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Abstract
Lumbar radiculopathy, a group of diseases in which the 
dorsal root ganglia (DRG) or dorsal roots are adversely 
affected by herniated discs or spinal stenosis, are clini-
cally characterized by spontaneous and evoked types of 
pain. The pain is underpinned by various distinct patho-
physiological mechanisms in the peripheral and central 
nervous systems. However, the diagnosis of lumbar 
radiculopathy is still unsatisfactory, because the asso-
ciation of the pain with the neurobiological basis of ra-
diculopathy is largely unknown. Several animal models 
used to explore the underlying neurobiological basis of 
lumbar radiculopathy could be classified as mechanical, 
chemical, or both based on the component of injury. 
Mechanical injury elevates the intraneural pressure, re-

duces blood flow, and eventually establishes ischemia 
in the dorsal root and the DRG. Ischemia may induce 
ischemic pain and cause nerve damage or death, and 
the subsequent nerve damage or death may induce 
neuropathic pain. Chemical injury predominately induc-
es inflammation surrounding the dorsal roots or DRG 
and consequent inflammatory mediators cause inflam-
matory pain. Furthermore, DRG neurons sensitized by 
inflammatory mediators are hypersensitive to innocu-
ous mechanical force (stretch or compression) and re-
sponsible for mechanical allodynia in radiculopathy. As 
well, central sensitization in the spinal cord may play an 
important role in pain generation in lumbar radiculopa-
thy. Increasing knowledge of pain-generating mecha-
nisms and their translation into clinical symptoms and 
signs might allow for dissecting the mechanisms that 
operate in each patient. With precise clinical phenotypic 
characterization of lumbar radiculopathy and its con-
nection to a specific underlying mechanism, we should 
be able to design optimal treatments for individuals. 
This review discusses the present knowledge of lumbar 
radiculopathy and proposes a novel mechanism-based 
classification.
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Core tip: Lumbar radiculopathy is the most common 
form of neuropathic pain. However, the diagnosis of 
lumbar radiculopathy is still not satisfactory because of 
the largely unknown neurobiological basis of neuropathic 
pain and paresthesia. Accumulating evidence has shown 
that lumbar radiculopathy is a multi-factor disease and 
may involve almost all types of pain, including ischemic, 
inflammatory, mechanical, and neuropathic pain. Ion 
channels such as Acid-sensing ion channel 3, Piezo2 and 
transient receptor potential vanilloid receptor 1 respond-
ing to tissue acidosis, mechanical force, and inflammato-
ry mediators may be the pathways transducing the pain.
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INTRODUCTION
Demographics
Lumbar radiculopathy or nerve root pain represents one 
distinct presentation of  low back-related leg pain, which is 
generally characterized by pain radiating to below the knee 
and into the foot and toes. The annual prevalence of  low 
back pain, varies from 9.9% to 25%. The point prevalence 
(4.6% to 13.4%) and lifetime prevalence (1.2% to 43%) 
are high[1], so lumbosacral radicular pain may be the most 
commonly occurring form of  neuropathic pain[2,3].

Definition
The terms radicular pain and radiculopathy are sometimes 
used interchangeably, although they are not synonymous. 
With radicular pain, only radiating pain is present, whereas 
with radiculopathy, sensory and/or motor loss can be ob-
jectified. Both syndromes frequently occur together and 
radiculopathy can be a continuum of  radicular pain.

Symptoms and signs
Patients with lumbar radiculopathy typically present a 
chief  complaint of  pain. The patient may experience the 
radiating pain as sharp, dull, piercing, throbbing, or burn-
ing. Pain caused by a herniated disc classically increases 
with bending forward, sitting, coughing, or (excessive) 
stress on the lumbar discs and can be avoided by lying 
down or sometimes by walking[4]. Conversely, pain due to 
lumbar spinal-canal stenosis can typically increase during 
walking and improve immediately with bending forward[5]. 
In addition to the pain, patients often report paresthesia 
in affected dermatomes. Although the distribution of  
pain along a dermatome can determine the affected levels 
of  dorsal roots, the variation in radiation pattern is large. 
The S1 dermatome seems the most reliable[6]. If  pres-
ent, the dermatomal distribution of  paresthesia is more 
specific[5]. Among the symptoms, pain and paresthesia are 
often referred to as positive symptoms of  radiculopathy, 
whereas weakness and numbness are considered nega-
tive symptoms. Positive symptoms are believed to reflect 
neuronal hyperactivity, and negative symptoms may stem 
from diminished neural firing occurring with axonal loss 
or conduction block[7]. Commonly used physical tests in-
clude the straight-leg raise test, Lasègue’s crossed straight-
leg raise test, tendon reflexes, and signs of  weakness, 
atrophy or sensory deficits[8-11].

