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Abstract
Medicinal chemistry strategies have contributed to the 
development, experimental study of and clinical tri-
als assessment of the first type of protein kinase small 
molecule inhibitor to target the Janus kinase/Signal 
Transducers and Activators of Transcription (JAK/STAT) 
signaling pathway. The orally administered small mol-
ecule inhibitor, tofacitinib, is the first drug to target the 
JAK/STAT pathway for entry into the armamentarium 
of the medical therapy of rheumatoid arthritis. The 
introduction of tofacitinib into general rheumatologic 
practice coupled with increasing understanding that ad-
ditional cellular signal transduction pathways including 
the mitogen-activated protein kinase and phosphati-
dylinositide-3-kinase/Akt/mammalian target of rapa-

mycin pathways as well as spleen tyrosine kinase also 
contribute to immune-mediated inflammatory in rheu-
matoid arthritis makes it likely that further development 
of orally administered protein kinase small molecule 
inhibitors for rheumatoid arthritis will occur in the near 
future.
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Core tip: Signal transduction is a regulator of gene 
expression in cells. Janus kinase/Signal Transducers 
and Activators of Transcription (JAK/STAT) signaling is 
activated by pro-inflammatory cytokines which contrib-
utes to immune-mediated inflammation in rheumatoid 
arthritis. Medicinal chemistry was employed to develop 
JAK small molecule inhibitors for determining their 
clinical efficacy in active rheumatoid arthritis patients. 
Tofacitinib, a JAK small molecule inhibitor, is now gen-
erally used to treat moderate to severe rheumatoid ar-
thritis patients who have not adequately responded to 
disease-modifying anti-rheumatic drugs or various bio-
logic agents. The clinical efficacy of JAK small molecule 
inhibitors provides the impetus for future drug discov-
ery targeted at other signal transduction pathways in 
rheumatoid arthritis. 
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(RA) was dramatically altered with the introduction of  
biologic drugs with monoclonal antibody or fusion pro-
tein structures[1-5] into the armamentarium of  disease-
modifying anti-rheumatic drugs (DMARDs), which had 
previously included, non-steroidal anti-inflammatory 
drugs, immunosuppressive drugs, (e.g., glucocorticoids, 
methotrexate, sulphasalazine), anti-malarial agents (e.g., 
hydroxychloroquine), and modifiers of  DNA synthesis 
(e.g., leflunomide)[6-10] or various combinations of  these 
DMARDs. Among the biological drugs chosen for de-
velopment for RA were those whose mechanism of  
action was attributed to their capacity to neutralize the 
downstream effects of  the elevated levels of  the pro-
inflammatory cytokines in RA sera and synovial fluid[11-15], 
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-
1β) and IL-6[16-18], among other interleukins[11-13] as well as 
possessing activity towards the inhibition of  proliferation 
and dysfunctional RA T-cells and B-cells[19-23]. 

However, the general requirement that the biologic 
drugs need to be employed in RA therapy for long pe-
riods of  time has caused problems inherent in their 
chronic use, including, but not limited to, the elevated 
relative risk for developing cancers and infections, inad-
equate drug responses and drug refractoriness and death 
as well as the potential for antibodies to be produced that 
are directed against the monoclonal antibodies or fusion 
proteins themselves[24-27] thus neutralizing their effective-
ness. These crucial considerations have resulted in the 
contention that there needs to be continual identification 
of  novel therapeutic targets coupled to drug develop-
ment for intervention in RA and autoimmune diseases in 
general[28,29].

IDENTIFICATION OF PROTEIN KINASES 
AS POTENTIAL DRUG TARGETS FOR RA
The JAK/STAT pathway
A central theme for considering which component of  RA 
pathology should be targeted for novel drug development 
first involves identifying a pathway(s) that is involved in 
the aberrant cell and humoral-mediated immune response 
and inflammation which regulate abnormal survival of  
T-, B-cells, macrophages and synoviocytes as well as the 
loss of  chondrocyte viability and vitality, all of  which 
are characteristic elements of  RA progression[29]. In that 
regard, the Janus kinase/Signal Transducers and Activa-
tors of  Transcription (JAK/STAT) signaling pathway 
perfectly fits this viewpoint because JAK/STAT signaling 
has been shown to regulate so many of  the diverse cel-
lular functions critical to RA pathogenesis and progres-
sion, including, cell survival and proliferation, immune 
cell-fate determination and apoptosis[26,28,30,31]. There are 4 
members of  the JAK family, namely, JAK1, JAK2, JAK3 
and TYK2[32] and 7 STAT proteins, STAT1-4, STAT5A, 
STAT5 and STAT6[33].

