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Abstract
AIM
To develop a framework to incorporate background 
domain knowledge into classification rule learning for 
knowledge discovery in biomedicine.

METHODS
Bayesian rule learning (BRL) is a rule-based classifier 
that uses a greedy best-first search over a space of 
bayesian belief-networks (BN) to find the optimal BN to 
explain the input dataset, and then infers classification 
rules from this BN. BRL uses a Bayesian score to 
evaluate the quality of BNs. In this paper, we extended 
the Bayesian score to include informative structure 
priors, which encodes our prior domain knowledge 
about the dataset. We call this extension of BRL as 
BRLp. The structure prior has a λ hyperparameter that 
allows the user to tune the degree of incorporation 
of the prior knowledge in the model learning process. 
We studied the effect of λ on model learning using 
a simulated dataset and a real-world lung cancer 
prognostic biomarker dataset, by measuring the degree 
of incorporation of our specified prior knowledge. 
We also monitored its effect on the model predictive 
performance. Finally, we compared BRLp to other state-
of-the-art classifiers commonly used in biomedicine.

RESULTS
We evaluated the degree of incorporation of prior 
knowledge into BRLp, with simulated data by measuring 
the Graph Edit Distance between the true data-
generating model and the model learned by BRLp. We 
specified the true model using informative structure 
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priors. We observed that by increasing the value of λ 
we were able to increase the influence of the specified 
structure priors on model learning. A large value of λ of 
BRLp caused it to return the true model. This also led 
to a gain in predictive performance measured by area 
under the receiver operator characteristic curve (AUC). 
We then obtained a publicly available real-world lung 
cancer prognostic biomarker dataset and specified a 
known biomarker from literature [the epidermal growth 
factor receptor (EGFR) gene]. We again observed that 
larger values of λ led to an increased incorporation 
of EGFR into the final BRLp model. This relevant 
background knowledge also led to a gain in AUC.

CONCLUSION
BRLp enables tunable structure priors to be incor
porated during Bayesian classification rule learning that 
integrates data and knowledge as demonstrated using 
lung cancer biomarker data.

Key words: Supervised machine learning; Rule-based 
models; Bayesian methods; Background knowledge; 
Informative priors; Biomarker discovery

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Bayesian rule learning is a unique rule learning 
algorithm that infers rule models from searched Bayesian 
networks. We extended it to allow the incorporation 
of prior domain knowledge using a mathematically 
robust Bayesian framework with structure priors. The 
hyperparameter of the structure priors enables the 
user to control the influence of their specified prior 
knowledge. This opens up many possibilities including 
incorporating uncertain knowledge that can interact with 
data accordingly during inference. 

Balasubramanian JB, Gopalakrishnan V. Tunable structure priors 
for bayesian rule learning for knowledge integrated biomarker 
discovery. World J Clin Oncol 2018; 9(5): 98-109  Available 
from: URL: http://www.wjgnet.com/2218-4333/full/v9/i5/98.htm  
DOI: http://dx.doi.org/10.5306/wjco.v9.i5.98

INTRODUCTION
Knowledge discovery from databases (KDD) is the 
non-trivial extraction of valid novel, potentially useful, 
and understandable patterns from the dataset[1]. Data 
mining is the computational process of the extraction 
of these patterns. In biomedicine, data mining is 
extensively applied for knowledge discovery[2]. The 
recent advances in biomedical research, triggering an 
explosion of data, have encouraged these applications. 
Particularly, the development of high-throughput “omic” 
technologies has generated a large number of datasets, 
which provide a holistic view of a biological process. 
These datasets present opportunities to discover new 
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knowledge in the domain. They also present some 
challenges, especially from their high-dimensionality. 
High-dimensional datasets are challenging to data 
mining algorithms because several thousands of 
candidate variables (e.g., gene expressions or SNPs) 
can potentially explain an outcome variable of interest 
(e.g., phenotypes or disease states) but have only a 
few instances as evidence to support an explanation. 
These large numbers of candidate variables generate a 
model search space that is very large for data mining 
algorithms to explore efficiently, and having only a 
few instances generates uncertainty for the algorithm 
to determine the correctness of any candidate model. 
In such model search spaces, data mining algorithms 
can easily get stuck in local optima or they may infer 
associations between spurious variables and the 
outcome variable, by chance. 

Fayyad et al[3], emphasized the importance of 
domain prior knowledge in all steps of the KDD process. 
In biomedicine, often in addition to the dataset, we 
have some prior domain knowledge about the dataset. 
This domain knowledge can help guide the data mining 
algorithm to focus on regions in the model search space 
that are either objectively more promising for a given 
problem or subjectively more interesting to a user. The 
prior knowledge can come from domain literature (e.g., 
searching through PubMed), a domain expert (e.g., 
a physician), domain knowledge-bases (e.g., Gene 
Ontology) or from other related datasets [e.g., from 
public data repositories like Gene Expression Omnibus 
(GEO)]. It is now imperative to develop data mining 
methods that can leverage domain knowledge to assist 
with the data mining process.

Rule learning methods are among the oldest, well-
developed, and widely applied methods in machine 
learning. They are particularly attractive for KDD tasks 
because they generate interpretable models with 
understandable patterns and have good predictive 
performance. Interpretable models are succinct, 
human-readable models that explain the reasoning 
behind their predictions. Bayesian rule learning (BRL) is 
a rule learning method that has been shown to perform 
better than state-of-the-art interpretable classifiers 
on high-dimensional biomedical datasets[4,5]. BRL 
takes a dataset as input and searches over a space of 
Bayesian belief-networks (BN) to identify the BN that 
best explains the input dataset. BRL then infers a rule 
model from this BN. BRL uses the Bayesian score[6] as 
a heuristic to evaluate a BN during search. The score 
allows the user to specify a prior belief distribution over 
the space of BNs that encodes our prior beliefs about 
which models are more likely to be correct than others 
with respect to our domain knowledge. Typically in 
literature uninformative priors are used, which means 
that we claim that a priori all models are equally likely 
to be correct. As we saw earlier, often along with the 
dataset, additional domain knowledge is available that 
can assist with the data mining process. These sources 
lead us to believe that some models are more likely to 
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be correct than others even before we see the dataset. 
We can specify this belief using informative priors. Two 
approaches to using informative priors in literature 
have shown promise[7,8]. In the Methods and Materials 
section of this paper, we discuss each of the two 
approaches and describe ways to extend BRL to specify 
such informative priors that can incorporate domain 
knowledge.

In this paper, we implemented an approach to 
incorporate prior domain knowledge into the BRL 
learning process using informative priors. We evaluated 
the effect of this prior knowledge on model learning 
using experiments with simulated and a real-world lung 
cancer prognostic dataset. 

MATERIALS AND METHODS
In this section, we describe our implementation in 
brl to incorporate prior domain knowledge, and then 
describe two experiments we conducted to evaluate this 
implementation. Specifically, we describe a BRL greedy 
best-first search algorithm, the heuristic score used 
by the search to evaluate candidate models, and our 
approach to extend this heuristic score to incorporate 
prior background domain knowledge using informative 
priors. We call this extension to BRL as BRLp (BRL with 
informative priors). After describing our implementation 
of BRLp, we describe two experiments we conducted to 
study the effects of informative priors in model learning: 
(1) using simulated data; and (2) on a real-world lung 
cancer prognostic dataset.