CLINICAL SCENARIOS IN ANIMAL 
MODELS OF RADICULOPATHY
Mechanical and chemical injury
The investigation of  the pathway for lumbar radicu-

lopathy in a number of  animal models has included me-
chanical constriction of  a nerve root via suture ligation, 
application of  exogenous pro-inflammatory mediators 
to a nerve root, and application of  autologous nucleus 
pulpous (NP) tissue to a nerve root[12-32]. According to 
the component of  primary injury, these animal models 
are classified as mechanical or chemical injury or both 
(Table 1). Mechanical compressors that do not directly 
produce biochemical effects include silk ligation[26], am-
eroid constrictors[24], and stainless rods[25,32]; the chemical 
factors that produce direct biochemical effects include 
autologous NP application[16,28-30], chromic gut ligatures[27], 
and Surgiflo[31].  Evidence of  mechanical allodynia and 
thermal hyperalgesia is commonly identified, occurring 
as early as 2 d post-procedure and persisting for 2 to 
6 wk[14,16-23,33,34]. The structural changes in nerve fibers 
include edema and demyelination, deposition and engulf-
ment of  inflammatory cells, and Wallerian degeneration 
of  nerve fibers[29,35]. Mechanical and chemical injury do 
not differ in pain behaviors or histopathological changes; 
however, they could have different effects on gene ex-
pression in the dorsal root ganglia (DRG) at 7 d after 
surgery, which suggests that the underlying mechanisms 
of  the 2 types of  nerve injury differ[32].

Nerve root and DRG
The anatomical structure of  the nerve root differs from 
that of  DRG. The spinal nerve roots and their nutrient 
vessels lack a perineurium and feature a poorly developed 
epineurium. In contrast, DRG, where the soma of  sen-
sory neurons reside, feature dense perineurium vascular 
supply. The blood flow supply is greater in the nerve root 
proximal than distal to the DRG[36]. Spinal nerve roots 
are surrounded by cerebrospinal fluid and receive 58% of  
their nutritional supply from cerebrospinal fluid and 38% 
from intramural blood vessels, whereas peripheral nerves 
receive 95% of  their nutritional supply from intramural 
blood vessels[37]. Accordingly, DRG are more sensitive 
to mechanical compression and consequent ischemia 
changes than nerve roots and are considered a key player 
in lumbar radiculopathy. In addition, the direction of  in-
formation flow from the periphery to DRG to the spinal 
cord itself  is a main factor in the distal lesion inducing 
strong neuropathic signs. After spinal nerve injury distal 
to the DRG, the sensory neurons are excited and exhibit 
ectopic firing. Takiguchi et al[38] observed more severe 
radiculopathy and more microglia activation in the spinal 
dorsal horn in rats with injury distal than proximal to the 
DRG. Another study suggested that spinal-nerve crush 
injuries produce a greater degree of  DRG apoptosis than 
do corresponding nerve-root crush injuries and that the 
former injuries are associated with longer-lasting me-
chanical allodynia[39].

Gait analysis and motor function
Behavioral changes observed in pre-clinical models of  
lumbar radicular pain may be similar to painful symp-
toms observed in human subjects. Patients with low back 
pain and sciatica report fear of  movement and substan-
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tial decreases in activity levels[40], and recently, patients 
with lumbar spinal stenosis reported significantly lower 
activity levels than both control subjects and patients 
with knee or hip osteoarthritis[41]. Patients with lumbar 
radiculopathy have been found with reduced walking 
velocities, short stride lengths, and increased periods of  
double limb support[42]. In a rat model of  non-compres-
sive disc herniation with autologous NP application, 
animals exhibited behavioral changes such as heightened 
behavioral mechanical sensitivity, stance asymmetry, and 
disturbed gait parameters including symmetry and force 
analysis[16,43,44]. In animal models of  lumbar radiculopathy, 
motor weakness developed immediately after the injury 
and pain behaviors developed at the same time. Motor 
functions recovered gradually within 1 or 2 wk, whereas 
pain behaviors persisted for at least 6 wk to 3 mo. During 
the acute or subacute post-injury period, motor weakness 
is seldom observed in humans but is the predominant 
symptom in rats. This contradiction may be related to the 
times of  the observations or differences between animal 
models and humans. Further studies are needed for clari-
fication.

