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Abstract
The Akt signal transduction pathway controls most 

hallmarks of cancer. Activation of the Akt cascade 
promotes a malignant phenotype and is also widely 
implicated in drug resistance. Therefore, the modulation 
of Akt activity is regarded as an attractive strategy to 
enhance the efficacy of cancer therapy and irradiation. 
This pathway consists of phosphatidylinositol 3 kinase 
(PI3K), mammalian target of rapamycin, and the trans-
forming serine-threonine kinase Akt protein isoforms, also 
known as protein kinase B. DNA-targeted agents, such 
as platinum agents, taxanes, and antimetabolites, as 
well as radiation have had a significant impact on cancer 
treatment by affecting DNA replication, which is aberrantly 
activated in malignancies. However, the caveat is that they 
may also trigger the activation of repairing mechanisms, 
such as upstream and downstream cascade of Akt 
survival pathway. Thus, each target can theoretically be 
inhibited in view of improving the potency of conventional 
treatment. Akt inhibitors, e.g. , MK-2206 and perifosine, 
or PI3K modulators, e.g. , LY294002 and Wortmannin, 
have shown some promising results in favor of sensitizing 
the cancer cells to the therapy in vitro  and in vivo , which 
have provided the rationale for incorporation of these 
novel agents into multimodality treatment of different 
malignancies. Nevertheless, despite the acceptable safety 
profile of some of these agents in the clinical studies, with 
regard to the efficacy, the results are still too preliminary. 
Hence, we need to wait for the upcoming data from the 
ongoing trials before utilizing them into the standard care 
of cancer patients. 
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Core tip: The Akt pathway plays an important role in 
resistance to several cytotoxic agents, targeted drugs 
and radiation. Exposure to these drugs will stimulate the 
Akt survival pathway leading to a decreased response 
to these drugs. In model systems inhibition of the Akt 
pathway enhanced the cytotoxicity of drugs like taxanes, 
antimetabolites, platinum analogs, several targeted drugs 
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Akt2 function almost in contrary to each other in 
modulating phenotypes associated with migration and 
invasion. Akt isoforms contain an N-terminal pleckstrin 
homology (PH) domain, a central catalytic domain, and 
a C-terminal regulatory region. The PH domain can bind 
phosphatidylinositol lipids (e.g., PIP3) with high affinity 
and targets Akt to the cell membrane[15]. 

Regulation of Akt, on the other hand, is mainly ac-
hieved through PTEN, which antagonizes PI3K. PTEN 
is a tumor suppressor gene that is frequently mutated 
in different types of cancer, and loss of PTEN leads to 
elevation of PI3K lipid products and thus activating the 
Akt pathway[16]. Thus, PTEN negatively regulates the Akt 
pathway, while loss of PTEN results in overactive Akt, 
which induces proliferation and promotes survival by 
inhibiting apoptosis[10,17]. Among the three Akt isoforms, 
Akt2, is exclusively having carcinogenic properties in 
PTEN-deficient solid tumors[18]. 

Despite many breakthroughs in elucidating the cancer 
behavior and possible mechanisms leading to developing 
different treatments, resistance is still a problem. The 
main goal of cytotoxic cancer therapy is to eliminate 
irregularly dividing cancer cells by targeting DNA 
synthesis or the mitotic apparatus. Different molecules, 
genes, proteins and signal transduction pathways are 
involved in this complicated process[1,19,20]. Resistance 
is often related to uptake, metabolism or alterations in 
the target. Besides, many studies demonstrated the 
modulation of key signaling pathways by the DNA-
targeted therapies (reviewed in the following sections). 
The PI3K/Akt signaling pathway being mutated in a 
high percentage of malignancies[20] is widely implicated 
in tumor growth, which may also render tumor cells 
resistant to chemotherapeutic drugs[5]. Thus, inhibition of 
this pathway should foil local tumor growth. Many trials 
are underway to investigate whether adding inhibitors 
targeting PI3K/Akt pathway may improve the efficacy 
of the conventional regimen by reducing the apoptotic 
threshold[21]. Here, we review the literature on the 
potential value of modulating Akt pathway in view of 
improving the cytotoxicity of DNA-targeted anticancer 
drugs and radiotherapy.

METHODS: A SYSTEMATIC BEST 
EVIDENCE REVIEW
We looked for publications studying the effects of the 
approved or tested DNA-targeted cytotoxic agents on the 
Akt signaling using the Medline via PubMed database. The 
inclusion criteria consisted of studies on modulation of Akt 
signaling by DNA-targeted cytotoxic agents, i.e., platinum 
agents (cisplatin, carboplatin, oxaliplatin), taxanes 
(paclitaxel, docetaxel), antimetabolites (gemcitabine, 
fluorouracil, pemetrexed), and radiation in glioblastoma, 
mesothelioma and lung, ovary, and pancreas cancers, 
including their synonyms, with no language restriction 
as of September 2014. Search terms related to the Akt 
modulation were “p-Akt” OR “pAkt” OR “phospho-Akt” 

and radiation. Akt inhibitors offer a new opportunity 
to increase the efficacy of currently used drugs and of 
radiotherapy.
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AKT PATHWAY SIGNALING OVERVIEW
The Akt signal transduction pathway controls most 
hallmarks of cancer, including metabolism, cell sur-
vival, cell cycle progression, regulation of apoptosis, 
protein synthesis, motility, and genomic instability 
by phosphorylation of the substrates[1]. Aberrant loss 
or gain of Akt activation has been associated with 
the development of various diseases, e.g., diabetes, 
autoimmune diseases, and cancer[2-5]. 

The Akt pathway consists of phosphatidylinositol 
3 kinase (PI3K), mammalian target of rapamycin 
(mTOR), and the transforming serine-threonine kinase 
Akt protein isoforms (further referred to as Akt), also 
known as protein kinase B (PKB) and phosphate and 
tensin homologue (PTEN) as a critical tumor suppressor. 
PI3K enzymes phosphorylate phosphatidylinositol-4,5-
biphosphate (PIP2) to generate phosphatidylinositol-
3,4,5-triphosphate (PIP3) at the cell membrane that 
are required for the recruitment and activation of Akt[6,7] 
(Figure 1). These phospholipids are constitutively 
elevated in most cancer cells. Docking of Akt to the cell 
membrane causes a conformational change, which in 
turn leads to phosphorylation of the two critical amino 
acid residues, threonine 308 and serine 473, and finally 
leads to the activation of Akt[8]. After the activation, Akt 
is translocated to intracellular compartments where it 
phosphorylates several substrate proteins. The down-
stream targets of Akt are numerous due to the multiple 
interactions with its consensus sequence[1]. In summary, 
the most important effects of Akt activation are: (1) 
cell survival through inhibition of BAD, caspase-9, and 
FOX[9-11]; (2) cell proliferation and gluconeogenesis 
through inhibition of GSK3, P21, P27, etc.[12]; and (3) 
protein synthesis and cell growth through activation of 
mTOR[13] (Figure 1). 