BRL
BRL is a rule-based classifier that takes as input, a 
dataset D, and returns a rule set model. Let the dataset 
D be an observed instantiation of a system with a 
probability distribution over a set of n random variables 
and a target random variable of interest,D = {Xi,Ti; 
i ∈ 1...n} . Here, T is the target variable of interest, 
which is the dependent variable for the prediction 
task. Every other variable, Xi in D is an independent 
random variable that may help predict T. There are a 
total of m instances in D. In the classification problem, 
our task is to accurately predict the value of the target 
variable. For example, consider a diagnostic problem 
of predicting a disease outcome for a patient, say lung 
cancer outcome (either Case or Normal), using gene 
expression biomarker data, measured for each patient. 
Here, the dataset D would be composed of a set of m 
patients, each with n gene expression measurements 
{Xi; i ∈ 1...n}. The target variable T is the binary-valued 
lung cancer outcome variable, T = {Case, Normal}, for 
each patient in the dataset.

The BRL search algorithm explores a space of BNs, 
learned from the observed dataset D, and returns 
the most optimal BN found during the search. A 
BN is a graphical representation of the probabilistic 
dependencies of the different variables in the system 
under study. They are represented as a directed acyclic 

graph (DAG). In our lung cancer diagnostic problem 
example, an example of probabilistic dependence could 
be some hypothetical gene expression, say the binary-
valued XA = {Up; Down} with a value for up-regulated 
and a value for down-regulated gene A, is known to be 
predictive of the outcome T. Then an optimal BN should 
contain a directed edge from XA→T. In other words, 
the lung cancer outcome depends upon whether or 
not gene XA is expressed. In such a BN, the probability 
distribution, P (T | XA) is the parameter of the BN.

The parameters of the BN can be represented in 
form of a conditional probability table (CPT). The CPT 
is often stored in form of decision trees[9,10]. The BRL 
generates a mutually exclusive and exhaustive set of 
inference rules from this decision tree for prediction of 
class of any new test instances. Here, each path from 
root to leaf of the decision tree is interpreted as a rule. 
The BRL rules are represented in the form of explicit 
propositional logic: IF antecedent THEN consequent. 
The rule antecedent is the condition made up of 
conjunctions (ANDing) of the independent random 
variable-value pairs, which when matched to a test 
instance, implies the rule consequent composed of the 
dependent target variable-value. Continuing with our 
example, a learned rule can be IF (XA = Up) THEN (T 
= Case). In other words, if the gene XA is up-regulated 
then the patient is classified to have a lung cancer 
outcome as a Case. There are several types of BRL 
search algorithms[4,5,11] to help find the optimal BN. In 
this paper, we will only discuss a simple greedy best-
first search algorithm from our previous work[4] and is 
summarized in the next sub-section.

BRL greedy best-first search algorithm: The BRL 
greedy best-first search algorithm is described in 
detail in the paper by Gopalakrishnan et al[4], where 
it is referred to as BRL1. In this paper, we will refer 
to this algorithm simply as BRL. We will summarize 
the algorithm in this subsection. The BRL algorithm 
initializes the search with a network structure with just 
the variable T and no parent nodes. In each iteration 
of the algorithm, one new parent is added to T among 
the n random variables that is not already a parent of T. 
This BN implies the hypothesis that T is dependent upon 
the set of variables added as parents to T. This process 
is called model specialization. The resulting models from 
that iteration is added to a priority queue. The priority 
queue sorts these specialized models by evaluating 
them using a heuristic score called the Bayesian score, 
which evaluates the likelihood that the observed dataset 
was generated by a given hypothesized BN model. 
This score is described in detail in the next subsection. 
The greedy search picks the model in the head of the 
priority queue at the end of the iteration. This model 
is evaluated to be the best scoring model among the 
specializations in that iteration. In the next iteration, 
this model is selected for further specialization by 
adding more parents. The search terminates when 
a subsequent specialization step fails to improve the 
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heuristic score. The search also terminates if the model 
has reached a limit on the maximum number of parents 
allowed for T. This search parameter is called maximum 
conjuncts. Finally, BRL generates a rule model inferred 
from the model returned by the search.

BRL heuristic score (Bayesian score): BRL search 
evaluates the quality of a candidate BN model using 
a heuristic score called the Bayesian score[9]. In this 
sub-section, we describe this score. We represent a 
BN model as the tuple B = (BS, BP), where BS is the 
network structure with a subset of π discrete-valued 
nodes, and BP is the numerical parameters of the 
network. The posterior probability of the candidate 
structure given the observed dataset, D, is calculated 
as in Equation 1.
               P (BS | D) = P (BS, D)/P (D)                  (1) 
Since we are comparing Bayesian networks learned 
from the same dataset D, the denominator does not 
affect our decision. Only the numerator helps with 
model selection as shown in Equation 2. 
                    P (BS | D) ∝ P (BS, D)                       (2) 
The joint probability of the network structure and the 
observed dataset, P (BS, D), is equal to the prior probability 
of the network structure, P (BS) and the likelihood that 
the observed data was generated by that network 
structure,P (D | BS) . This is shown in Equation 3.
                 P (BS, D) = P (BS) · P (D | BS)                  (3)
To compute the joint probability of the network 
structure and the observed dataset, P (BS, D), we use 
the BDeu score[6]. We get Equation 4.
                                                                          (4)

Here, i iterates through each node in the BN with n 
nodes. Index j iterates though all, qi, possible variable-
value instantiations of the parents of the ith node. 
Index k iterates through all ri values of the ith node. Nijk 
is the number of instances in D, where the variable i 
takes the kth value and its parent variables take the 
ith variable-value instantiation, and Nijk = ∑kNijk. The 
Gamma function is defined as Γ (x) = (x-1) !. The α 
is a user-defined parameter called prior equivalent 
sample size (pess). We set α = 1, which allows the 
data to easily dominate the score[9]. The P (BS) term 
is called the structure prior (see[9] section 18.3.6.1 for 
details) that represents the prior belief distribution over 
all network structures before we look at the data. The 
remaining terms in Equation 4 compose the likelihood 
term that infers the likelihood of the network from the 
observed data.

In the classification task using BRL, we do not 
learn a fully generalized BN but only care about the 
relationship of the variables with a specific target 
variable of interest, T. Variable T is discrete with  
different values. The set of parents of the ith variable is 
represented as πi. In BRL, we learn a constrained BN 
with node T and its set of parents, πT. The set πi can 
have qT possible attribute-value instantiations. So, for 
BN search in BRL, we optimize the heuristic score in 

Equation 5.
                                                                      (5)

The expectation of each parameter value of the BN is 
computed with Equation 6. 
                                                                      (6)

We use this value as the posterior probability of the 
rule. The number of rules inferred by BRL is equal to 
the number of θjk values in the BN. The expectation of 
this value shows the degree of support a rule has in 
the observed dataset.