Contralateral and ipsilateral sides
Clinically, in the common lateral type of  lumbar disc her-
niation, radiculopathy is usually ipsilateral, but contralat-
eral radiculopathy exists in some patients[45-48]. Contralat-
eral mechanical allodynia has been shown in some animal 
models of  neuropathic pain[49,50]. In addition, unilateral 
nerve injuries or inflammation induces molecular changes 
in the contralateral DRG, which have been demonstrated 

to contribute to the induction of  neuropathic pain[49,51,52]. 
A previous study suggested that NP application to the 
unilateral DRG could induce nerve injury, satellite cell 
activation and upregulation of  tumor necrosis factor α 
(TNF-α) expression in the contralateral DRG[53]. Further-
more, injury of  motor neurons might have a significant 
role in contralateral changes.

NEUROBIOLOGY BASIS 
Mechanical injury and ischemia
Tissue acidosis and involvement of  acid-sensing ion 
channels: The most pertinent mechanical effect of  her-
niated disc material or degenerative stenosis on neural tis-
sue is likely the result of  increased intraneural pressure[7]. 
With increasing intraneural pressure, mechanical com-
pression of  the nerve root induces a decrease in intrara-
dicular blood flow, histological changes such as intramural 
edema, eletrophysiological changes such as reduced nerve 
conduction velocity and enhanced excitability of  DRG 
neurons, and reduced mechanical and thermal withdrawal 
thresholds[54-56] (Figure 1). In addition, compression of  
the periradicular venous plexus within the foramen and 
resulting blood stasis can lead to congestion, ischemia, 
intraneural edema, and increased intraneural pressure[57]. 
The resulting hypoxia causes tissue acidosis and damage 
or even death of  DRG sensory neurons. Acid-sensing ion 
channel 3 (ASIC3) is a member of  the proton-gated ion 
channels of  the DEG/ENaC/ASIC superfamily, which 
are two-transmembrane proteins assembling as a trimeric 
sodium channel that is amiloride-sensitive and voltage-

164 July 27, 2014|Volume 3|Issue 2|WJA|www.wjgnet.com

  Injury 
  component

Model Species Injury site Pain behaviors Motor function

  Mechanical Chronic gradual nerve root compression (Cornefjord et al[24]) Porcine Preganglion NA NA
chronic compression of dorsal root ganglion produced by 

intervertebral foramen stenosis (Hu et al[25])
Rat (SD) Dorsal root 

ganglion
Heat hyperalgesia 5-35 

d after surgery
NA

Compression strain of nerve root (Winkelstein et al[26]) Holtzman rats Preganglion Mechanical allodynia NA
Stainless rod -induced lumbar radiculopathy(Takayama et al[32]) Rat (SD) Preganglion NA NA

  Chemical Autologus nucleus pulposus-induced lumbar radiculopathy 
(Olmarker et al[28])

Porcine Preganglion NA NA

Autologus nucleus pulposus-induced lumbar radiculopathy 
(Yabuki et al[29])

Rat (SD) Preganglion NA NA

Autologus nucleus pulposus-induced lumbar radiculopathy 
(Otani et al[30])

Dog Preganglion NA NA

Autologus nucleus pulposus-induced lumbar radiculopathy 
(Shamji et al[16])

Rat (SD) Dorsal root 
ganglion

Mechanical allodynia Marked gait 
asymmetry, 

preference to bear 
weight on the 

contralateral limb
  Mechanical 
  + chemical

Spinal nerve root irritation with chromic gut ligatures 
(Kawakami et al[27])