To date, 3 Akt family members have been identified 
in mammals, i.e., Akt1 (also known as PKBα), Akt2 (PKBβ) 
and Akt3 (PKBγ). Having shown highly conserved 
properties, these homologues may be activated by 
the same mechanism[14]. However, being encoded by 
three different regions at 14q32, 19q13, and 1q44, res-
pectively, these three isoforms are distinct substrates 
with distinct physiological outcomes, and also opposing 
to each other. Accumulating evidence casts Akt1 and 
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OR “phosphorylat* Akt” OR “Akt phosphorylation” OR 
“Akt inhibition” OR “Akt modulation” OR “inhibit* Akt” OR 
“inactivation of Akt” OR “Akt inactivation” OR “activation 
of Akt” OR “inactivating Akt”. Because of a large body 
of data on this subject, here we narrowed the scope of 
the current review down to the preclinical and clinical 
data on the simultaneous administration of cisplatin, 
paclitaxel, gemcitabine, or pemetrexed with some of the 
most clinically relevant PI3K/Akt modulators, i.e., PI3K 
inhibitors, (e.g., LY294002, Wortmannin), PI3K/mTOR 
inhibitors (e.g., BEZ235), or Akt inhibitors (e.g., perifosine, 
MK2206), which were tested in combinations with DNA-
targeted agents in any of the five types of cancers. 

We excluded papers not meeting the inclusion criteria 
as well as retracted publications, duplicates, or non-
original papers, i.e., review articles, letters and editorials, 
comments, and case reports.

For clinical data, we searched for all the registered 
trials, being planned or performed to study the effect of 
PI3K/Akt inhibitors, i.e., MK2206, perifosine, LY294002, 
Wortmannin, BEZ235, in combination with any of the nine 
DNA-targeted modalities discussed above, i.e., carboplatin, 
cisplatin, oxaliplatin, paclitaxel, docetaxel, fluorouracil, 
gemcitabine, pemetrexed, and radiation. All published full 
text papers or abstracts as well as those with preliminary 
results in any languages fulfilling selection criteria were 
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Figure 1  Phosphatidylinositol 3 kinase/Akt pathway. Activated RTKs activate PI3K through direct binding or through tyrosine phosphorylation of scaffolding 
adaptors, such as IRS1, which then bind and activate PI3K. PI3K phosphorylates PIP2 to generate PIP3, in a reaction that can be reversed by the PIP3 phosphatase 
PTEN. Activation of PI3K results in membrane recruitment and thus activation of Akt protein. Akt regulates cell growth and many other cellular processes through 
its effects on mTOR pathways and thus regulates glucose metabolism, protein synthesis, mitochondrial metabolism, lipid metabolism, adipogenesis, lipogenesis, 
angiogenesis, autophagy, proliferation and cell growth. Other targets of Akt include insulin receptor substrate-1 (IRS-1), glycogen synthase kinase 3 (GSK3), 
phosphodiesterase-3B (PDE-3), B cell lymphoma-2-associated death promoter (BAD), human caspase-9, Forkhead box (FOX) and nuclear factor kappa-light-chain-
enhancer of activated B cells (NFκB) transcription factors, endothelial nitric oxide synthase (eNOS), Rapidly Accelerated Fibrosarcoma (Raf) kinases, P21CIP1/WAF1 
(P21; a potent cyclin-dependent kinase inhibitor), P27Kip1, Tuberous Sclerosis Complex 2 (TSC2; also known as Tuberin), X-linked inhibitor of apoptosis protein 
(XIAP; also known as inhibitor of apoptosis protein 3 and baculoviral IAP repeat-containing protein 4), and Mouse Double Minute 2. Following the activation, Akt 
phosphorylates and blocks the molecules involved in the apoptotic pathway, including FOX, Caspase-9 and BAD. In addition to the inhibition of proapoptotic factors, 
Akt can activate the transcription of antiapoptotic genes through the activation of the transcription factor Rel/NFκB. Akt also phosphorylates and activates IκB, which 
results in IκB degradation by the proteasome. This allows NFκB to translocate from the cytoplasm to the nucleus and activate transcription of a variety of substrates 
including anti-apoptotic IAP genes, such as the c-IAP1 and c-IAP2. IRS1: Insulin receptor substrate 1; PI3K: Phosphatidylinositol 3-kinase; PIP3: Phosphatidylinositol-
3,4,5-trisphosphate; PTEN: Phosphate and tensin homologue; RTK: Receptor tyrosine kinase.
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included with no time period restriction. Studies with prior 
administration of anticancer medications, or combination 
of drugs targeting other signaling pathways other than 
Akt, PI3K, and mTOR were excluded. The databases 
that were used in this phase included the US clinical trials 
registry (clinicaltrials.gov), NIH clinical research studies 
(clinicalstudies.info.nih.gov), worldwide clinical trials listings 
(www.clinicaltrialssearch.org/5-cancer-clinical-trials.
html), and the WHO International Clinical Trials Registry 
Platform (apps.who.int/trialsearch). The latter included 13 
registries (Nationalities: Australian, New Zealand, Chinese, 
American, Canadian, European, Dutch, Brazilian, Indian, 
Korean, Cuban, German, Iranian, Japanese, Pan African, 
Sri Lankean, and Thai clinical trials). 

AN OVERVIEW ON PI3K/AKT INHIBITORS
Many compounds have been developed to inhibit PI3K, 
Akt, and mTOR signaling, among which only few were 
tested in clinical settings (Figure 2). However, they 
did not yet have significant clinical benefit, except for 
idelalisib (GS-1101, a p110δ-selective inhibitor), which 
is the first Food and Drug Administration approved PI3K 
inhibitor[22], and some mTOR inhibitors, e.g., rapamycin 
and its analogs. There are six general classes of these 

agents targeting the Akt network: Pan-class Ⅰ PI3K 
inhibitors, isoform-selective PI3K inhibitors, rapamycin 
analogues (rapalogues), active-site mTOR inhibitors, 
pan-PI3K-mTOR inhibitors and Akt inhibitors[23] (Table 1). 
Isoformspecific PI3K inhibitors targeting PI3Kβ, inhibitors 
of ribosomal protein S6 kinase β1 (S6K), PDK1 inhibitors 
and isoform-selective Akt kinase inhibitors (Akt1 and 2) 
are also under investigations soon to be tested in the 
clinic[23]. 