BRL with structure priors: In Equation 5, the P (BS) 
term is the structure prior that represents the prior 
distribution over all network structures. Here, we can 
specify our prior bias of certain network structure over 
others to skew the BRL search to focus on certain 
network structures more than others. Typically, in 
literature uninformative priors are used, which means 
that a priori we claim that we do not have any preference 
of network structures over the others. BRL in this case 
lets the data alone decide the final learned model. The 
challenge of specifying these priors is that the total 
number of network structures grows super-exponentially 
with the number of variables n[12]. It often becomes 
infeasible to specify structure priors for each of these 
network structures for even moderately sized datasets. 
So far in BRL, we had been using an uninformative prior 
by setting P (BS) = 1, in Equation 5. 

Castelo and Siebes[7] describe a promising approach 
to elicit structure priors by specifying the probability of 
the presence or absence of each edge in the network 
structure. The user only needs to specify the probability 
of a subset of edges in the network structure. The 
probabilities for all the remaining edges are assigned 
a discrete uniform distribution value. A challenge 
using this approach is to specify the values of these 
probabilities. In our experiments with BRL using these 
priors, we observed that the likelihood term in Equation 
5 always dominates the structure prior term. It would 
help us if we could control the influence of structure 
priors over the likelihood term using a scaling factor. 
As we described earlier in the introduction section, the 
background knowledge, we specify, itself has uncertainty 
associated with it. A scaling factor would help us control 
the influence of data and our prior knowledge.

Mukherjee and Speed[8] propose an informative 
prior that uses a log-linear combination of weighted 
real-valued function of the network structure, fi (BS). 
This function is called the concordance function. It can 
be any function that monotonically increases with the 
increase in agreement between the learned network 
structure and the prior beliefs of the user. This is shown 
in Equation 7. 
                     P (BS) ∝ exp [l · ∑ 

ii
wifi (BS) ]              (7)    

The hyperparameter wi are the positive weights that 
represent the relative importance of each function. 
The hyperparameter l is a scaling factor that helps to 
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control the overall influence of the structure prior. This 
will help us quantify the uncertainty in the validity of our 
prior knowledge.

The structure prior we used for BRLp comes from an 
instantiation of the general form of this prior, shown in 
Equation 7, as described by Mukherjee and Speed[8]. 
It allows the user to specify their prior beliefs about 
the presence and absence of the edges in the network 
structure. This instantiation is shown in Equation 8.
    P (BS)∝ exp [l · (|E (BS) ∩ E+| - |E (BS) ∩ E-|)]   (8)
Here, set E+ (positive edge-set) represents the set of 
edges the user believes should be present in the model, 
and set E- (negative edge set) represents the set of 
edges the user believes should be absent from the 
model. So, the concordance function in this instantiation 
simply gives a positive count for if the candidate graph 
contains an edge from the positive edge-set, and a 
negative count (penalty) when it contains an edge 
from the negative edge-set. In this instantiation, the 
weights hyperparameter is set to 1, since our counts 
are all valued 1. We need to learn the value of the 
hyperparameter l. The range of values it can take 
depends upon the well-known Jeffrey’s scale[13]. When l 
= 0, the whole exponent becomes 0, and P (BS) = exp (0) 
= 1, which is the uninformative prior. In other words, 
when l = 0, BRLp should have no effect of structure 
prior and so would behave the same as the baseline 
model, BRL. As we increase the value of l, the effect of 
the structure prior would have an increased influence 
over the likelihood term in Equation 5.

To summarize, BRLp uses a heuristic score called 
the BDeu score, shown in Equation 5, and encodes 
the structure prior in that score using Equation 8. The 
BRLp framework is shown in Figure 1. The inner dotted 
box, labeled “BRL”, is the classic BRL without prior 
knowledge, which takes in an input dataset, uses BRL 
algorithm to learn and output a model. The outer dotted 
box is our extension, BRLp that can incorporate domain 

knowledge. The translator process, currently done 
manually, converts knowledge from various sources to 
input into Equation 8. 

Experiment design
In this section, we describe our experiment design that 
we used to demonstrate the functionality of BRLp. We 
examined its behavior on both, simulated dataset, and 
on a real-world dataset. We were mainly interested 
in the ability of BRLp to incorporate the supplied prior 
domain knowledge with respect to the structure prior 
hyperparameter l. Additionally, we also monitored 
the changes in the predictive power of the learned 
model resulting from the influence of the supplied prior 
domain knowledge. We studied the functionality of 
BRLp on a simulated dataset, and then on a real-world 
dataset. Each is described, in detail, in the following 
sub-sections.

Simulated data analysis: We first generated si
mulated data to study the behavior of BRLp. We can 
control the properties of the simulated dataset, which 
gave us a controlled environment to check if BRLp 
was behaving as we expected on a dataset with the 
specified properties.

Data generation: We generated a simulated dataset 
with 1000 variables in addition to the target variable, 
T. We show the data-generating graph in Figure 2. 
Out of the 1000 candidate variables that can predict T, 
only one variable, R1000, is relevant. A relevant variable 
is a variable that helps to predict T. All the remaining 
999 variables, {I1...I1000}, are irrelevant. Irrelevant 
variables are random values that do not help predict 
T. All the random variables in the graph are binary 
{0, 1}. The conditional distributions in the graph are 
Bernoulli with the success parameter p depending 
upon the value instantiation of their parent variables. 
The irrelevant and relevant variable values were 
randomly sampled with p = 0.5. The T variable value 
was sampled with p = 0.9 if its parent, R1000, took the 
value 1, and p = 0.1 otherwise.

Data background knowledge: In a simulation 
problem, we already knew the true data-generating 
graph as shown in Figure 2. We knew that in the 
learned network structure from BRLp, there should be 
an edge present between R1000 and T. So, in Equation 
8, the positive edge-set only contained this edge, 
E+ = {(R1000, T)}. All the edges between irrelevant 
variables and T should be absent in the BRLp model, 
so they went to the negative edge-set, E+ = { (Ik, 
T);k = 1...999}. We evaluated the impact of the l 
hyperparameter value of the structure prior on the 
final model learned by BRLp.

Methods evaluated: We evaluated the method 
BRLp here. We set the user-defined, search algorithm 
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Figure 1  The Bayesian rule learning framework that can incorporate 
domain knowledge. BRL: Bayesian rule learning.

I1 I999

T

R1000...

Figure 2  The data-generating graph for the simulated data.
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parameter of BRLp of maximum conjuncts (constraint 
on maximum number of parents of T) to 8. We 
evaluated the effect of the hyperparameter l by 
assigning =its values l = {0,1,2,3,4,5,6,7,8,9,10}. The 
value of l = 0 represents the baseline model of BRL 
with no structure priors.

Evaluation metrics: We evaluated BRLp with two 
metrics: (1) graph edit distance (GED); and (2) area 
under the receiver operator characteristics curve (AUC). 
We evaluated them over 5 runs of 10-fold cross-
validation. In each run, the dataset was randomly 
shuffled to produce a different set of 10 stratified 
folds. GED measures how much of the prior domain 
knowledge gets incorporated into the model learning 
process. Specifically, how much does the model learned 
by BRLp agree with the supplied prior knowledge? This 
metric is described in detail in the next paragraph. 
We monitored the BRLp model predictive power by 
measuring the average AUC across the 5 runs of 
10-fold cross-validation. The AUC helped us monitor 
the influence of structure priors in model predictive 
performance. 