Rat(SD) Preganglion Prolonged thermal 
hyperalgesia 2 to 12 

wk

Immeditaely 
paresis resolved 
in 2 wk, totally 

recovered in 6 wk
Chronic compression of lumbar dorsal root ganglion with 

SURGIFLO™(Gu et al[31])
Rat(SD) Dorsal root 

ganglion
Mechanical allodynia 

and thermal 
hyperalgesia up to 4 or 
5 postoperative week

NA

Table 1  Animal models of lumbar radiculopathy

NA: Not available.
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status, nerve roots and spinal nerves typically demon-
strate 2 to 8 mm of  glide within their neural foramen de-
pending on the model and measurement technique[69-76]. 
In compression injury, the presence of  periradicular 
fibrosis will compound the nerve root pain by fixing the 
nerve in one position, thereby increasing the susceptibil-
ity of  the nerve root to tension or compression[77-80]. Use 
of  the intraoperative straight-leg raise test in humans has 
shown that hernia compresses the nerve roots and in-
creases their flatness, thus resulting in a clear disturbance 
with gliding distance reduced to only a few millimeters, 
reduced intraradicular blood flow, and significantly dete-
riorated amplitude of  the nerve root action potential af-
ter 30 s of  the test[79,80]. This transient conduction distur-
bance probably results from temporary ischemic changes 
in the nerve root, which suggests that the primary cause 
of  radicular pain is mechanical force of  the nerve root 
induced by periradicular adhesive tissue around the herni-
ated disc[79,80]. However, radicular pain can be produced 
via stimulation of  a swollen or stretched nerve root alone. 
A normal or uncompressed nerve root could be manipu-
lated, with associated paresthesia but without significant 
pain[81-83]. 

Although some intimate contact between the herni-
ated disc material and the nerve root is required for the 
pain, neither the size of  the disc herniation seen on MRI 
nor the amount of  thecal sac deformation is necessarily 
related to the degree of  pain experienced. A common as-
sumption is that some portion of  the inflammatory cas-
cade is responsible. Thus, the potentiation or sensitization 
of  the nerve roots or DRG is required for a stretch or 
tension force on the nerve root to cause radicular pain or 
ectopic spontaneous activity. The underlying mechanisms 
of  the radicular pain or ectopic spontaneous activity are 
not clear, and the mechanosensitive channels that allow 
sensory neurons to transmit noxious mechanical stimuli 
when the nerve root is under stretch or tension force are 

independent[58]. Tissue acidosis activates ASIC3 on DRG 
sensory neurons and the activation has been reported to 
be sufficient to cause pain[59]. However, the P2X3 recep-
tor has been demonstrated to mediate nociceptive infor-
mation of  cell damage and inflammation, with activation 
dependent on peripheral ATP released from the damaged 
cells.  The expression of  P2X3 in DRG can be induced 
by local NP application[60]. Also, ATP may be involved in 
inducing mechanical and thermal hyperalgesia in experi-
mental animal models. Finally, ATP works together with 
acid to increase the pH sensitivity of  ASIC3 and may en-
hance the pain caused by acidosis[61].

Neuron damage or death: After damage to the DRG 
and the dorsal nerve root, primary afferent fibers often 
show aberrant “ectopic” activity, with an altered pat-
tern of  neuronal excitability and conduction causing 
spontaneous pain and hyperalgesia. The accumulation 
of  sodium channels at or around the site of  injury is 
thought to be responsible for the ectopic activity[62,63] Hy-
perpolarization-activated cyclic nucleotide-gated (HCN) 
channels located within the DRG are thought to generate 
spontaneous rhythmic activity and contribute to neuronal 
excitability and plasticity[64]. In particular, increased ex-
pression of  HCN1 channels in large-diameter afferents 
is responsible for evoking spontaneous pacemaker-driven 
action potentials in the damaged nerve[65]. In addition, 
damage to peripheral nerves upregulates vanilloid recep-
tors (TRPV1), which are only marginally expressed under 
physiological conditions at the membrane of  primary af-
ferents[66]. TRPV1 is essential for selective modalities of  
pain sensation and for tissue injury-induced thermal hy-
peralgesia[67]. Two studies demonstrated that nerve injury 
triggers downregulated TRPV1 in damaged afferents but 
upregulated TRPV1 in uninjured C- and A-fibers[66,68]. 