The elevated gene expression of  several pro-inflam-

matory cytokines, including interferon-γ (INF-γ), IL-2, 
IL-6, IL-7, IL-7 receptor, IL-17, IL-15, IL-19, IL-21, 
IL-23 genes as well as other genes and transcription 
factors germane to RA pathology are all regulated by 
phosphorylated (i.e., activated) STAT proteins[33-37]. In 
addition, there are several STAT-target genes relevant 
to cell differentiation, survival, apoptosis and cytokine 
signaling (e.g., cyclin D1, c-Myc, Bcl-xL, Mcl-1, survivin, 
MKP-1, TNFRSF13b and SOCS-3), all of  which play 
important roles in RA. For example, the complex interac-
tion involving IL-7 and IL-7R appears to be critical for 
regulating the T-cell receptor-γ-locus via phosphorylated 
STAT5 and histone acetylase. Thus, the findings reported 
by Hartgring et al[38] that RA synovial fluid contained ele-
vated levels of  IL-7R made the IL-7R gene an even more 
attractive target for SMI drug development, perhaps 
through the inhibition of  STAT5 activation.

Tofacitinib (CP-690,550)
The development and FDA approval of  the first small 
molecule inhibitor (SMI) of  a protein kinase, for use in 
the therapy of  moderate-to-severe active RA in which 
methotrexate did not work well, arose from a series of  
sequential optimization protocols involving pyrrolopy-
rimidine based-JAK3 inhibitors[39], which eventually re-
sulted in the drug CP-690,550, now called tofacitinib[40]. 
The efficacy of  this drug for RA was established in nu-
merous RA clinical trials[41,42] (see below) and tofacitinib 
has now entered general rheumatology practice.

Ruxolitinib (INCB018424)
Ruxolitinib/INCB018424 now referred to as ruxolitinib 
is a JAK1 and JAK2 SMI[43]. The results of  studies con-
ducted on normal volunteers[44] and RA patients[44] con-
cluded that ruxolitinib was generally safe and well-tolerat-
ed and also exhibited acceptable oral bioavailability with 
dose-proportional systemic pharmacokinetics and phar-
macodynamics with low oral dose clearance and a small 
volume of  distribution. Additional results from that study 
showed that ruxolitinib inhibited the phosphorylation of  
STAT3 in whole blood that was correlated with the plas-
ma levels of  the drug. Additional clinical trials involving 
patients with mild-to-moderate psoriasis[43] or active RA[45] 
administered ruxolitinib have now been conducted. In the 
RA trial, Williams et al[45] showed that ruxolitinib achieved 
an American College of  Rheumatology (ACR)-70 criteria 
in 33% of  patients compared to 0% in the placebo arm. 
Pharmacokinetic analysis determined that ruxolitinib in-
hibited JAK1 and JAK2 and also reduced plasma levels of  
IL-6 and CD40, the latter a co-stimulatory protein found 
on antigen-presenting cells. Ruxolitinib was also a potent 
p-STAT3 SMI in ex vivo studies conducted on blood cells 
obtained from RA patients.

Pre-clinical studies and development of JAK SMIs
Clinical trials are presently being conducted with RA and 
psoriasis patients to determine the clinical efficacy of  sev-
eral JAK SMIs, including INCB020850 (specificity, JAK1 
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= JAK2), INCB39110 (JAK1 > JAK2), LY3009104 
(specificity, similar to INCB020850), PF-956980 (speci-
ficity, JAK3) and CYT387 (specificity, JAK1/JAK2; with 
activity towards TYK2 as well). Clinical studies in normal 
volunteers and patients with various malignancies are also 
being conducted with the ultimate goal of  developing ad-
ditional JAK SMIs for use in clinical therapy (Table 1). 