GED[14] is a metric of similarity between two graphs. 
In this experiment, we compared two constrained 
BNs. Specifically, we were interested in measuring 
how closely our BRLp predicted BN, B

∧

S (learned by 
BRLp) resembled the true BN, BS, which generated the 
simulated dataset (Figure 2 in this experiment). This 
was used to estimate the value of adding structure prior 
knowledge for model learning when the true model 
is available for comparison. We computed this metric 
using Equation 9.
                                                                            (9)

Here, dV min = [BS, B
∧

S] is a function that returns the GED 
between the two BNs. A specific ei is an edit operation 
to transform one graph into another. For the constrained 
BN we have two available edit operations - delete 
edge, and insert edge. There is a cost c (ei) associated 
with each edit operation. We set c (ei) = -1, for both 
the edit operations. A v is an edit path containing a 
sequence of edit operations to transform graph BS into 
B
∧

S. The set g [BS, B
∧

S] is a set of all possible edit paths. To 
compute the graph edit distance, we find the edit path, 
v, that minimizes the overall cost and then return this 
minimum cost value indicating the minimum number of 
operations needed to transform one graph to another. 
Therefore, an edit distance of 0 indicates that the 
predicted graph is identical to the true graph. Since the 
maximum parents resulted from BRL is constrained to 
8 from the user parameter, the worst possible model 
contains all 8 irrelevant variables. So, we get dV min = 9 
(8 edge deletion operations from irrelevant variables, 1 
insert edge operation to the relevant variables).

Real-world lung cancer prognostic biomarker 
data analysis: We obtained a real-world dataset for 
our analysis from Gene Expression Omnibus[15] (GEO), 

a public gene-expression data repository. We extracted 
the dataset from a study[16] that collected both tumor 
and normal tissue samples from 60 female non-small 
cell lung cancer (NSCLC) patients in Taiwan. As a result, 
there were 120 samples in this dataset (60 patients, 
each with paired tumor and normal tissue). RNA was 
extracted from these paired tumor and normal tissues 
for gene expression analysis on the Affymetrix Human 
Genome U133 Plus 2.0 Array platform. The platform 
has 54675 probes. The accession ID for this study on 
GEO database is GSE19804.

Data pre-processing: The raw dataset extracted from 
GEO contained 54675 probes and 120 instances. We 
needed to pre-process the data to prepare it for data 
analysis. The dataset pre-processing was done using 
Bioconductor (version 3.6) packages in R (version 
3.4.3). We extracted the raw dataset using the affy 
package[17]. We used Robust Multichip Analysis (RMA) 
for background correction, quantile normalization, 
and probe summarization. We mapped probes to the 
genes they represented. Multiple probes can map to 
a single gene. In the final dataset, we would like to 
have just one random variable representing a unique 
gene. Among the multiple probes that map to a single 
gene, we chose the probe with the largest inter-quantile 
range to represent the gene. This process is called inter-
quantile range (IQR) filtering. Finally, we also extracted 
the tissue phenotype (tumor or normal) for each 
sample and add to this dataset. The outcome variable 
of interest was this tissue phenotype. After this pre-
processing step, we were left with 16382 genes. So, 
the final dataset for our analysis had 16382 variables 
and 120 instances. The R script we used for data pre-
processing is available in the GitHub repository linked in 
the Conclusion section.

Many classification algorithms, including BRL, cannot 
handle continuous-valued variables, and require the 
input data to be discretized. Moreover, supervised 
discretization can help improve the performance of 
several classifiers including Support Vector Machines 
and Random Forests[18]. This is because supervised 
discretization acts as a feature selector that only retains 
variables with meaningful discretization bins. Biomedical 
datasets are high dimensional, there can be many noisy 
and redundant variables. Supervised discretization can 
help remove some of these variables from the model 
learning process. We discretized the dataset using 
efficient Bayesian discretization (EBD), a supervised 
discretization method, which has been shown to obtain 
better classification performance and stability but less 
robust when compared to the popular Fayyad-Irani 
supervised discretization method on several biomedical 
datasets[19]. We set the user-defined lambda parameter 
of EBD, to 0.5, as the recommended default value in 
the paper. During model learning, we split the data into 
10 folds for cross-validation. For each train-test fold pair, 
supervised discretization bins were learned on the train 
dataset alone. The learned bins were applied to the test 
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dataset. So, during supervised discretization, we did not 
look at the test dataset.

Data background knowledge: We explored the 
medical literature for known prognostic markers 
that may assist in model learning with BRLp. Before 
exploring, we first sought to understand more about 
the dataset, which turned out to have some interesting 
characteristics making it highly worthy of study. Of 
note, only tissue samples taken from non-smokers who 
were all women, who had contracted lung cancer were 
analyzed in this study. Table 1 summarizes some clinical 
features known about the 60 Taiwanese NSCLC patients 
studied in the dataset as described in the paper of the 
study[16].

We noted from the Table 1 that the subjects in the 
dataset were all women (60 out of 60 patients), contain 
mainly adenocarcinoma patients (56 out of 60 patients), 
and none of them had any smoking history (60 out 
of 60 patients). Additionally, we also knew that all the 
patients were from Taiwan. So, we explored the medical 
literature to find known prognostic markers for this sub-
population. Epidermal growth factor receptor (EGFR), 
a receptor tyrosine kinase is prognostic marker known 
to be frequently over-expressed in NSCLC[20]. EGFR 
encodes a transmembrane glycoprotein, a receptor 
for members of the epidermal growth factor family. 
A ligand binding to this receptor induces dimerization 
and tyrosine autophosphorylation, and leads to cell 
proliferation (referred from RefSeq, June 2016). In 
NSCLC patients, Shigematsu et al[21] observed that 
EGFR domain mutations are statistically significantly 
more frequent in women than men (42% vs 14%), in 
adenocarcinomas than other histologies (40% vs 3%), 
in non-smokers than smokers (51% vs 10%), and in 
East Asians than other ethnicities (30% vs 8%); all with 
a p-value of < 0.001. This description is very similar to 
the subjects in the dataset we are studying. Therefore, 
EGFR gene expression was potentially a good candidate 
to be incorporated as prior domain knowledge into 
model learning with BRLp on this dataset.

