyruvate dehydrogenase, which is governed by PDK, 
and facilitate the conversion of pyruvate to acetyl Co-A, 
which demonstrates the antiproliferative properties 
in highly metastatic diseases of DCA[71]. The inhibitor 
of LDH-A selectively inhibits the growth of HER-2-
overexpressing cells and enhances the sensitivity of 
trastuzumab-resistant breast cancers to trastuzumab 
treatment[69,23]. Furthermore, downregulation of LDH-1 
by oxamate shows a synergistical inhibitory effect on 
taxol-resistant breast cancer cells by promoting apop
tosis when combined with taxol[9].

TARGETING GLUTAMINE METABOLISM 
In many cancer cells, glutamine is used to replenish 
the TCA cycle and oxidative phosphorylation instead 
of glucose to produce enough ATP to support cell proli
feration[72]. Glutamine addiction is a common strategy for 
some cancer cells like breast cancer cells to escape drug 
treatment. Glutamine transporters or glutaminolysis are 
becoming a potential pharmacological target to revert 
resistant cancer cells to respond to the initial therapy. An 
amino acid transporter SLC6A14, also known as ATB0,+, 
is upregulated specifically in ER-positive breast cancer. 
Blockade of SLC6A14 in ER-positive breast cancer cells 
could inhibit mTOR activity, cause cell apoptosis and 
activate autophagy[73]. 

Glutaminase, the enzyme that catalyzes glutamine 
to glutamate has attracted much interest for targeted 
cancer therapy recently. Two novel glutaminase inhi
bitors have been discovered: CB-839[74] and 968[51]. 
CB-839 showed the most potent antiproliferative activity 
in a TNBC cell line, while no antiproliferative activity was 
observed in an ER–positive cell line. In xenograft models, 

CB-839 displayed significant antitumor activity, both 
as a single agent and in combination with paclitaxel. 
Compound 968 showed the greatest cytotoxic effect 
in MDA-MB-231 breast cancer cells. Genome analysis 
proved that compound 968 could induce changes in 
many anti-apoptotic and/or promote metastasis-related 
gene expression and histone modifications as well, 
which subsequently activate apoptosis and decrease 
the invasiveness of MDA-MB-231 cells. It also enhanced 
chemotherapy sensitivity of breast cancer cells when 
combined with the chemotherapeutic drug doxorubicin.

TARGETING FATTY ACID METABOLISM
FASN is the key biosynthetic enzyme in the fatty 
acid synthesis pathway that synthesizes long-chain 
fatty acids palmitate from malonyl-CoA. Acetyl-CoA 
carboxylase (ACC) carboxylates acetyl-CoA to malonyl-
CoA. Upregulation of FASN has been reported both 
in premalignant lesions and most human cancers. 
In normal cells, fats are absorbed freely and FASN 
is downregulated, except in the lactating breast and 
cycling endometrium. The unique distribution of FASN 
in different tissues makes FASN an attractive target for 
cancer therapy. The inhibition of FASN causes depletion 
of the end product long chain fatty acids and the 
accumulation of the substrate malonyl-CoA. Evidence 
showed that inhibition of ACC did not induce cancer cell 
apoptosis, which meant the accumulation of malonyl-
CoA may be the reason for the antitumor effect of FASN 
inhibition[75,76]. 

A bidirectional regulation mechanism between 
FASN and HER2 was illustrated[41,77]. FASN blockade 
suppresses HER2 overexpression at the transcriptional 
level with the upregulation of the expression of PEA3, 
a transcriptional repressor of HER-2. HER-2 overex
pression stimulates FASN expression and fatty synthesis 
and this HER-2 mediated induction can be inhibited 
by trastuzumab. The combination of FASN inhibitor 
and trastuzumab stimulates MDA-MB-231/HER-2 cell 
apoptosis and re-sensitizes trastuzumab-resistant 
breast cancer through the downregulation of HER-2 
expression[78,79]. Menendez et al[77] hypothesized that 
FASN inhibition would result in major changes in the 
synthesis of phospholipids, which should increase the 
degradation of HER-2 and enhance the action of the 
anti-HER-2 antibody trastuzumab.

Furthermore, FASN inhibitor cerulenin demonstrated 
a strong synergism with docetaxel in HER-2 over
expressing and docetaxel-resistant SK-Br3 cells, which 
indicated the role of FASN in HER-2-induced breast 
cancer chemotherapy resistance[80]. FASN blockade also 
could induce a synergistic chemosensitization of breast 
cancer cells to other chemotherapy agents, such as 
paclitaxel, adriamycin, 5-FU and vinorelbine[81-84].

CONCLUSION
Breast cancer is a heterogeneous group of neoplasms 
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originating from epithelial cells that can be divided into 
various molecular phenotypes. Targeted therapy, such 
as endocrine therapy and HER-2 targeted therapy, has 
achieved great success in breast cancer treatment. 
However, like chemotherapy resistance, resistance to 
endocrine therapy and HER-2 targeted therapy can 
produce discouraging results. Recently, cancer research 
has focused on dysregulated metabolism in cancer cells 
and metabolic reprogramming is now considered a 
hallmark of cancer. More and more evidence supports 
the idea that dysregulated cellular metabolism may be 
associated with drug resistance in cancer therapy. In 
breast cancer, many agents that target specific enzy
mes in the metabolic pathways, including glycolysis, 
glutaminolysis and fatty acid synthesis, have been 
developed or proposed. Some of them have shown the 
ability to enhance the efficacy of current therapies and 
resensitize resistant cancer cells and have now been 
progressed to clinical trials. However, to date, none 
have been put into routine clinical practice for a couple 
of reasons. The main reason may be the extremely 
complex modulation of metabolism and their crosstalk 
with other signal pathways. Hence, there are three 
key problems that need to be elucidated: (1) energy 
pathways may be employed by cancer cells as well as 
normal cells. The influence or toxicity of metabolic drugs 
on normal cells should be evaluated carefully besides 
its antitumor effect. This question is prominent when 
combining metabolic drugs targeting different pathways 
to avoid insufficient effects or drug resistance; (2) for 
breast cancer, different molecular types may possess a 
specific metabolic phenotype. Even a “good” molecular 
type of breast cancer, like luminal A, may have recurrent 
metastasis caused by drug resistance in a relatively 
short period and so it is critical to find which specific 
enzymes for specific molecular phenotypes could be 
promising targets. This understanding will help us better 
distinguish which altered metabolic phenotypes may 
have a poorer prognosis and higher invasiveness than 
other types; (3) it has been postulated that metabolic 
regulation may have crosstalk with ER and HER-2 signal 
pathways. The genetic regulators such as c-myc, PI3k/
Akt /mTOR and MAPK regulate metabolism as well as 
ER and HER-2 signal pathways. They form a complex 
framework, like the “FAS-HER-2 axis” and “c-myc-
mTOR axis”, which determines the growth, apoptosis 
and drug resistance of cancer cells. Completely un
derstanding the framework for breast cancer is still a 
challenge for developing a successful metabolic therapy. 
Nevertheless, much effort and progress has been 
made in this field and we hope that, in the near future, 
targeting tumor metabolic pathways may become an 
important component of the comprehensive treatment 
of breast cancer.
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