Role of  mechanosensitive channels: In physiological 

Ischemia completed

Local capillary permeability increases, 
local edema, nerve conduction failure 

begins

Partial blockage of axonal transport

Impaired venous blood flow, 
capillary stasis and ischemia begins

Intraneural pressure (mmHg)
5                               10                                50                              70

Figure 1  Ischemia changes in the nerve root with increasing intraneural 
pressure.

Mechanical injury Chemical injury

Elevated
 intraneural

pressure

Ischemia Pain

1

2

3

4
Inflammation

The overview of pain mechanism in lumber radiculopathy

Neuron damage

Figure 2  The overview of the pain mechanism in lumbar radiculopathy. 1: 
Mechanical pain, 2: Ischemic pain, 3: Neuropathic pain, 4: Inflammatory pain.
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still unknown. ASIC3, Piezo2, and channels of  transient 
receptor potential C (TRPC) family have been reported 
to be essential for a neuron to sense the mechanical 
force[84-88]. Among these candidate channels, ASIC3 is up-
regulated in DRG neurons with application of  NP[89] or a 
mixed inflammatory soup[90,91] containing serotonin, bra-
dykinin, interleukins 1 and 6 (IL-1 and IL-6), and TNF-α. 
Moreover, serotonin potentiates the proton-evoked sus-
tained current of  ASIC3[92]. Thereafter, ASIC3, which is 
upregulated and potentiated in DRG neurons under an 
inflammatory condition, may be responsible for the neu-
ron to sense the noxious mechanical stimuli. 

Chemical injury
The application of  autologous NP induces electrophysi-
ological changes and similarly enhances DRG neuron 
excitability, reduces mechanical and thermal withdrawal 
threshold and nerve blood flow, and causes histologi-
cal changes such as axonal degeneration, intramural 
edema, and Schwann cell edema in the nerve root and 
DRG[28-30,93-99]. Indeed, upon systemic exposure, the NP 
component of  intervertebral disc tissue initiates a specific 
immune response, likely a consequence of  its immune 
privileged avascular location bounded by the annulus 
fibrosus[97,100]. In an in vitro canine model, prostaglandin 
E2, a chemical mediator of  inflammation, could provoke 
an ectopic eruption of  impulses from the nerve roots[101]. 
Leakage of  chemical mediators or inflammatory cyto-
kines, which are produced in the painful disk, into the 
epidural space through anular tears could lead to injury 
to adjacent nerve roots and the leakage might be the pri-
mary pathophysiological mechanism of  radiating leg pain 
without disk herniation[102,103].

Cytokines: TNF-a, IL-1, IL-6: Accumulating evidence 
shows that sciatica due to disc herniation and low back 
pain may be related to activation and sensitization of  in-
traspinal nervous structures by disc-derived substances; 
one key substance for inducing such irritation is TNF-α[

12,14,20,35,104-106]. In a rat model of  lumbar disc herniation, 
endoneural macrophages (macrophages infiltrating the 
DRG), neurons, and activated satellite cells in DRG are 
the sources of  TNF-α[34,51,105,107]. TNF-α can induce neu-
ropathological damage, or neuropathic pain states, which 
can be prevented by selective TNF-α inhibitors[107,108]. 
However, initial clinical trials of  TNF-α blockers for 
treating sciatica have shown good[109-112] or inconclusive 
results[113-116]. Therefore, blockage of  other cytokines 
along with TNF-α may enhance the therapeutic effects 
because the cytokine network would be inhibited at 
multiple levels. In fact, cytokines such as IL-1 and IL-6 
are strongly linked to radicular pain[21,28,117]. IL-1, IL-6, 
and TNF-α are activated in the spinal cord, DRG, and 
Schwann cells in the spinal nerve roots after lumbar spi-
nal stenosis, and their expression is closely related to pain 
as well as motor nerve dysfunction and degeneration[118].