Methods compared: We again evaluated BRLp here. 
We set its of maximum conjuncts to 8. We evaluated 
the effect of the hyperparameter l by assigning it 

values of l = {0,1,2,4,6,8,10,20}. The value l = 0 
represents the baseline model of BRL with no structure 
priors. We included l = 20, to study the scenario 
where the structure priors overwhelmingly dominates 
the likelihood score. Additionally, we compared these 
models with some state-of-the-art classifiers including 
three interpretable class of classifiers namely - C4.5[22], 
RIPPER[23], and PART[24]; and three complex and non-
interpretable classifiers namely- Random Forests[25], 
naïve Bayes[26], and Support Vector Machines[27]. C4.5[22] 
is a popular decision tree learning algorithm, where 
each path of the decision tree can be interpreted as 
rules. RIPPER[23] (Repeated Incremental Pruning to 
Produce Error Reduction) is a propositional rule learning 
algorithm that uses a divide-and-conquer strategy 
during model training. PART[24] is a rule learning method 
that combines the approaches of both C4.5 and RIPPER 
by building partial decision trees, inferring rules from 
the trees, and using a divide-and-conquer strategy to 
build the rule model. Random Forest[25] is an ensemble 
learning method that learns a number of decision trees 
during training, and combines predictions from them 
during inference. The naive Bayes[26] classifier is a 
simple probabilistic classifier that learns a network 
with strong independence assumption between the 
variables, and uses the Bayes theorem for inference 
from the learned network. Support Vector Machines[27] 
is an algorithm that learns a hyperplane function to 
differentiate the classes in the problem space. We ran 
these classifiers from the Weka[28] workbench (version 
3.8.1) using the default parameters for each classifier.

Evaluation metrics: We evaluated BRLp with two 
metrics: (1) Prior Frequency (PF); and (2) AUC. We 
evaluated the dataset over 5 runs of 10-fold cross-
validation. For this real-world scenario, we used PF to 
measure the gain of the background knowledge into 
BRLp. With the simulated dataset, we had evaluated 
using GED because we knew the true data-generating 
graph. In most real-world problems, we do not know 
the true model that generated the data and so, we 
cannot use GED. PF measures the fraction of models 
learned on each of the 50 folds (5 runs of 10-fold 
cross-validation) that incorporates the specified prior 
domain knowledge. In this experiment, we measured 
the fraction of the models that contained an edge 
between EGFR and T in the learned BRLp model.

RESULTS 
In this section, we present the results from our ex
periments examining the effects of the l hyperpa
rameter of the structure prior, and consequentially the 
influence of the specified prior knowledge on model 
learning. We show our results using the simulated 
data first, and then from the real-world lung cancer 
prognostic dataset.

Simulation data analysis results
The results from the 5 runs of 10-fold cross-validation 
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Table 1  Clinical features of the 60 non-small cell lung cancer 
patients in the real-world lung cancer prognostic dataset

Attribute Value n  (%)

Gender Women   60 (100)
Men 0 (0)

Tumor type Adenocarcinoma 56 (93)
Bronchioloalveolar carcinoma 3 (5)

Squamous 1 (2)
Others 0 (0)

Smoking history Yes 0 (0)
No   60 (100)

Statistics extracted from the paper by Lu et al[16]. 
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are summarized in Figure 3. In Figure 3a, the various 
values of the hyperparameter l is shown in the 
x-axis, while the y-axis shows the average GED. This 
average is obtained across the 10-folds of each run, 
and then averaged across the 5 runs. Each data-point 
in the graph is this average deviation from the true 
model as measured by the GED, and the error bars 
represent the standard error of mean. The dotted 
line shows the value of BRLp with l = 0, which as 
we mentioned earlier is the same as BRL, where we 
use uninformative priors. We saw that even with l 
= 1, the structure priors helped improve the GED 
thereby bringing the learned model closer to the data-
generating model. We saw a sharp gain of GED from 
l = 2 to 3. For l ≥ 6, BRLp returned the true data-
generating model specified by the structure priors. This 
showed that BRLp effectively and correctly incorporates 
the specified domain knowledge. The degree of 
incorporation is controlled by l.

Figure 3b displays the average AUC. The overall 
trend is a gain in AUC but the trend is noisy, especially 
with low l values when the GED > 0. This region 
indicated models that picked up irrelevant variables, 
which were spurious and were associated with T, by 
chance. Their AUC fluctuated a lot because random 
associations were found. When l ≥ 6, the GED 
reached the perfect 0, we saw a rise in AUC. The noise 
reduced in this region of the graph. Random samplings 
from our simulation generated slightly different 
values of the parameters, which were reflected in the 

fluctuations here. So, from the AUC graph we saw 
a gradual gain in predictive performance with the 
incorporation of prior knowledge of the truth.

Figure 4 shows a BRLp rule model obtained when 
l = 10, which achieved the largest average AUC 
from our experiments (AUC = 0.92). The particular 
run achieved an AUC of 0.96 on the 10-fold cross-
validation and a GED of a perfect 0. The posterior 
probability was computed using Equation 6. TP and FP 
refers to the total true positives and false positives. Pos 
and Neg are the total positives and negative examples. 
Our simulation design only had one relevant variable, 
R1000, and 999 irrelevant variables, {I1...I1000}. The rule 
model in Figure 4 correctly picked up only the relevant 
variable. We had designed the simulation such that if 
the relevant variable took the value 1, then T would be 
sampled with a Bernouli distribution with p = 0.9, this 
was reflected in Rule 2. So, BRLp accurately retrieved 
the true data-generating model assisted by informed 
structure priors.

Real-world lung cancer prognostic data analysis results
The results from the 5 runs of 10-fold cross-validation 
on the real-world lung cancer prognostic dataset are 
summarized in Figure 5. We specified the structure 
prior of an edge between EGFR and the outcome Class 
variable to be present. We altered the values of l and 
observed its effect on the learned model. Figure 5a, 
shows the effect of the different values of l on PF, the 
fraction of models that contained EGFR. From l = 2 to 6, 
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Figure 3  Evaluation metrics on Bayesian rule learning model learning with simulated data. A: Graph edit distance between BRLp and true data-generating 
model; B: Area under the receiver operator characteristic curve of the BRLp model. BRLp: Bayesian rule learning with informative priors; AUC: Area under the receiver 
operator characteristic curve.

1. IF (RV1000 = 0) THEN (T = 0) 
Posterior Probability = 0.9944, TP = 44, FP = 0, Pos = 48, Neg = 52

2. IF (RV1000 = 1) THEN (T = 1) 
Posterior Probability = 0.9248, TP = 52, FP = 4, Pos = 52, Neg = 48

Figure 4  Bayesian rule learning generated rule model with λ=10 (highest average area under the receiver operator characteristic curve) on the simulated 
dataset. Each rule has its posterior probability, the number of true positives (TP), false positives (FP), total number of examples that match the rules consequent 
target value (Pos), and total number that do not match the right hand side of the rule (Neg). The TP measures examples that correctly match the rules left and right 
hand sides, while FP measures examples that correctly match the rules condition or left-hand-side, but have a different consequent or right-hand-side.
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we saw a steep gain in PF. For l ≥ 8, EGFR was present 
in every learned model. This again showed that BRLp 
effectively incorporated the specified prior knowledge 
and the l hyperparameter allowed the user to 
determine the degree of incorporation of this knowledge 
by BRLp.

Figure 5b, shows the gain of average AUC across 5 
runs of 10-fold cross-validation. We observe a steady 
gain of AUC for l ＞ 2. For l ≥ 8, the AUC gain tapers 
off. The results show that the EGFR prior knowledge 
helped improve the AUC of BRLp.