According to the PubMed Central database at the 
time of  this writing there are as yet no published Phase 
3 RA or psoriasis clinical trials results for INCB020850, 
INCB39110, LY3009104 or PF-956980. However, Kyt-
taris[54] recently reviewed the status of  the JAK3-selective 
SMI, VX-509, which showed “promising” results in a 
Phase 2b clinical trial. In that regard, Genovese et al[55] 
recently reported the results of  a 12-24 wk placebo-
controlled double-blind phase 2 clinical trial involving 
RA patients maintained on a stable dose of  methotrex-
ate. VX-509 administered orally at 100, 150 and 200 
mg QD was employed. The subjects receiving VX-509 
showed statistically significant ACR20, ACR50 and 
ACR70 responses vs placebo (i.e., methotrexate) as well 
as a statistically significant improvement from baseline in 
the DAS-28-CRP, Health Assessment Questionnaire-D1 
(HAQ-D1) and Clinical Disease Activity Index vs pla-
cebo. However, the adverse event rates were higher in 
the VX-509 arm, most notably the incidence of  infection 
relative to the placebo. 

In a recent preclinical evaluation comparing the ef-
fects of  tofacitinib with INCB028059 on STAT protein 
activation, Migita et al[56] showed that both tofacitinib and 
INCB028050 suppressed activation of  JAK1/JAK2/
JAK3 as well as inhibiting phosphorylation of  STAT1/
STAT3/STAT5 while also reducing monocyte chemotac-
tic protein-1 (MCP-1) and serum amyloid A1/2 (SAA1/2) 
levels by oncostatin-stimulated RA synovial fibroblasts. 
However, another JAK SMI, PF-956980, only inhibited 
the activation of  STAT1/STAT5 and MCP-1, but not 
SAA1/2.

The efficacy of  a JAK3-selective SMI in RA com-
pared to several of  the JAK1/JAK2 SMIs now in devel-
opment for treatment of  myeloproliferative diseases and 

malignancies (Table 1) may be a more desirable result 
because JAK3 is known to be less involved in hematopoi-
etic cell development than is JAK2[57].

THE MAPK, PI3K/AKT/MTOR AND SYK 
PATHWAYS
MAPK and PI3K/Akt/mTOR
Signal transduction pathways other than JAK/STAT 
which are relevant to RA are the mitogen-activated pro-
tein kinase (MAPK) and phosphatidylinosotide-3-kinase 
(PI3K)/Akt/mammalian target of  rapamycin (mTOR) 
(PI3K/Akt/mTOR) pathways and intracellular signal-
ing involving spleen tyrosine kinase (Syk)[58,59]. There is 
strong evidence for “cross-talk” between the JAK/STAT, 
MAPK and PI3K/Akt/mTOR pathways[26]. There are 
also many overlapping characteristics in the cellular 
events that promote the abnormal survival of  cancer cells 
when compared to cells involved in the RA synovial joint 
which also involve MAPK and PI3K/Akt/mTOR signal-
ing. Thus, it was not surprising that future drug develop-
ment for RA has taken a page from those experimental 
interventions which particularly focus on inhibiting the 
proliferation of  cancer cells. In that regard, insights 
gleaned from studies of  MEK1/2, the upstream activa-
tor of  extracellular signal-regulated kinase1/2 (ERK1/2) 
and mTOR activity[60] in mutant BRAF-metastatic mela-
noma[61,62] and other experimental models of  malignancy 
may shed light on whether or not these molecules may be 
eventually applied to RA. 