PI3K is upstream of Akt pathway, and with its inhibition 
all the subsequent signaling will potentially be down-
regulated. Emerging clinical data show limited single-
agent activity of inhibitors targeting PI3K. However, the 
drugs targeting PI3K pathway usually modulate the 
myriad substrates, including Akt and/or mTOR. LY294002, 
Wortmannin, and perifosine as PI3K/Akt inhibitors, 
BEZ235 as dual PI3K/mTOR inhibitor, and MK2206 as 
a specific Akt inhibitor are some of the commonly used 
drugs in this category that modulate Akt signaling. 
LY294002 is a morpholine-containing chemical compound 
that is a potent reversible inhibitor of PI3K signaling. 
Wortmannin is a steroid metabolite of the fungi Penicillium 
funiculosum with an irreversible inhibitory effect on PI3K. 
Perifosine is an orally active alkylphospholipid analog, 
which targets cell membrane and modulates different 
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Figure 2  A schematic figure showing the complementary effects of phosphatidylinositol 3-kinase/Akt inhibitors with platinum agents, taxanes, 
antimetabolites, tumor antibiotics, and radiation resulting in a better cytotoxic profile. 
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signaling pathways, and Akt in particular[24,25]. 

INDIRECT ALTERATION OF AKT 
SIGNALING AND ITS MODULATION
We finally selected 65 papers being suited to this review 
(Figure 3; Table 2) by which combination of a PI3K/Akt 
inhibitor with any of cisplatin, paclitaxel, gemcitabine, 
or pemetrexed was studied. The results are precisely 
discussed in the following sections.

Effect of platinum analogs on Akt signaling
Cisplatin, carboplatin and oxaliplatin are the 3 most 
commonly used anticancer platinum analogs. The 
main antitumor properties of cisplatin are attributed 
to the formation of platinum-DNA adducts causing 
DNA bending[26], which interferes with DNA replication, 
transcription and other nuclear functions leading to the 
inhibition of cellular proliferation and tumor growth. 
Intrinsic and acquired resistance limits the efficacy of 
platinum drugs in cancer treatment. Decreased drug 
uptake along with increased influx or inactivation by 
sulfhydryl molecules, such as glutathione, or increased 
DNA adduct repair can result in platinum resistance[27,28]. 
Wang and Lippard[29] suggested that induction of 
signaling pathways might be an alternative mechanism 
of resistance to platinum analogs.

Some data suggest that cell death induced by 
cisplatin may occur through regulation of cell cycle[30-32]. 
Mitsuuchi et al[32] demonstrated that PI3K, Akt1, and 
Akt2 are required for p53 protein expression and the 
full induction of p21 in ovarian cancer cells treated with 

cisplatin. Liu et al[33] suggested that Akt1 expression 
regulates cisplatin resistance in lung cancer cells through 
mTOR pathway, and its inhibition may sensitize cells to 
cisplatin. Moreover, amplification of a catalytic subunit 
of PI3K (PIK3CA) was also found to be associated with 
the risk of resistance to platinum-based chemotherapy 
in a group of patients with ovarian cancer, but not with 
the overall survival[34]. Thus vailable data support the 
probable role of Akt amplification/overexpression in 
platinum-resistance in vitro and in vivo[33,35-43]. 

The PTEN (encoding PIP3 phosphatase) and PIK3CA 
(encoding the PI3K catalytic isoform p110α) are the two 
most frequently altered mutated tumor suppressor and 
oncogenes, respectively[23]. Moreover, a low level of the 
PTEN expression is associated with amplified PIK3CA 
expression and finally PI3K/Akt activity[42]. Other data 
suggest that loss of the FHIT (fragile histidine triad; 
an inhibitor of Akt signaling) and overexpression of 
Redd1 (an inhibitor of mTOR signaling) are associated 
with cisplatin resistance in lung cancer cell lines[44-46]. 
Furthermore, overexpression of ADAM17 (a disintegrin 
and metalloproteinase-17) has been found to be ass-
ociated with hypoxia-induced cisplatin resistance in 
hepatocellular carcinoma cells through activation of EGFR/
PI3K/Akt pathway in vitro[47]. ADAM17 is a member of the 
metalloproteinase superfamily involved in the cleavage of 
ectodomain of many transmembrane proteins. Besides, 
prostate apoptosis response-4 (a proapoptotic tumor 
suppressor protein) downregulation was associated with 
cisplatin resistance in pancreatic cancer cells through 
upregulation of PI3K/Akt signaling in vivo[31]. Given that 
cisplatin activates PI3K/Akt signaling, downregulation 
of this pathway may bypass cisplatin-resistance. Akt 
pathway overactivation may decrease cisplatin sensitivity 
and cause treatment resistance even in platinum sensitive 
cells, whereas downregulation of Akt can boost the drug 
sensitivity and resistance to platinum compounds like 
cisplatin[36,39]. 

Effect of Akt-inhibition on platinum sensitivity
Some studies did not find treatment sensitization by adding 
LY294002 to cisplatin[48,49]. However, the PI3K/Akt inhibitors, 
LY294002, Wortmannin, or BEZ235 in combination with 
cisplatin showed synergistic or additive effects against 
malignant mesothelioma and lung cancer[44,50-55], pan-
creatic cancer[30], ovarian cancer[41-43,56-61], as well as 
glioblastoma[62,63] in vitro and in vivo (Table 3). 

Perifosine increased the antineoplastic activity of 
cisplatin in ovarian[25,87], endometrial[91], and lung[44,54,55,92] 
cancer cells by activating apoptotic pathways and thus 
enhancing the cytotoxicity of cisplatin. Likewise, the 
specific Akt inhibitor MK-2206 showed synergism when 
combined with cisplatin in lung cancer[51,55], gastric 
cancer[93], and nasopharyngeal carcinoma cells[94] in 
vitro and in vivo. It can be concluded that activation of 
the Akt survival pathway plays a pivotal role in platinum 
resistance, and inhibition of Akt may enhance the effect 
of this type of anticancer drug. 