BRLp with l = 8 generated the highest average AUC 
of 0.935. Figure 6 shows the rule model from one of 
the runs, which had achieved a cross-validation AUC 
of 0.967 and PF of 1. Rule 1 had the highest amount 
of evidence (38 true positives and no false positives) 
for the outcome Control (normal tissue). This rule 
had the EGFR value range from negative infinity to 
10.8. In other words, EGFR was under-expressed in 
these 38 normal tissue instances. Rule 15 had the 
highest amount of evidence (15 true positives) for the 
outcome Case. This rule had EGFR value range from 
10.8 to positive infinity. In other words, EGFR was over-
expressed in these 15 tumor tissue instances. These 
rules also lent support to what we had found in the 
literature about EGFR being over-expressed in tumor 
cells. In addition to EGFR, which was incorporated 
from the structure prior, the model picked up 3 other 
variables during model learning from the dataset. They 
were ephrin A4 (EFNA4), killer cell lectin like receptor 
G2 (KLRG2), and C2 calcium dependent domain 
containing 6 (C2CD6).

Finally, we compared two BRLp models with state-of-
the-art classifiers using average AUC achieved across 5 
runs of 10-fold cross-validation. The two BRLp models 
were (1) with l = 0, which represented the baseline 
BRL model with uninformative priors, and (2) with l = 
8 that incorporated EGFR into the structure prior, which 
achieved the highest average AUC of 0.935. The state-
of-the-art classifiers compared were C4.5, RIPPER, 

PART, Random Forests, naïve Bayes, and Support Vector 
Machines. This comparison is shown in Figure 7.

The first two bars in Figure 7 are BRLp algorithms, 
BRLp with l = 0 is indicated as BRL, and then BRLp 
with l = 8. We saw a gain in performance crom 
incorporating EGFR as structure priors. The next 
three bars - C4.5, RIPPER, and PART are interpretable 
class of models, which are human readable. C4.5 is a 
decision tree learning algorithm. RIPPER and PART are 
rule learning algorithms. We noticed that these three 
algorithms performed worse than both BRLp algorithms 
in this dataset. The last three bars in Figure 7 are 
- Random Forest, naïve Bayes, and Support Vector 
Machines. These are examples of complex models that 
use all variables in the dataset to generate a classifier. 
It is not easy to explain the reasoning behind their 
predictions. But all three algorithms here outperformed 
BRLp on this dataset. This comparison shows the trade-
off of predictive performance and interpretability. On 
this dataset, BRLp offered an interpretable model that 
outperformed other popular interpretable models but 
did not perform as well as the complex models.

DISCUSSION
An important practical consideration to note while 
specifying structure priors is to avoid specifying priors 
that introduce bias into the model search. Informative 
priors can be biased if they are inferred based on the 
predictions, of some predictive model, on the test 
dataset. For example, if we notice that our learned 
model predicts poorly on a subset of test instances, 
and we notice some independent variable(s) strongly 
associated with the target variable in that subset of test 
instances. Specifying, our newly found association from 
the predictions on the test dataset, into the structure 
priors to re-learn the model will return a biased model 
and must be avoided.

Mukherjee and Speed[8] show how the general 
form of the score in Equation 7 can be extended to 
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Figure 5  Evaluation metrics on Bayesian rule learning model learning with real-world lung cancer prognostic dataset. A: Prior frequency of the edge 
between epidermal growth factor receptor and T in BRLp model; B: Area under the receiver operator characteristic curve of the BRLp model. BRLp: Bayesian rule 
learning with informative priors; EGFR: Epidermal growth factor receptor; AUC: Area under the receiver operator characteristic curve.
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incorporate other kinds of prior knowledge including 
rewarding network sparsity, where structure priors can 
be used as a regularization term. In the introduction 
section, we had discussed other sources of prior 
knowledge than literature, including - input from a 
domain expert (e.g., A physician), domain ontology 
(e.g., Gene Ontology), and models learned from other 
related datasets. In the future, we will explore the 
incorporation of knowledge from these other sources. 
In novel biomarker discovery, we could place all of 
our known knowledge into the negative edge-set in 
Equation 8. Models learned from such a structure 

prior would be penalized for learning already known 
biomarkers and would encourage discovery of novel 
biomarkers. We used an instantiation of the general 
form of the score, in Equation 7, where the relative 
weights, wi, of each of ith network are set to 1. It would 
be interesting to explore different relative weights for 
different network features and see its impact on model 
learning. In this paper, we performed a grid search over 
the hyperparameter l. We would like to explore if we 
can come up with better ways to optimize the value of 
this hyperparameter.

In this paper, we implemented BRLp, a method 
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1.IF ((EFNA4 = -inf to 6.9) (KLRG2 = 6.4 to inf) (EGFR = -inf to 10.8) (C2CD6 = -inf to 3.9)) THEN (Class = Control) 
Posterior Probability=0.9995, TP=38, FP=0, Pos=60, Neg=60 

2.IF ((EFNA4 = 6.9 to 7.5) (KLRG2 = 6.4 to inf) (EGFR = -inf to 10.8) (C2CD6 = -inf to 3.9)) THEN (Class = Control) 
Posterior Probability=0.9977, TP=9, FP=0, Pos=60, Neg=60 

3.IF ((EFNA4 = -inf to 6.9) (KLRG2 = 6.4 to inf) (EGFR = 10.8 to inf) (C2CD6 = -inf to 3.9)) THEN (Class = Control) 
Posterior Probability=0.9959, TP=5, FP=0, Pos=60, Neg=60 

4.IF ((EFNA4 = -inf to 6.9) (KLRG2 = -inf to 6.4) (EGFR = -inf to 10.8) (C2CD6 = -inf to 3.9)) THEN (Class = Control) 
Posterior Probability=0.9959, TP=5, FP=0, Pos=60, Neg=60 

5.IF ((EFNA4 = 7.5 to inf) (KLRG2 = 6.4 to inf) (EGFR = 10.8 to inf) (C2CD6 = 3.9 to inf)) THEN (Class = Control)
Posterior Probability=0.9898, TP=2, FP=0, Pos=60, Neg=60 

6.IF ((EFNA4 = 6.9 to 7.5) (KLRG2 = 6.4 to inf) (EGFR = 10.8 to inf) (C2CD6 = -inf to 3.9)) THEN (Class = Control)
Posterior Probability=0.98, TP=1, FP=0, Pos=60, Neg=60 

Rules 7 through 14 match 0 instances and so are removed from display. 