In that regard, the MEK1/2 SMI, AZD6244 (selu-
metinib) when used in combination with the mTORC1/
mTORC2 SMI, AZD8055, showed significant anti-tumor 
activity in nude mouse xenograft models of  human lung 
adenocarcinoma and colorectal carcinoma[60], whereas the 
MEK1/2 inhibitor, AZD6244, sensitized apoptosis-resis-
tant NRAS-mutant lines of  melanoma cells to undergo 
apoptosis. This was correlated with negative regulation of  
the Wnt/β-catenin signaling via ERK1/2 and increased 
levels of  the downstream scaffolding protein, AXIN1[61]. 
Of  note, a Phase 2 trial of  selumetinib in patients with 
the BRAFV600E/K-mutated type of  melanoma[62] re-
sulted in tumor regression in 3 of  5 patients with BRAF-
mutated low p-Akt activity. However, no response was 
observed in the AZD6244 treatment group with high 
p-Akt activity. These results provide a rationale for the 
dual targeting of  MEK1/2 and p-Akt, especially in those 
melanoma patients with documented high p-Akt activity. 

Although there was persuasive pre-clinical data sup-
porting the targeting of  p38 kinase-α in RA[63], the 
results from several clinical trials in which the efficacy 
of  pamapimod was compared to methotrexate in RA pa-
tients was disappointing in favor of  methotrexate. Thus it 
is unlikely that pamapimod will be further developed for 
treating RA[64-66] although the jury is still out, so to speak, 
regarding whether or not VX-702, another p38 kinase 
SMI should be further developed and assessed for clinical 
efficacy in RA patients[67].
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  SMI JAK Specificity/other kinase 
inhibitory activity

Ref.

  SAR302503 (Fedratinib) JAK2 [46]
  CEP701 (Lestaurtinib) JAK2 [47]
  SB1518 (Pacritinib) JAK2/FLT31 [48]
     XL-019 JAK2 [48]
     LY2784544 JAK2/V617F2 [49,50]
     AZD1480 JAK2 [51]
     NS-108 JAK2/Src3 [52]
     BMS-911453 JAK2 [53]

Table 1  Janus kinase small molecule inhibitors in development

1FLT3: Fms-like tyrosine kinase 3; a receptor-type tyrosine-protein kinase; 
2V617F: A point mutation in JAK2 (V617F) identified in the hematopoietic 
cells of patients with several chronic myeloproliferative disorders; 3Src: 
V-src avian sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog; JAK: 
Janus kinase; SMI: Small molecule inhibitor.
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joint count of  28 joints, swollen joint count in 28 joints, 
serum ESR or CRP and the patient’s global assessment 
of  disease activity can be entered into a formula to gen-
erate a DAS28-4 score ranging from 0 to 10[78]. If  the pa-
tient’s global assessment of  disease activity is omitted, the 
resulting score is a DAS28-3. A DAS score of  ≤ 2.6 is 
considered to represent clinical remission, although such 
a DAS28 score does not necessarily represent a cessa-
tion of  all joint inflammation. However, DAS28 efficacy 
measurements are potentially relevant to clinicians, since 
the DAS28 can be used to track efficacy in clinical prac-
tice and a DAS28 ≤ 2.6 is often the therapeutic goal in 
treat-to-target clinical trials. Radiographs are also assessed 
to determine joint space narrowing and the presence of  
periarticular erosions, which are used to calculate a radio-
graphic score. The method of  Sharp as modified by Van 
der Heijde is commonly employed[79]. This method gener-
ates a joint space narrowing score and an erosion score 
as secondary endpoints, which are combined to generate 
the primary endpoint, the total Sharp score[76]. Although 
the publication of  this type of  radiographic data has 
become standard over the past 15 years, there are some 
methodological flaws in this analysis. When efficacy of  
a new pharmaceutical is assessed, the study population 
usually adds the new drug to a stable dose of  an oral 
immunosuppressant such as methotrexate. The efficacy 
data of  this population is compared to a group random-
ized to receive a stable dose of  oral immunosuppressant 
plus placebo. As a result, both groups of  subjects receive 
medication with potential efficacy in RA, and the rise in 
the modified Sharpe/Van der Heijde score can be slow 
to rise, even in the placebo group. Therefore, to discern a 
meaningful difference between the new drug and placebo 
it may become necessary to choose study subjects with 
a high risk for the rapid accumulation of  joint damage 
(for example, high serum levels of  rheumatoid factor or 
anti-cyclic citrullinated peptide antibody), to continue to 
collect radiographic data for 1-2 years or more, or more 
often to enroll larger numbers of  patients. 