Table 1  Drugs targeting phosphatidylinositol 3 kinase/Akt/
mammalian target of rapamycin pathway

PI3K/Akt/mTOR subgroups Agents Clinical Stage

Pan-PI3K inhibitors XL147 Phase Ⅱ
BKM120 Phase Ⅲ
GDC0941 Phase Ⅱ

Rapalogues (mTORC1 inhibitors) Sirolimus Phase Ⅲ
Everolimus Approved

Temsirolimus Approved
Ridaforolimus Phase Ⅲ

mTORC1/2 inhibitors INK128 Phase Ⅱ
AZD8055 Phase Ⅰ 

OSI027 Phase Ⅰ
PI3K–mTOR inhibitors BEZ235 Phase Ⅱ

XL765 Phase Ⅱ
GSK1059615 Phase Ⅰ

Isoform-specific PI3K inhibitors CAL-101 (p110δ) Phase Ⅲ
INK1117 (p110α) Phase Ⅰ
BYL719 (p110α) Phase Ⅱ

Akt inhibitors Perifosine Phase Ⅲ
MK-2206 Phase Ⅱ
GDC0068 Phase Ⅱ

GSK690693 Phase Ⅰ

PI3K: Phosphatidylinositol 3 kinase; mTOR: Mammalian target of 
rapamycin.
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Effect of taxanes on Akt signaling
Taxanes, e.g., paclitaxel and docetaxel, are frontline therapy 
for several cancers. They stabilize microtubules, leading to 
cell cycle arrest through centrosomal impairment, induction 

of abnormal spindles and suppression of spindle microtubule 
dynamics, finally triggering apoptosis[95]. Microtubules 
are critical for the integrity of the segregated DNA during 
mitosis. However, inherent or acquired resistance to taxanes 

3370 papers [target: modulation of Akt by 9 DNA-targeted agents]
(i.e. , 770 [Platinum], 512 [Taxanes], 439 [Antimetabolites], 1546 [Radiation])

265 papers excluded: Non-original works1

2910 papers relevant (relevant to the subject of this review)

2346 papers excluded: Irrelevant to the scope of this review2

461 papers excluded: Based on the title and abstract

36 papers excluded after full text review

Prelinical studies

564 papers (efficacy of five PI3K/Akt inhibitors on apoptosis)
(i.e. , 339 [LY294002], 140 [Wortmannin], 31 [BEZ235], 28 [Perifosine]), 26 [MKZ206])

103 papers for full text review
(i.e. , 59 [LY294002], 25 [Wortmannin], 5 [BEZ235], 10 [Perifosine]), 5 [MKZ206])

65 papers selected for final consideration
(i.e. , 36 [LY294002], 12 [Wortmannin], 5 [BEZ235], 7 [Perifosine]), 5 [MKZ206])
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Figure 3  Review flow diagram of the publication selection in preclinical category. 1Exclusion criteria include the retracted publication, duplicate publication 
or non-original papers, including review articles, letters and editorials, comments, case reports, etc.; 2According to the scope of the current review: Efficacy of Akt 
modulation by 9 DNA-targeted agents in 5 types of cancer, including lung cancer, malignant mesothelioma, pancreatic cancer, ovarian cancer, and malignant glioma. 
PI3K: Phosphatidylinositol 3 kinase; EGFR: Epidermal growth factor receptor; mTOR: Mammalian target of rapamycin.

Table 2  Systematic chart of searching methodology and the results based on PubMed

DNA-targeted 
therapies

Agents Akt modulation

All papers1 Non-original2 Relevant papers3 PI3K/Akt inhibitors4

LY294002 Wortmannin BEZ235 Perifosine MK2206

Platinum Carboplatin     68     6     51     3     1   0   0   4
Cisplatin   631   15   589   85   22   8   9   5
Oxaliplatin     71     5     59     5     2   0   0   0

Taxane Docetaxel   149   13   127     9     2   3   1   3
Paclitaxel   363   18   331   47   15   4   2   5

Antimetabolite Fluorouracil   191     5   174   18     6   0   2   3
Gemcitabine   213   14   191   16     8   3   1   1
Pemetrexed     35     3     32     5     2   1   0   0

Radiation Irradiation/
radiation

1649 186 1356 151   82 12 13   5

Total articles (9 agents) 3370 265 2910 339 140 31 28 26

1Terms used in the search: Query agent/radiation, and Akt, within whole the article with no language limitation, as of September, 2014; 2Including the 
retracted publication, duplicate publication or non-original papers, including Review articles, Letters and Editorials, Comments, Case Reports, etc.; 
3Relevant with regard to the modulation of Akt by the query agent. [p-Akt OR pAkt OR "phospho-Akt" OR (phosphorylat* Akt) OR “Akt phosphorylation” 
OR “Akt inhibition” OR “Akt modulation” OR (inhibit* Akt) OR “inactivation of Akt” OR “Akt inactivation” OR “activation of Akt” OR “inactivating 
Akt”]; 4Suppressing Akt cascade by a PI3K/Akt inhibitor to sensitize the query agent. PI3K: Phosphatidylinositol 3 kinase.
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may compromise their therapeutic efficacy[96,97]. 
Resistance to taxanes includes increased efflux, 

and modification in tubulins. Akt pathway activation 
contributed to an increased resistance to paclitaxel or 
docetaxel in epithelial ovarian cancer, prostate cancer, 
and breast cancer cells[98-101]. Activation of Akt1 by 
HER2/PI3K may also lead to taxane resistance in breast 
adenocarcinoma cells[102]. Moreover, PIK3CA gene, 
encoding a catalytic subunit of the PI3K, is mutated 
and/or amplified in various neoplasms, such as ovarian 
cancer. Its amplification strongly decreased the sensitivity 
and thus response to platinum with/without taxanes in 
patients with ovarian carcinoma[34]. 

There are also crosstalks between PI3K/Akt pathway 
with BAD and ERK[41,68], and inhibition of these cascades 
sensitized ovarian cancer cells to taxanes. Therefore, in 
order to sensitize taxane treatment, PI3K/Akt cascade 
can be considered as a suitable target.

Effect of Akt-inhibition on taxane sensitivity 
LY294002, Wortmannin, BEZ235, or perifosine-mediated 
inhibition of the PI3K/Akt-dependent survival pathway 
enhanced paclitaxel cytotoxicity in various cancers, e.g., 
malignant glioma[63,80], lung[50,64-66,80], esophageal[64,80], 
and ovarian cancer cells[32,56,61,67-70,88] (Table 3). However, 
there are some data not in favor of the combination. 
LY294002 did not potentiate cisplatin, pemetrexed, or 
paclitaxel in A549 lung adenocarcinoma cells harboring 
K-ras mutation and wild-type EGFR[50]. Likewise, 

inactivation of PI3K/Akt signaling by LY294002 did not 
result in significant alteration of sensitivity of human ova-
rian carcinoma A2780 cells to paclitaxel[48]. Similarly, the 
combination of paclitaxel with LY294002 was antagonistic 
in vitro when dexamethasone was also administered; 
although dexamethasone did not alter the Akt activity[66]. 

Activation of NFκB is linked to Akt-dependent tra-
nscription of pro-survival genes[103]. Thus, LY294002-
mediated suppression of the PI3K/Akt survival pathway 
with secondary inhibition of NFκB transcriptional activity is 
associated with enhancement of paclitaxel cytotoxicity in 
lung, esophageal and ovarian cancer cells[64,104,105], which 
indicates that NFκB may be the crucial intermediary step 
connecting Akt to the intrinsic susceptibility of cancer 
cells to paclitaxel.