Glutamate: Discs are avascular and have low rates of  

cellular metabolism. Because of  no reuptake systems for 
extracellular glutamate in and around cartilage, free glu-
tamate may be cleared quite slowly and much less rapidly 
in discs than in neural tissue, which contain avid reuptake 
systems for glutamate[119].  A rat model showed that epi-
dural glutamate infusion at several concentrations created 
dose-related focal hyperesthesia as measured by von Frey 
fiber testing[120]. The finding suggests a change in sensory 
neurotransmission through primary afferents if  gluta-
mate cleaved from disc matrix were to diffuse in high 
enough concentration to the DRG[119], where ionotropic 
and metabotropic glutamate receptors are found in high 
densities on cell bodies[121,122]. 

Protease-activated protein receptor 2: Protease-acti-
vated protein receptor 2 (PAR2) is a G-protein–coupled 
receptor that functions in hemostasis and thrombosis and 
in the inflammatory and proliferative response triggered 
by tissue injury[123]. PAR2 is expressed by a subset of  
sensory neurons and PAR2 agonists to elicit neurogenic 
inflammation by release of  substance P and calcitonin 
gene-related peptide[124]. PAR2 activation could lower the 
pain threshold to thermal stimuli via an afferent pathway 
that involves the activation of  spinal neurokinin 1 recep-
tors and prostaglandins[125]. In an animal model of  chron-
ic compression of  DRG, PAR2 activation was critical for 
induction of  neuronal hyperexcitability induced by nerve 
injury[126].

Neurotrophic factor and brain-derived trophic factor: 
Neurotrophic factor (NGF) concentration is increased 
in response to tissue injury[127,128] and leads to increased 
brain-derived trophic factor (BDNF) gene expression, 
mainly in trkA-expressing small- and medium-sized neu-
rons[129-131]. BDNF, a neuromodulator of  nociceptive in-
formation in the spinal dorsal horn, causes the N-methyl-
D-aspartate-mediated depolarization responsible for 
synaptic plasticity related to central sensitization[132-135]. 
In a rat model of  lumbar disc herniation, Obata et al[34] 
demonstrated increased NGF-immunoreactive cells and 
BDNF-immunoreactive neurons within the DRG, which 
was closely related to pain behaviors, and endoneural 
injection of  NGF led to the same findings in the DRG 
and in pain behaviors. Thus, increased NGF level in re-
sponse to tissue or nerve injury upregulates BDNF level 
in primary sensory afferents, then BDNF causes synaptic 
plasticity related to central sensitization.

Microgliosis in the spinal dorsal horn
Microgliosis (accumulation of  activated microglia) around 
degenerative neurons is a common pathological feature 
of  various neurological disorders including radiculopathy. 
Microglia activation in the spinal cord progresses through 
a hypertrophic morphology, with thickened and retracted 
processes and an increase in cell number. Peripheral 
nerve injury leads to marked activation of  microglia 
within the spinal dorsal horn[136] and increases the num-
ber of  dorsal horn microglia by two- to fourfold[137-141]. 

Lin JH et al . Neurobiological basis of lumbar radiculopathy
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  Symptoms/signs Type of pain Mechanism Molecules/channels

  Spontaneous shooting pain neuropathic Spontaneous ectopic DRG neuron activity Na channels
  Spontaneous ongoing pain Inflammatory Inflammation surrounding or within DRG TNF-a, IL-1/6
  Positive straight-leg raise test Inflammatory, mechanical, ischemic Induction of ectopic neuron activity or ischemia when 

a sensitized and constricted nerve root stretches
ASIC3, Piezo2, 5-HTR

  Sensory deficit Neuropathic Apoptosis or phenotype shift of DRG neurons ?
  Heat allodynia Neuropathic Reduced threshold to heat TRPV1
  Cold allodynia Neuropathic Reduced threshold to cold TRPM8
  Static Mechanical allodynia neuropathic Reduced threshold to mechanical ASIC3?, Piezo2?
  Dynamic Mechanical allodynia neuropathic Reduced threshold to mechanical ASIC3?, Piezo2?
  Soreness Inflammatory, ischemic Increased protons  ASIC3, TNF-a, IL-1, IL-6

Table 2  Hypothetic mechanisms of neuropathic pain and target molecules involved in radiculopathy

TNF-a: Tumor necrosis factor a; DRG: Dorsal root ganglia; ASIC: Acid-sensing ion channel; IL: Interleukin.