15.IF ((EFNA4 = 7.5 to inf) (KLRG2 = -inf to 6.4) (EGFR = 10.8 to inf) (C2CD6 = -inf to 3.9)) THEN (Class = Case) 
Posterior Probability=0.9986, TP=15, FP=0, Pos=60, Neg=60

16.IF ((EFNA4 = 7.5 to inf) (KLRG2 = -inf to 6.4) (EGFR = -inf to 10.8) (C2CD6 = -inf to 3.9)) THEN (Class = Case) 
Posterior Probability=0.9985, TP=14, FP=0, Pos=60, Neg=60 

17.IF ((EFNA4 = 7.5 to inf) (KLRG2 = 6.4 to inf) (EGFR = 10.8 to inf) (C2CD6 = -inf to 3.9)) THEN (Class = Case) 
Posterior Probability=0.9974, TP=8, FP=0, Pos=60, Neg=60 

18.IF ((EFNA4 = 7.5 to inf) (KLRG2 = -inf to 6.4) (EGFR = 10.8 to inf) (C2CD6 = 3.9 to inf)) THEN (Class = Case) 
Posterior Probability=0.997, TP=7, FP=0, Pos=60, Neg=60 

19.IF ((EFNA4 = 7.5 to inf) (KLRG2 = -inf to 6.4) (EGFR = -inf to 10.8) (C2CD6 = 3.9 to inf)) THEN (Class = Case) 
Posterior Probability=0.9959, TP=5, FP=0, Pos=60, Neg=60 

20.IF ((EFNA4 = 7.5 to inf) (KLRG2 = 6.4 to inf) (EGFR = -inf to 10.8) (C2CD6 = -inf to 3.9)) THEN (Class = Case) 
Posterior Probability=0.9948, TP=4, FP=0, Pos=60, Neg=60 

21.IF ((EFNA4 = 6.9 to 7.5) (KLRG2 = -inf to 6.4) (EGFR = 10.8 to inf) (C2CD6 = -inf to 3.9)) THEN (Class = Case) 
Posterior Probability=0.9932, TP=3, FP=0, Pos=60, Neg=60 

22.IF ((EFNA4 = 7.5 to inf) (KLRG2 = 6.4 to inf) (EGFR = -inf to 10.8) (C2CD6 = 3.9 to inf)) THEN (Class = Case) 
Posterior Probability=0.9898, TP=2, FP=0, Pos=60, Neg=60 

23.IF ((EFNA4 = 6.9 to 7.5) (KLRG2 = -inf to 6.4) (EGFR = -inf to 10.8) (C2CD6 = 3.9 to inf)) THEN (Class = Case) 
Posterior Probability=0.98, TP=1, FP=0, Pos=60, Neg=60 

24.IF ((EFNA4 = 6.9 to 7.5) (KLRG2 = -inf to 6.4) (EGFR = 10.8 to inf) (C2CD6 = 3.9 to inf)) THEN (Class = Case) 
Posterior Probability=0.98, TP=1, FP=0, Pos=60, Neg=60

Figure 6  Bayesian rule learning generated rule model with λ=8 (highest average area under the receiver operator characteristics curve) on the real-world 
lung cancer prognostic dataset. TP: True positives; FP: False positives; Pos: Total number of examples that match the rules consequent target value; Neg: Total 
number that do not match the right hand side of the rule; EGFR: Epidermal growth factor receptor.
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that extended BRL to allow it to integrate prior domain 
knowledge using structure priors into the model 
learning process. We demonstrated the ability of BRLp to 
incorporate this knowledge on simulated data and a real-
world lung cancer prognostic dataset. We observed that 
the l hyperparameter allowed us to control the degree 
of incorporation of prior knowledge. This parameter 
can be helpful if we were uncertain about our specified 
prior knowledge. We also observed that relevant prior 
knowledge could sometimes help improve the predictive 
performance of BRLp. Methods developed in this paper, 
the simulation data experiment code, and the R script for 
data extraction and processing of the prognostic dataset, 
are all made publicly available in an online repository 
(https://github.com/jeya-pitt/brl-structure-priors). 
We envision that BRLp will be very beneficial in data 
mining tasks across domains where some prior domain 
knowledge is available.

ARTICLE HIGHLIGHTS
Research background
Biomedicine is increasingly a data-driven science, owing largely to the explosion 
in data, especially from the development of high-throughput technologies. 
Such datasets often suffer from the problem of high-dimensionality, where a 
very large number of candidate variables can explain the outcome variable 
of interest but have few instances to support any model hypothesis. In many 
applications, in addition to the data itself, some domain knowledge is available 
that may assist in the data mining process to help learn more meaningful 
models. It is important to develop data mining tools to leverage this available 
domain knowledge. However, currently, there is a dearth of data mining 
methods that can incorporate this available domain knowledge. 

Research motivation
Developing data mining methods that can incorporate domain knowledge will 
help learn more meaningful models and will benefit many domains, especially 
the ones that suffer from data scarcity but have some domain knowledge that 
can assist with the data mining process (for example - biomedicine).

Research objectives
In this work, our objective was to extend a rule learning algorithm, called 
Bayesian rule learning (BRL), to make it capable of incorporating prior domain 

knowledge. BRL is a good candidate because it has been shown to be 
successful in application to high-dimensional biomedical data analysis tasks. 
We implemented such a tool, called BRLp that has tunable priors, which means 
the user can control the degree of incorporation of their specified knowledge. 
BRLp is a novel data mining tool that allows the user to specify their domain 
knowledge (including uncertain domain knowledge) and incorporates it into the 
model search process.

Research methods
BRL searches over a space of Bayesian belief network models (BNs) to find the 
optimal network and infers a rule set from that model. We implemented a way 
for the BN to incorporate informative priors, a distribution encoding the relative 
importance of each model prior to seeing the training data. This allowed BRL 
to incorporate user-specified domain knowledge into the data mining process 
called BRLp. BRLp has a hyperparameter l that allows the user to adjust the 
degree of incorporation of their specified prior knowledge.
We evaluated BRLp by comparing it to BRL (without informative priors) and 
other state-of-the-art classifiers on a simple simulated dataset, and a real-world 
lung cancer prognostic dataset. We measured the degree of acceptance of the 
specified prior knowledge with respect to the hyperparameter l in BRLp. We 
also observed the changes in predictive power using AUC.

Research results
We observed, in both the experiments with simulated data and the real-
world lung cancer prognostic data that with increasing values of l the degree 
of incorporation of the specified prior knowledge also increased. We also 
observed that specifying prior knowledge relevant to the problem dataset could 
sometimes help find models with better predictive performance. When BRLp is 
compared to the state-of-the-art classifiers, we observed that it performed better 
than other interpretable models but the more complex and non-interpretable 
models achieved better predictive performance than BRLp.

Research conclusions
BRLp allows the user to incorporate their specified domain knowledge into 
the data mining task and allows them to control the degree of incorporation 
with a hyperparameter. This is a novel rule learning algorithm that we have 
made available to the general public via GitHub. We anticipate its use in many 
applications especially the ones suffering from data scarcity but have additional 
domain knowledge available that may assist in the data mining task.

Research perspectives
In this paper, we explored specifications of simple domain knowledge. We need 
to further explore the incorporation of more complex forms of knowledge. In 
this paper, we incorporate domain knowledge from literature. We also want to 
explore domain knowledge available in other sources. These future directions 
may motivate further developments to BRLp.

REFERENCES
1 	 Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R. 