Additionally, the Akt inhibitor MK-2206 augmented the 
efficacy of paclitaxel and carboplatin combination in gastric 
cancer[106], breast cancer[107], and melanoma cells[108]. 
However, addition of MK-2206 to paclitaxel alone had no 
additive inhibitory effect on growth of nasopharyngeal 
carcinoma cells in vitro[90]. Furthermore, Hirai et al[90] found 
that synergy of MK-2206 with docetaxel was dependent 
on the treatment sequence, in which a schedule of 
MK-2206 before docetaxel was not effective in terms of 
growth inhibition. Dual inhibition of PI3K and mTORC1/2 
by BEZ235 may overcome docetaxel resistance in 
human castration resistant prostate cancer in vitro and in 
vivo[109]. Thus, modulation of the PI3K/Akt signaling may 
increase the efficacy and potency of taxanes according 

Table 3  Studies evaluating the efficacy of phosphatidylinositol 3 kinase phosphatidylinositol 3 kinase/Akt modulators on the apoptotic 
profile of cisplatin, paclitaxel, gemcitabine and pemetrexed

PI3K/Akt inhibitor and DNA-
targeted agent combination

Akt modulation (phosphorylation)

Lung cancer and mesothelioma Pancreatic cancer Ovarian cancer Malignant glioma

Synergistic Antagonistic Synergistic Antagonistic Synergistic Antagonistic Synergistic Antagonistic

LY294002/Cisplatin 1[51]a 1[50] 2[30,31] - 6[42,56-60] 1[49] 2[62,63]b 1[48]

LY294002/Paclitaxel 2[64,65] 2[50,66] - - 7[32,56,67-71]b - 1[63] -
LY294002/Gemcitabine 1[72] 1[73] 4[74-77]b 1[78] 1[56] - - -
LY294002/Pemetrexed 1[79] 1[50] - - - - - -
Wortmannin/Cisplatin 1[52] - - 3[41-43] - - -
Wortmannin/Paclitaxel 1[80] - - - 1[70] - 1[80] -
Wortmannin/Gemcitabine - - 5[74,81-84] - - - - -
Wortmannin/Pemetrexed 1[79] - - - - - - -
BEZ235/Cisplatin 1[53] - - - 1[61] - - -
BEZ235/Paclitaxel - - - - 1[61] - - -
BEZ235/Gemcitabine - - 1[85] - - - - -
BEZ235/Pemetrexed 1[86] - - - - - - -
Perifosine/Cisplatin 2[44,54] - - - 2[25,87] - - -
Perifosine/Paclitaxel - - - - 1[88] - - -
Perifosine/Gemcitabine 1[54]b - - - 1[89] - - -
Perifosine/Pemetrexed - - - - - - - -
MK2206/Cisplatin 2[51,55] - - - - - - -
MK2206/Paclitaxel - - - - - - - -
MK2206/Gemcitabine 2[54,90]b - - - - - - -
MK2206/Pemetrexed - 1[54]c - - - - - -
Total 17 6 12 1 24 1 4 1

aChowdhry et al[51]. Reporting an increased sensitivity, but synergism not evaluated; bShingu et al[62,63], Kawaguchi et al[69], Pinton et al[54] additive 
enhancement of proliferative inhibition; cHolcomb et al[76] LY294002 combination with gemcitabine showed additive effects on proliferative inhibition in 
PANC-1 and synergistic in PaCa2+ pancreatic cancer cell lines. However, pAkt levels rebounded at later time points. PI3K: Phosphatidylinositol 3 kinase.
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to in vitro and in vivo data. However, the effect may have 
been masked by inclusion of platinum in several studies, 
indicating that in some studies, the effect might be via 
platinum.

Effect of antimetabolites on Akt signaling
Antimetabolites are a large group of anticancer drugs 
widely used in combination therapy of various leukemias 
and solid tumors. They interfere with DNA and RNA 
synthesis and therefore the growth of tumor[110]. Anti-
metabolites are categorized as pyrimidine analogs [e.g., 
5-fluorouracil (5-FU), gemcitabine], purine analogs (e.g., 
azathioprine, mercaptopurine), and antifolates (e.g., 
methotrexate, pemetrexed). In the present review, we 
mainly focused on two commonly used antimetabolites 
gemcitabine and 5-FU, as well as the novel anti-folate 
pemetrexed.

Effect of gemcitabine on Akt signaling and 
effect of Akt inhibition: Gemcitabine is used in the 
treatment of various carcinomas, such as lung cancer, 
bladder cancer, breast cancer, pancreatic cancer, and 
lymphomas[111]. A substantial number of potential 
biomarkers for sensitivity or resistance to gemcitabine 
have been characterized, including ribonucleotide 
reductase, deoxycytidine kinase, cytidine deaminase 
and human equilibrative transporter-1[112,113]. Additional 
mechanisms of resistance may exist, possibly not 
involving metabolism and direct targets[74,75,112,114].

Gemcitabine resistance in breast cancer cells may 
also be mediated by activation of the PI3K/Akt signaling 
pathway through phosphorylated Akt[115], so that 
inhibitors of PI3K/Akt might reverse the resistance to 
gemcitabine. Moreover, involvement and overexpression 
of PI3K and phosphorylated Akt in pancreatic carcinoma 
tissues has been reported in gemcitabine-resistant cells 
in vitro[73,78,84]. Rad51 overexpression may also mediate 
gemcitabine resistance through Akt or ERK1/2 activation 
in non-small cell lung cancer (NSCLC) cells, which could 
be overcome by downregulation of Rad51 or inhibition of 
Akt and ERK1/2 proteins[72]. Although Akt phosphorylation 
status is tailored as a predictive biomarker for gem-
citabine resistance in NSCLC patients[116], gemcitabine 
may also reduce Akt phosphorylation without affecting 
the Akt overall expression[117]. Wilson et al[73] reported 
a weak correlation between phosphorylated S6K and 
phosphorylated Akt, suggesting the existence of Akt-
independent regulation of mTOR-mediated resistance to 
apoptosis. Overall, inhibition of PI3K/Akt signaling may 
enhance the gemcitabine cytotoxic profile.