Ultrasound and Magnetic Resonance Imaging have 
been proposed as potential substitutes for radiography. 
However, issues of  standardization, reproducibility, po-
tential cost and correlation with other clinical outcome 
measures are still being worked out, but clinical trials em-
ploying these imaging techniques are beginning to appear 
in published reports.

The dose of  tofacitinib used to treat RA in the US 
is 5 mg orally twice daily. The subjects enrolled in the 5 
phase 3 clinical trials were those patients who had expe-
rienced an inadequate response to prior treatment with 
methotrexate, another oral immunosuppressant, or a 
TNF inhibitor[74]. Most of  the study subjects were given 
either tofacitinib or placebo under a double-blind study 
design while continuing a stable dose of  methotrexate or 
other oral immunosuppressant. In one of  these studies, 
subjects on a stable dose of  methotrexate were given sub-
cutaneous injections (either adalimumab or placebo) plus 
a pill (placebo pill to recipients of  adalimumab, placebo 
or tofacitinib to recipients of  placebo injections). A small 

SyK signaling
The clinical trial evidence is somewhat stronger, but not 
persuasive, for promoting the further development of  
the SyK inhibitor, fostamatinib (R-788)[68], although in 
3 RA clinical trials with this drug, the ACR20 response 
rate ranged from only 35%-38%[69,70]. Moreover, in one 
of  these clinical trials the ACR20 response in the fosta-
matinib (100 mg twice daily group) was 38%, compared 
to 35% in the placebo group after 3 mo and no signifi-
cant differences were achieved in the ACR20, ACR50, or 
ACR70 response levels at that time.

Protein kinase C-θ
There is also increasing evidence for targeting protein 
kinase C-θ in RA[71]. This is because protein kinase C-θ is 
known to play an integral role in regulating T-cell viability 
and cytoskeletal reorganization by regulating the activities 
of  Vav, PI3K and Rac1 (guanyl-nucleotide exchange fac-
tor)[72,73].

THE CLINICAL PERSPECTIVE
Data on the efficacy and safety of  tofacitinib in RA was 
presented to the FDA in May 2012[74]. In November 
2012, tofacitinib was approved for use in the US for the 
treatment of  adults with moderately to severe active RA 
with an inadequate response to, or intolerance to metho-
trexate. Assessment of  the efficacy in RA clinical trials 
has become fairly standardized[75] and the outcome mea-
sures used in the tofacitinib studies were similar to those 
used in previous clinical trials of  biologic drugs for RA. 
The raw data included a measurement of  the tender joint 
count and the swollen joint count by an examiner, the 
patient’s assessment of  pain on a visual analog scale, the 
patient’s global assessment of  disease activity on a visual 
analog scale, an examiner’s global assessment of  disease 
activity on a visual analog scale, the patient’s assessment 
of  physical function using the HAQ[76], blood testing to 
determine erythrocyte sedimentation rate (ESR) or CRP, 
and radiographs of  the hands and feet[76]. In most RA 
studies the raw data is further “manipulated” to produce 
composite measures of  drug efficacy. The ACR has de-
fined the ACR20 response rate as a measure of  efficacy 
in RA to be ≥ 20% improvement in tender joint count, 
≥ 20% improvement in swollen joint count, and ≥ 20% 
improvement in 3 out of  5 of  the following parameters: 
patient pain assessment, patient global assessment, physi-
cian global assessment, patient self-assessment of  disabili-
ty and blood acute phase reactant (ESR or CRP)[77]. In the 
Phase 3 tofacitinib clinical trials, approximately 25%-30% 
of  study patients achieved an ACR20 efficacy when pla-
cebo was added to their prior therapy with methotrexate 
or to another oral immunosuppressant. This was a result 
that was similar to that previously reported in clinical tri-
als with biologic therapies for RA[74]. In order to demon-
strate efficacy that is less likely to be achieved by placebo 
alone, ACR50 and ACR70 data are also commonly re-
ported, representing ≥ 50% and ≥ 70% improvement in 
the composite ACR score, respectively. Thus, the tender 
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number of  subjects were enrolled in a 3 mo study of  to-
facitinib vs placebo without therapy with another immu-
nosuppressant, but there were ethical concerns about ran-
domizing patients with active RA to a study arm in which 
they were to receive no treatment. In most RA trials the 
new drug is compared to an active immunosuppressant 
commonly used in RA (usually methotrexate). The out-
come data demonstrated statistically significant efficacy 
for tofacitinib 5 mg twice daily vs placebo as determined 
by the following outcome measures: ACR20, ACR50, 
ACR70, DAS-4 (ESR) ≤ 2.6, DAS-4 (ESR) improving 
≥ 1.2, and HAQ-Disability Index. When compared to 
199 subjects receiving adalimumab, 40 mg by subcutane-
ous injection every 14 d, plus methotrexate plus placebo 
pills, tofacitinib plus placebo injection plus methotrexate 
was not inferior using the following outcome measures: 
ACR20, ACR50, ACR70, DAS-4(ESR) ≤ 2.6, DAS-
4(ESR) improving ≥ 1.2, HAQ-Disability Index. One 
of  these 5 studies also provided radiographic outcome 
data. Only 20% of  the subjects receiving a stable dose of  
methotrexate plus placebo demonstrated worsening of  
the radiographic score at 1 year. In the tofacitinib 5 mg 
twice daily plus methotrexate treatment group there was 
a trend toward decreased progression of  the total Sharp 
score, but the difference did not meet statistical signifi-
cance at either 6 or 12 mo. 