Advances in knowledge discovery and data mining. Technometrics 
1996: 40: xviii

2 	 Esfandiari N, Babavalian MR, Moghadam AME, Tabar VK. 
Knowledge discovery in medicine: Current issue and future 
trend. Expert Syst Appl 2014; 41: 4434-4463 [DOI: 10.1016/
j.eswa.2014.01.011]

3 	 Fayyad U, PiatetskyShapiro G, Smyth P. From data mining to 
knowledge discovery in databases. Ai Magazine 1996; 17: 37-54

4 	 Gopalakrishnan V, Lustgarten JL, Visweswaran S, Cooper GF. 
Bayesian Rule Learning for Biomedical Data Mining. Bioinformatics 
2010; 26: 668-675 [PMID: 20080512 DOI: 10.1093/bioinformatics/
btq005]

5 	 Lustgarten JL ,  Balasubramanian JB, Visweswaran S, 
Gopalakrishnan V. Learning Parsimonious Classification Rules 
from Gene Expression Data Using Bayesian Networks with Local 
Structure. Data 2017; 2: 5 [DOI: 10.3390/data2010005]

6 	 Buntine W. Theory refinement on Bayesian networks. Uncertainty 
Proceedings 1991; 14: 52-60 [DOI: 10.1016/B978-1-55860-20

September 14, 2018|Volume 9|Issue 5|

Figure 7  Comparison of area under the receiver operator characteristics 
curve achieved by Bayesian rule learning with state-of-the-art classifiers. 
AUC: Area under the receiver operator characteristic curve.

Average AUC by state-of-the-art classifiers

Av
er

ag
e 

AU
C

Classification algorithm

1.00

0.95

0.90

0.85

0.80

BR
L

BR
LP

C4
.5

PA
RT RF NB

SV
M

RI
PP

ER

 ARTICLE HIGHLIGHTS

Balasubramanian JB et al . Knowledge integrated biomarker discovery



109WJCO|www.wjgnet.com

3-8.50010-3]
7 	 Castelo R, Siebes A. Priors on network structures. Biasing the search 

for Bayesian networks. Int J Approx Reason 2000; 24: 39-57 [DOI: 
10.1016/S0888-613X(99)00041-9]

8 	 Mukherjee S, Speed TP. Network inference using informative 
priors. Proc Natl Acad Sci USA 2008; 105: 14313-14318 [PMID: 
18799736 DOI: 10.1073/pnas.0802272105]

9 	 Koller D, Friedman N. Probabilistic Graphical Models: Principles 
and Techniques - Adaptive Computation and Machine Learning. 
MIT press 2009: 161-168

10 	 Chickering DM, Heckerman D, Meek C. A Bayesian approach 
to learning Bayesian networks with local structure. Thirteenth 
Conference on Uncertainty in Artificia 1997; 11: 80-89

11 	 Balasubramanian JB, Visweswaran S, Cooper GF, Gopalakrishnan 
V. Selective model averaging with bayesian rule learning for 
predictive biomedicine. AMIA Jt Summits Transl Sci Proc 2014; 
2014: 17-22 [PMID: 25717394]

12 	 Harary F, Palmer EM. Graphical enumeration: Elsevier, 2014
13 	 Jeffreys H. The theory of probability. OUP Oxford, 1998
14 	 Riesen K. Structural pattern recognition with graph edit distance. 

Springer Publishing Company, Incorporated, 2016
15 	 Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, 

Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko 
M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis 
S, Soboleva A. NCBI GEO: archive for functional genomics data 
sets--update. Nucleic Acids Res 2013; 41: D991-D995 [PMID: 
23193258 DOI: 10.1093/nar/gks1193]

16 	 Lu TP, Tsai MH, Lee JM, Hsu CP, Chen PC, Lin CW, Shih JY, 
Yang PC, Hsiao CK, Lai LC, Chuang EY. Identification of a 
novel biomarker, SEMA5A, for non-small cell lung carcinoma in 
nonsmoking women. Cancer Epidemiol Biomarkers Prev 2010; 
19: 2590-2597 [PMID: 20802022 DOI: 10.1158/1055-9965.
EPI-10-0332]

17 	 Gautier L, Cope L, Bolstad BM, Irizarry RA. affy--analysis of 
Affymetrix GeneChip data at the probe level. Bioinformatics 2004; 
20: 307-315 [PMID: 14960456 DOI: 10.1093/bioinformatics/btg405]

18 	 Lustgarten JL, Gopalakrishnan V, Grover H, Visweswaran S. 

Improving classification performance with discretization on 
biomedical datasets. AMIA Annu Symp Proc 2008; 445-449 
[PMID: 18999186]

19 	 Lustgarten JL, Visweswaran S, Gopalakrishnan V, Cooper GF. 
Application of an efficient Bayesian discretization method to 
biomedical data. BMC Bioinformatics 2011; 12: 309 [PMID: 
21798039 DOI: 10.1186/1471-2105-12-309]

20 	 Bethune G, Bethune D, Ridgway N, Xu Z. Epidermal growth 
factor receptor (EGFR) in lung cancer: an overview and update. J 
Thorac Dis 2010; 2: 48-51 [PMID: 22263017]

21 	 Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba 
II, Fong KM, Lee H, Toyooka S, Shimizu N, Fujisawa T, Feng Z, 
Roth JA, Herz J, Minna JD, Gazdar AF. Clinical and biological 
features associated with epidermal growth factor receptor gene 
mutations in lung cancers. J Natl Cancer Inst 2005; 97: 339-346 
[PMID: 15741570 DOI: 10.1093/jnci/dji055]

22 	 Quinlan JR. C4. 5: programs for machine learning. Elsevier; 
2014: 58-60

23 	 Cohen WW. Fast effective rule induction. Machine Learning 
Proceedings 1995. Proceedings of the Twelfth International 
Conference on Machine Learning, Tahoe City, California, July 9–12, 
1995: 115-123 [DOI: 10.1016/B978-1-55860-377-6.50023-2]

24 	 Frank E, Witten IH. Generating accurate rule sets without global 
optimization. Machine Learning. Fifteenth International Conference 
1998: 144-151 [PMID: 9649111]

25 	 Breiman L. Random forests. Machine Learning 2001; 45: 5-32 [DOI: 
10.1023/A:1010933404324]

26 	 John GH, Langley P, editors. Estimating continuous distributions 
in Bayesian classifiers. Proceedings of the Eleventh conference 
on Uncertainty in artificial intelligence, 1995; Morgan Kaufmann 
Publishers Inc., 2013: 338-345

27 	 Platt JC. Fast training of support vector machines using sequential 
minimal optimization. MIT press Cambridge, MA, USA, 1999: 
185-208 [PMID: 10584633]

28 	 Frank E, Hall M, Witten IH. The WEKA Workbench. Online 
Appendix for “Data Mining: Practical Machine Learning Tools and 
Techniques”: Morgan Kaufmann, 2016

P- Reviewer: Gadbail AR, To KKW, Yao df    S- Editor: Ma YJ    
L- Editor: A    E- Editor: Wu YXJ

September 14, 2018|Volume 9|Issue 5|

Balasubramanian JB et al . Knowledge integrated biomarker discovery



                                      © 2018 Baishideng Publishing Group Inc. All rights reserved.

Published by Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA

Telephone: +1-925-223-8242
Fax: +1-925-223-8243

E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk

http://www.wjgnet.com


	WJCOv9i5-Cover.pdf
	WJCOv9i5-Contents.pdf
	98.pdf
	WJCOv9i5-Back cover.pdf