Wortmannin enhanced the efficacy of gemcitabine 
by a 5-fold increase of apoptosis in murine pancreatic 
xenografts[81]. A synergistic effect of Wortmannin, LY29 
4002, and BEZ235 with gemcitabine was also reported 
in ovarian cancer[56] and pancreatic carcinoma[74-77,81-85] in 
vitro and in vivo (Table 3). Although gemcitabine induces 
cell cycle arrest at the G1 and early S phases, PI3K/Akt 
activation does not seem to influence gemcitabine-

induced cell cycle arrest[84]. Likewise, perifosine has shown 
additivity in combination with gemcitabine by inhibiting 
Akt1 and Akt3 axis, and interfering Akt upstream, EGFR, 
and MET phosphorylation[54]. Perifosine also enhanced 
the gemcitabine-mediated antitumor effect on pancreatic 
cancer cells through blocking p70S6K1 (S6K1) activation, 
and thus disrupting S6K1-Gli1 association and subsequent 
Gli1 activation[89]. Besides, Akt[118], mTOR[119], and MAPK[120] 
may also activate Gli1. Likewise, the Akt inhibitor MK2206 
enhanced the effect of gemcitabine on growth inhibition in 
vitro and in vivo[90]. In the contrary, Arlt et al[78] found that 
NFκB, rather than PI3K/Akt, activity conferred resistance 
to gemcitabine in a panel of five pancreatic carcinoma cell 
lines, which was strongly diminished by NFκB inhibitors, 
and not by LY294002. Overall, the PI3K/Akt inhibitors have 
been efficacious in improving gemcitabine cytotoxicity.

Effect of FU on Akt signaling and effect of Akt 
inhibition: 5-FU is an antimetabolite that acts by inhibition 
of thymidylate synthase (TS) and can be incorporated 
into RNA and DNA altering the cancer cell replication and 
proliferation[121]. 5-FU-based regimens are often used 
in adjuvant chemotherapy regimens and treatment of 
various advanced malignancies, such as colon cancer, 
head and neck cancer, breast cancer, but depending on 
the disease and stage of the tumor, intrinsic resistance to 
5-FU can be as high as 50%[122]. Resistance to 5-FU has 
often been associated with an increased TS expression, 
both transient and permanent[123]. Other factors, such as 
enzymes involved in pyrimidine metabolism, i.e., increased 
dihydropyrimidine dehydrogenase, decreased orotate 
phosphoribosyltransferase, or altered folate metabolism 
have been associated with 5-FU resistance[121,124,125]. 
Moreover, 5-FU has major effects on glycosylation pathways 
as well[126], which may indirectly have effects on signaling 
pathways. Hence, evidence is accumulating that 5-FU 
resistance is associated with altered signaling. 

Smad4 deficiency may also contribute to 5-FU 
resistance through upregulation of vascular endothelial 
growth factor expression, which is associated with 
increased vascular density[127,128]. Zhang et al[129] found 
that loss of Smad4 in colorectal cancer patients may 
induce resistance to 5-FU through activation of Akt 
pathway. Akt can interact with Smad molecules to regulate 
transforming growth factor beta (TGF-β) signaling that 
is involved in transmitting chemical signals from the cell 
surface to the nucleus[130-132]. In summary, suppression of 
PI3K/Akt signaling may potentiate 5-FU.

The combination of LY294002 with 5-FU was synergistic 
via downregulation of PI3K/Akt signaling in Smad4-deficient 
colorectal cancer cells[129]. Likewise, sequential combination 
of 5-FU and LY294002 induced synergistic cytotoxicity 
and overcame intrinsic and acquired resistance of 5-FU 
via downregulation of Akt and mitochondria-dependent 
apoptosis in an Epstein-Barr virus positive gastric cancer 
cell line[133]. Wortmannin also promoted 5-FU antitumor 
activity in oral squamous cell carcinoma[134] and breast 
cancer cells[135]. In colorectal cancer cell lines, preclinical 
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studies indicate that perifosine and BEZ235 may enhance 
the cytotoxic effects of 5-FU, likely through the NFκB and 
thus PI3K/Akt pathway[136]. As a result, PI3K/Akt pathway is 
a rational target for sensitizing the tumor cells to 5-FU.

Effect of pemetrexed on Akt signaling and effect of 
Akt inhibition: Pemetrexed (Alimta; formerly known as 
LY231514), a multitargeted antifolate, inhibits thymidylate 
synthase (TS), dihydrofolate reductase, and the de novo 
purine nucleotide synthesis[137]. Pemetrexed is currently 
used as a single agent, but more often in combination with 
cisplatin for first line treatment of non-squamous NSCLC 
and malignant pleural mesothelioma[138-140]. Resistance 
to pemetrexed has been associated with TS upregulation 
in a colon cancer cell line[123,141], a transport deficiency, 
decreased activation by folylpolyglutamate synthetase 
and increased efflux[139]. Members of the ATP-binding 
cassette (ABC) transporters including P-glycoprotein (Pgp/
ABCB1), multidrug resistance proteins (MRPs/ABCC) as 
well as breast cancer resistance protein (BCRP/ABCG2) 
as ATP-dependent drug efflux transporters may play 
roles in pemetrexed resistance[142]. The PI3K/Akt pathway 
regulates ABCG2-mediated drug efflux, which induces 
drug resistance[86,143-145]. 

Pemetrexed can also activate Akt signaling[79,143,146,147], 
although its molecular mechanisms is not completely 
understood. Chen et al[79] have observed a pemetrexed-
induced cell apoptosis and a parallel increase in sustained 
Akt phosphorylation and nuclear accumulation in the 
NSCLC A549 cell line, and postulated that the activated 
Akt may play a proapoptotic role, while Giovannetti 
et al[147] observed that pemetrexed increased EGFR 
phosphorylation and slightly reduced Akt phosphorylation 
and enhanced apoptosis in six NSCLC cell lines[143,146] 
and malignant pleural mesothelioma (MPM) cells, 
particularly when combined with EGFR inhibitor erlotinib 
or carboplatin.

Adding a PI3K/Akt inhibitor may further increase 
pemetrexed antineoplastic effect. LY294002 and 
Wortmannin decreased the pemetrexed-stimulated Akt 
and GSK3β phosphorylated activation in the NSCLC A549 
cell line[79] (Table 3). Perifosine antagonized the effect of 
pemetrexed in MPM cells by interfering upstream of Akt, 
affecting EGFR and MET phosphorylation[54]. Likewise, 
BEZ235 enhanced the antineoplastic effect of pemetrexed 
in malignant pleural mesothelioma by decreasing ABCG2-
mediated drug efflux at the cell surface[86], which may 
be of therapeutic value in combination regimens. These 
data suggest that combining pemetrexed with a PI3K/
Akt inhibitor may result in a better antineoplastic effect in 
various tumors.