  Tofacitinib was the first JAK SMI submitted to the 
FDA for approval in the treatment of  RA. As a result the 
safety assessment was broad in scope, with data collected 
on mortality, total adverse effects, serious adverse effects, 
infections, malignancies other than non-melanoma skin 
cancer, cardiovascular events, and bowel perforations, 
with monitoring of  cell counts, creatinine, liver enzymes, 
creatinine phosphokinase, and lipid levels in the blood. 
Data was available for the blinded placebo controlled 
phase of  the study and also the unblinded long-term 
extension clinical trial. Treatment with tofacitinib was 
associated with drug dose-dependent neutropenia and 
lymphopenia, a rise in total HDL and LDL cholesterol, 
but without associated cardiovascular events, and a rise 
in serum creatinine[74]. The increased LDL cholesterol 
improved after the addition of  atorvastatin. Overall, the 
rates per 100 patient-years for all-cause mortality, serious 
infections, malignancy other than non-melanoma skin 
cancer, lymphoma, lung cancer, myocardial infarction and 
gastrointestinal perforation were similar to those reported 
in published clinical trials of  biologic therapies for RA[80]. 
However, the rate of  Herpes zoster infection was higher 
in the subjects treated with tofacitinib than the infection 
rates for Herpes zoster reported in prior clinical trials of  
biologic drugs for RA. After review of  the clinical trial 
data, tofacitinib was considered to be sufficiently safe and 
effective to be approved for use in the US for moderate 
to severe active RA not responsive to methotrexate. Of  
note, post-FDA approval monitoring of  the long term 
safety of  tofacitinib is ongoing. 

Published RA treatment trials of  other small molecule 
inhibitors have employed a study design similar to those 
used to assess the safety and efficacy of  tofacitinib. As 

stated above, a phase 2 clinical trial of  fostamatinib in 
RA has now been concluded. Outcome criteria included 
ACR20, ACR50, ACR70, and DAS28 as measures of  ef-
ficacy[81]. Imaging outcomes in that study were assessed 
by MRI. Patient-reported quality of  life was assessed us-
ing the HAQ-Disability Index, multiple domains of  the 
SF-36 questionnaire, and the Functional Assessment of  
Chronic Illness Therapy-Fatigue (FACIT-F) question-
naire[82]. A 12 wk trial of  pamapimod vs placebo added 
to a stable dose of  methotrexate used ACR20, ACR50, 
ACR 70, DAS28, change in mean serum CRP, HAQ-DI, 
SF-36, and FACIT-F as efficacy outcome measures[83]. 
Clinical trials of  other small molecule inhibitors currently 
under development are likely to have a similar study de-
sign. 