Figure 3  A hypothetical mechanism of lumbar radiculopathy. (a) The clinical scenario of lumbar radiculopathy in which a lumbar DRG is compressed by a lumbar herniated 
disc. (b) Lumbar radiculopathy includes multiple pain problems caused by mechanical stress, ischemia, inflammation, and nerve damage. Receptors or ion channels involved in 
neurosensory mechanotransduction (ASIC3, Piezo2, TRPC), acid chemosensation (ASIC3, TRPV1), inflammation responses (HTR2B, mGluR, P2X3, TRPV1, etc.), and ectopic 
neuronal activity (HCN1, Nav1.8) may be the key players in transducing the pain. DRG: Dorsal root ganglia; LTP: Long-term potentiation; BDNF: Brain-derived neurotrophic factor; 
NMDA: N-methyl-D-aspartate receptor; PGE2: Prostaglandin E2; TRPC: Transient receptor potential C; ASIC3: Acid-sensing ion channel 3;  ATP: Adenosine triphosphate.
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Animal models based on compression injury of  the DRG 
demonstrate resultant allodynia and functional deficits as-
sociated with increased microglial activation in the spinal 
cord[105,142-145]. Peripheral nerve injury increases the release 
of  neurotransmitters such as glutamate, substance P, 
and ATP from primary afferent neurons activating both 
secondary neurons and surrounding glial cells. These 
changes appear to be crucial to the ability of  glial cells to 
produce cytokines and other inflammatory agents. The 
release of  inflammatory mediators including TNF-α, IL-
1b, IL-6, nitric oxide (NO), and prostaglandins initiates 
self-propagating enhanced cytokine expression in glial 
cells. These agents are then capable of  sensitizing pri-
mary afferent and dorsal horn neurons thereby contribut-
ing to neuropathic pain after nerve injury. Therefore, in 
contrast to behavioral findings, microglia were activated 
before pain-related behavior and returned to a normal 
state despite persistent mechanical and thermal hypersen-
sitivity. Increasing evidence shows that microglia cells are 
involved in the initiation of  chronic pain in neuropathic 
pain models, although no role for microglia in ongoing 
maintenance of  pain has been reported[146].

THE WHOLE PICTURE OF LUMBAR 
RADICULOPATHY
Lumbar radiculopathy is no doubt a multi-factor disease 
and may involve almost all types of  pain, such as isch-
emic, inflammatory, mechanical, and neuropathic pain 
(Figure 2). Mechanical injury elevates the intraneural 
pressure of  the dorsal roots and the DRG, reduces blood 
flow, and eventually establishes ischemia. Ischemia may 
trigger ischemic pain and cause nerve damage or death. 
The subsequent nerve damage or death may further in-
duce neuropathic pain. In contrast, chemical injury pre-
dominately induces inflammation surrounding the dorsal 
roots or DRG and the consequent inflammatory media-
tors cause inflammatory pain. Furthermore, DRG neu-
rons sensitized by inflammatory mediators will produce a 
nociceptive signal with application of  a mechanical force 
(stretch or compression). As well, central sensitization 
in the spinal-cord dorsal horn plays an important role in 
pain generation of  lumbar radiculopathy.  Here, we pro-
pose an overall picture of  lumbar radiculopathy and at-
tempt to translate the clinical symptoms and signs based 
on the present knowledge of  the neurobiological basis of  
pain. (Table 2 and Figure 3)  

CONCLUSION
Lumbar radiculopathy remains an important and largely 
unresolved medical problem that requires further research 
into the etiological factors to determine the correct diag-
nosis, despite pronounced advances in the knowledge of  
the neurological basis of  pain in the past decade. There is 
clear interest in identifying the cell populations affected 
by disc herniation-induced radiculopathy, and the role of  
neurotransmitters and their receptors that mediate the 

symptomatic and functional deficits of  radiculopathy. 
However, our ability to translate pain complaints and 
sensory abnormalities into specific pathophysiological 
mechanisms that have treatment implications is in its 
infancy. Whether different underlying mechanisms cause 
different symptoms and signs in patients is unknown. Im-
provement in the animal models of  lumbar radiculopathy 
and the methods of  pain-behaviors is warranted. 
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