Effects of irradiation and chemoradiation on Akt 
signaling: The combination of radiation with cytotoxic 
chemotherapy has become a standard treatment 
option for the majority of inoperable, locally advanced 
cancers, including brain, head and neck, lung, and 
gastrointestinal malignancies[148]. However, resistance 
to irradiation compromises therapeutic efficacy leading 

to tumor recurrence or metastasis. Tumors that recur 
after a successful radiation are often associated with 
radioresistance[149]. Resistance to radiotherapy is pre-
dominantly related to efficient repair of the DNA damage 
induced by X-ray. Both normal and neoplastic cells have 
several types of repair pathways, usually starting with the 
recognition and excision of the lesion, and then insertion 
of a new nucleotide. Regulation of several of these repair 
enzymes is mediated through methylation of the gene 
or activation of various protein kinases[150]. Given the 
complex biology underlying the interactions between 
the targeted agent and chemoradiation, comprehensive 
preclinical investigations are critical to design the rational 
combination[148].

Different combinations of drugs and radiation have 
been studied to improve efficacy and lessen toxicity. 
Chemotherapeutic drugs that perturb nucleotide me-
tabolism have the potential to produce substantial 
sensitization of tumor cells to radiation treatment. 
Redistribution of cells into S-phase of the cell cycle and 
depletion of deoxynucleotide pools are probable mechanisms 
for gemcitabine and 5-FU, which made them potent 
radiosensitizers[151,152].

Radiation can activate multiple signaling pathways 
in cells[153], such as EGFR and several downstream 
proteins, i.e., PI3K/Akt, MAPK JNK, p38, NFκB, etc., 
stimulating DNA repair and thus causing radioresistance 
and survival of tumor cells. Loss of PTEN[154], as well as 
KRAS mutations[155,156] and NF-κB activation[157,158] also 
are associated with radioresistance, making the DNA less 
susceptible to ionizing radiation. Additionally, the ability of 
radiation to activate signaling pathways may depend on 
the expression of growth factor receptors, RAS mutation, 
and autocrine or paracrine ligands such as TGF-α, TGF-β, 
HB-EGF, neuregulins, and interleukin 6[153]. 

Effect of Akt-inhibition on radiation sensitivity: 
Alkylphosphocholines may potentiate the effect of radiation 
if given before or together with radiotherapy[159]. Targeting 
the PI3K pathway by LY294002 led to radiosensitization 
in glioblastoma[154] and human bladder cancer cell 
xenografts[160] in vivo. BEZ235 has also shown a modest 
antitumor response in vivo, while the combination of 
BEZ235 and ionizing radiation provided a longer survival 
and led to a smaller tumor volume when compared to 
radiation alone[161]. Likewise, the PI3K inhibitor BKM120 
inhibited the radiation-induced activation of Akt[162]. This 
induced suppression of DNA-double-strand breaks repair 
and increased apoptosis, which resulted in increased 
sensitivity of liver cancer cells to irradiation[162]. Perifosine 
showed some radiosensitization in squamous cell car-
cinoma[163-165], malignant glioma[166], lymphoma[167], and 
prostate cancer[168]. In contrast, one study failed to show 
any favorable results with perifosine in terms of increasing 
its anticancer potency, despite a significant reduction in 
the level of phosphorylated Akt as well as Akt activity in 
vitro and in vivo[169]. Overall, given the activation of PI3K/
Akt pathway by radiation, addition of a PI3K/Akt inhibitor 
may potentiate the therapeutic index of the conventional 
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chemoradiation therapy.

PI3K/AKT INHIBITORS IN THE CLINIC
In the trial databases, we found 147 studies (Figure 4), 
which were designed to test the clinical profile of the 
six PI3K/Akt inhibitors. Only 11 trials - three published 
- were planned to assess the efficacy and safety of any 
of the PI3K/Akt inhibitors in combination with DNA-
targeted agents (Table 4). We could not find any clinical 
trials being reported or registered to study the safety 
and efficacy of LY294002 or Wortmannin.

MK-2206 
From 36 trials on MK-2206, registered between April 
2008 (the first trial) and May 2013 (the last trial), to 
evaluate the safety and efficacy of MK-2206; only three 
suited our selection criteria (Table 4). 

In a phase Ⅰ study with 72 patients with advanced 
solid tumor, Molife et al[170] (clinicaltrials.gov; NCT008 
48718) demonstrated that MK-2206 (45 or 60 mg every 
other day) plus carboplatin [area under the curve 6.0 
mg/mL (AUC 6)] and paclitaxel (200 mg/m2), docetaxel 
(75 mg/m2), or erlotinib (100 or 150 mg daily) was well-
tolerated, with early evidence of antitumor activity. The 
main dose-limiting toxicities included skin rash, febrile 
neutropenia, tinnitus, and stomatitis. Common drug-
related toxicities included fatigue, nausea, and rash.

In a phase Ⅰ trial (NCT01235897) on 17 patients[171], 

MK2206 in combination with weekly paclitaxel (80 mg/m2 
weekly) with or without trastuzumab (2 mg/kg weekly 
after a 1-time loading dose of 4 mg/kg) has been tested 
in patients with human epidermal growth factor receptor 
2 (HER2)-overexpressing solid tumor malignancies (11 
breast, 3 gastric, 1 esophageal). The highest safe dose 
of MK-2206 was found to be 135 mg weekly [The Best 
Disease Response by Response Evaluation Criteria in 
Solid Tumor (RECIST) scoring was used for evaluation 
of the treatment toxicity in 15 patients]. Two patients 
experienced dose-limiting toxicities, while 64% showed 
tumor response and 29% had no disease progression[171]. 
Although all patients experienced different adverse 
events due to the treatment, serious or life threatening 
adverse events were reported in 5/17 (29.41%) parti-
cipants. Based on these results, the authors concluded 
that MK2206 weekly at a dose of 135 mg in combination 
with weekly paclitaxel and trastuzumab was safe and 
well tolerated. 

A phase Ⅰ trial (NCT01263145) is ongoing to determine 
the maximum tolerated dose, safety and antitumor activity 
of MK2206 and paclitaxel combination in patients with 
locally advanced or metastatic solid tumors or metastatic 
breast cancer. Thus, based on this scant evidence, we 
cannot conclude for or against administration of MK-2206 in 
combination with the available DNA-targeted agents.

Perifosine
From 42 trials on perifosine, registered between June 
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Figure 4  Review flow diagram of the publication selection in clinical category.
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2000 (first trial) and August 2014 (last trial), only four 
studies as well as two published papers met our selection 
criteria for the current review.