CONCLUSION
The development of  SMIs of  the JAK/STAT (includ-
ing the newly developed JAK3 SMI, VX-509)[84], MAPK, 
PI3K/Akt/mTOR and SyK signaling pathways has 
recently been the target of  additional pre-clinical experi-
mental arthritis studies and RA clinical trials assessment. 
The phase 3 clinical trial data for the JAK SMI, tofaci-
tinib, illustrates the therapeutic potential of  this class of  
SMI drug. For example, by comparison with the relative 
ease of  storage and oral administration of  these SMI 
drugs, the treatment of  RA with biologic drugs such as 
the TNF blockade drugs, etanercept, adalimumab, goli-
mumab, certolizumab, the T-cell co-stimulator inhibitor, 
abatacept, and the IL-6/IL-6R neutralizing monoclonal 
antibody, tocilizumab, requires that the medication be 
shipped by rapid delivery, stored at 2 ℃-8 ℃ and main-
tained in a cool storage temperature during travel. Ad-
ministration of  these drugs also requires mastery of  the 
correct injection technique, and safe and proper disposal 
of  hypodermic needles. Therefore, if  the efficacy and 
safety of  protein kinase SMIs proves to be comparable to 
the injectable types of  biologic drugs, many RA patients 
may prefer the convenience of  an oral medication. How-
ever, the relatively short half-life of  tofacitinib means that 
twice daily dosing will be necessary to achieve optimal 
clinical efficacy. This can be an advantage to the RA pa-
tient if  the patient develops an infection such that the 
treating clinician may wish to reverse the immunosup-
pressive effect of  the drug. Thus, at present, treatment 
with tofacitinib is a therapeutic option for moderate-to-
severe RA where disease progression cannot be con-
trolled with methotrexate. 

Although SMIs have been primarily targeted to inhibit 
the activity of  JAKs, specific members of  the MAPK 
pathway (e.g., p38-α) and PI3K/Akt/mTOR signaling 
pathways were also shown to be relevant to the patho-
genesis of  immune-mediated inflammation associated 
with RA. Therefore, there are likely to be signaling com-
ponents of  the MAPK pathway, such as the upstream 
protein kinase, MEK1/2, whose activity is required for 
phosphorylation of  ERK1/2 that may be targeted for 
further drug development[57]. In addition, since one tar-
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get of  STAT activation is it’s potential to increase the 
expression of  anti-inflammatory cytokines, such as, IL-4 
and IL-10[37] and the signaling pathways these cytokines 
activate, it appears justified to consider developing SMIs 
that inhibit those protein kinases which can suppress the 
expression of  anti-inflammatory cytokine genes. 

However, as an example of  the continuing SMI drug 
development for JAKs in RA, Baricitinib, (formerly 
known as LY3009104/INCB028050) an inhibitor of  
JAK1 and JAK2 is presently under investigation in clini-
cal trials in RA with the results from an open extension 
of  the phase 2b trial having been recently reported[85] 
with additional studies entering the recruitment phase[86]. 
In the open-extension phase 2b trial, among all patients, 
the proportions of  patients achieving ACR20, ACR50, 
ACR70, clinical disease activity index (CDAI) Remis-
sion, simplified disease activity index (SDAI) Remission, 
DAS28CRP ≤ 3.2, DAS28CRP < 2.6, DAS28ESR ≤ 3.2, 
DAS28CRP < 2.6 or the ACR/European League Against 
Rheumatism (EULAR) Boolean remission at the start 
of  the open label extension (week 24) were similar or in-
creased at week 52.

The ultimate place of  protein kinase SMIs in RA 
therapy is not yet known. It is likely to be determined by 
the following conditions; more patient-years of  follow-up 
to better understand the long-term efficacy and safety of  
this drug class as well as head-to-head safety and efficacy 
comparisons with conventional and biologic DMARDs 
already in use including cost issues relative to other RA 
treatment options
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