Three trials evaluated the safety and efficacy of 
docetaxel or paclitaxel with perifosine (50, 100, and 150 
mg/d). However, the results, despite the completion of 
the studies, have not yet been published (Table 4). In the 
first open-label study (NCT00399087) on 39 patients[172], 
daily doses up to 150 mg perifosine in combination with 
75 mg/m2 per 3 wk docetaxel with/without prednisolone 
was tolerated. Furthermore, the maximum tolerated 
dose for the weekly perifosine was 1200 mg. In the 
second trial (NCT00431054)[173] the safety and efficacy 
of the combination of docetaxel and perifosine were 
studied on 22 patients with epithelial cancer of the ovary, 
fallopian tube cancer or gynecologic primary peritoneal 
cancer, which were platinum resistant or refractory. 
The third phase Ⅰ trial (NCT00399126)[174] studied the 
gastrointestinal toxicity and cancer progression on the 
combination of daily perifosine with weekly or every 3-wk 
paclitaxel in 12 cancer patients. The preliminary results 
showed that the combination was well tolerated without 
increasing the toxicities being expected from using each 
drug alone.

Perifosine in combination with gemcitabine has also 
been studied in a non-randomized open-label phase Ⅰ trial 
(NCT00398697) on 22 patients[175]. The preliminary 
results showed that 150 mg daily perifosine might 
have some manageable toxicities without affecting the 
pharmacokinetic of perifosine. 

The feasibility and tolerability of daily perifosine and 
radiation combination have also been studied in two 
independent successive trials. Vink et al[176] tested this 
combination in 21 radio-naive patients with solid tumors, 
of which 17 had NSCLC. Dysphasia and pneumonitis 
were the main complications of radiotherapy, and 
nausea, fatigue, vomiting, diarrhea, and anorexia as 
major drug-related toxicities in the population. One 
hundred and fifty milligram daily perifosine combined 
with fractionated radiotherapy was considered a safe 
modality. Chee et al[177] conducted a phase Ⅱ trial in 
25 patients with biochemically recurrent, hormone-
sensitive prostate cancer with previous prostatectomy 
and/or radiation therapy. However, only 20% of patients 
met the primary endpoint of prostate-specific antigen 
reduction, defined as a decrease by ≥ 50% from the 
pretreatment value. Accordingly, we should wait for the 
results of ongoing and future studies before coming to 
the conclusion if perifosine may add to the potency of 
DNA-targeted therapies.

BEZ235 
From 23 trials on BEZ235, registered between February 
2008 (first trial) and December 2013 (last trial), only 
two met our selection criteria for the final review, 
evaluating the safety and efficacy of the combination 
with any of the named DNA-targeted agents.

A phase Ⅰ multi-center, open-label, 4-arm dose-
escalation study (NCT01285466)[178] is ongoing to 
evaluate the safety and efficacy of oral BEZ235 and 

Table 4  Clinical trials on phosphatidylinositol 3 kinase/Akt inhibitors in combination with DNA-targeted agents

PI3K/Akt 
inhibitor

Target(s) Combination arm(s) Condition Trial phase/status Trial/registration

MK-2206 Akt Carboplatin + paclitaxel, 
docetaxel, erlotinib

Locally advanced, metastatic solid 
tumors

Ⅰ/completed 
(published)

NCT00848718/February 
2009[170]

Paclitaxel, trastuzumab HER2-overexpressing advanced 
solid tumors

Ⅰ/completed 
(abstract is published)

NCT01235897/
November 2010[171]

Paclitaxel Adult solid neoplasm, Ⅰ/ongoing 
(unpublished)

NCT01263145/
December 2010recurrent or metastatic breast cancer

Perifosine PI3K/Akt Docetaxel, prednisone Neoplasms Ⅰ/completed 
(abstract is published)

NCT00399087/
November 2006[172]

Docetaxel Recurrent ovarian cancer Ⅰ/completed 
(abstract is published)

NCT00431054/February 
2007[173]

Paclitaxel Neoplasms Ⅰ/completed 
(abstract is published)

NCT00399126/
November 2006[174]

Gemcitabine Neoplasms Ⅰ/completed 
(abstract is published)

NCT00398697/
November 2006[175]

Radiation Solid tumors Ⅰ/published Vink et al[176]

Radiation Biochemically recurrent, hormone-
sensitive prostate cancer with 
previous prostatectomy and/or 
radiation therapy

Ⅱ/published Chee et al[177]

BEZ235 PI3K/
mTOR

BEZ235 + paclitaxel, BKM120 + 
paclitaxel, BEZ235 + paclitaxel 
+ trastuzumab, BKM120 + 
paclitaxel + trastuzumab

Metastatic or locally advanced solid 
tumors

Ⅰ/completed 
(abstract is published)

NCT01285466/January 
2011[178]

Paclitaxel Inoperable locally advanced breast 
cancer, metastatic breast cancer 

Ⅰ and Ⅱ/completed 
(abstract is published)

NCT01495247/
September 2011[179]

HER2: Human epidermal growth factor receptor 2; PI3K: Phosphatidylinositol 3 kinase; mTOR: Mammalian target of rapamycin.
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BKM120 in combination with weekly paclitaxel in patients 
with advanced solid tumors and weekly paclitaxel/
trastuzumab in patients with HER2+ metastatic breast 
cancer. The preliminary results[178] showed that of 35 
patients who received BEZ235 at 400-800 mg/d and 
paclitaxel at 70-80 mg/m2 per week dose-limiting 
toxicities occurred in 5 patients, 29% discontinued due 
to adverse effects and 63% due to progressive disease. 
Thus, they concluded that the safety over efficacy of this 
regimen would be questionable. 

Additionally, a dose-finding phase Ⅰ followed by an 
open-label, randomized phase Ⅱ trial (NCT01495247)[179] 
of oral BEZ235 given twice daily (bid) with paclitaxel 
in patients with HER2 negative, locally advanced or 
metastatic breast cancer have recently been completed. 
The preliminary results with 18 patients showed that the 
determined maximum tolerated dose of BEZ235 (200 mg 
bid) in combination with paclitaxel (80 mg/m2 per week) 
was not reached, and the trial has been terminated[179]. 
Thus, based on these two preliminary results, BEZ235 
seems not safe in combination with paclitaxel for patients 
with solid tumors.

CONCLUSION
The Akt pathway is clearly important for the regulation of 
cell proliferation and survival. Its activation is an additional 
resistance mechanism for current chemoradiotherapy. 
Therefore, modulation of Akt activity is an attractive 
strategy to enhance the efficacy of treatment. However, 
insight in the mechanism of protection is incomplete and 
warrants further research. This lack of knowledge hampers 
to properly evaluate combinations in clinic, while current 
clinical trials are too preliminary to draw conclusions, 
despite having several drugs that are relatively safe and 
efficacious. Thus, the Akt modulation is an attractive 
target to improve the toxicity and safety profile of classical 
antitumor compounds and irradiation. Nevertheless, 
studies were inadequate and therefore inconclusive 
regarding the additive effect of PI3K/Akt inhibitors to the 
standard regimens. Accordingly, more in-depth preclinical 
and clinical studies as well as a critical appraisal are 
warranted to find congruent rational avenues to designing 
solid studies on any of the combinations. 
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