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Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin 
disorder which can precede asthma and allergic rhinitis 
in a disease trajectory known as the atopic march. The 

pathophysiology of AD includes cutaneous inflammation, 
disrupted epidermal barrier function, xerosis and 
propensity to secondary infections. AD had previously 
been thought to arise from the systemic atopic immune 
response and therapies are therefore directed towards 
ameliorating Th2-mediated inflammation. However 
in recent years the focus has shifted towards primary 
defects in the skin barrier as an initiating event in AD. 
Links between loss-of-function variants in the gene 
encoding filaggrin and disrupted activity of epidermal 
serine proteases and AD have been reported. Based on 
these observations, a mechanism has been described 
by which epidermal barrier dysfunction may lead to 
inflammation and allergic sensitization. Exogenous 
and endogenous stressors can further exacerbate 
inherited barrier abnormalities to promote disease 
activity. Pathways underlying progression of the atopic 
march remain unclear, but recent findings implicate 
thymic stromal lymphopoietin as a factor linking AD to 
subsequent airway inflammation in asthma. This new 
appreciation of the epidermis in the development of AD 
should lead to deployment of more specific strategies to 
restore barrier function in atopic patients and potentially 
halt the atopic march. 

Key words: Atopic dermatitis; Eczema; Filaggrin; Skin 
barrier; Kallikrein; Thymic stromal lymphopoietin; 
Allergic sensitization; Atopic march

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Atopic diseases [including atopic dermatitis 
(AD), allergic rhinitis and asthma] are characterised by 
Th2-type inflammation. Research over the past decade 
has highlighted a crucial role for primary skin barrier 
impairment in the pathogenesis of AD and associated 
atopic phenotypes. Notably, the epidermal protein, 
filaggrin, epidermal serine proteases, and the pro-
Th2 cytokine thymic stromal lymphopoietin, have been 
implicated in disease development. We review the 
evidence upholding a role for epidermal defects in the 
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initiation of skin inflammation in AD, allergic sensitization 
and pathogenesis of the “atopic march”, and discuss the 
clinical implications of these findings. 
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INTRODUCTION
Atopic diseases are reaching epidemic proportions[1-4], 
affecting up to 20%-30% of  children in developed 
nations[5-7]. Prominent among these disorders are atopic 
dermatitis (AD, synonymous with atopic eczema), atopic 
asthma and allergic rhinitis. Atopic diseases constitute a 
major source of  physical and psychosocial distress[8-10] and 
account for a large portion of  general paediatric practice[11]. 
Atopic diseases demonstrate complex inheritance patterns 
and extensive phenotypic variation, and as such their 
aetiology is poorly understood[12]. However the disorders 
appear to be underpinned by some common features: they 
are often associated with elevated levels of  total serum IgE 
and with “atopy” - a personal and/or familial tendency 
to become sensitized and produce specific IgE against 
environmental allergens[13] - but this association is hotly 
debated[14,15]. Atopic diseases are thus presumed to arise 
as a result of  interplay between inherited disposition and 
environmental factors[16,17].

Longitudinal studies have revealed that approximately 
half  of  patients with AD develop asthma later in life 
and two-thirds go on to exhibit allergic rhinitis[18]. This 
phenomenon, dubbed the “atopic march” describes 
the tendency for AD (usually apparent within the first 
two years of  life) to precede the development of  food 
allergies, asthma and allergic rhinitis in a typical temporal 
sequence[17,19,20]. As AD is now a recognised “gateway” to 
the atopic march, its diagnosis in infants often prompts 
parental enquiries about disease prognosis as regards the 
development of  subsequent disorders[17]. AD therefore 
represents an important focus for interventions which may 
modify the natural course of  atopic disease in high-risk 
patients.

AD is a chronic, inflammatory skin disease affecting 
an estimated 10%-20% of  children and 1%-3% of  
adults[6]. The skin of  AD patients shows widespread 
xerosis (dryness) and a disturbance of  epidermal barrier 
function. AD lesions (Figure 1A and B) are additionally 
characterised by pruritus and a propensity to secondary 
infections (Figure 1C). Th2-deviated inflammation is 
widely accepted in the pathogenesis of  atopic disease 
however inflammation in AD may be biphasic, with an 
initial Th2 response leading to a Th0/Th1 dominated 
phase in chronic lesions[21]. Traditionally it has been 
presumed that epidermal barrier dysfunction in AD is 

a downstream consequence of  primary immunologic 
abnormality (the “inside-outside” hypothesis)[22]. In recent 
years this view has been challenged, with new evidence 
shifting the focus towards an “outside-inside” model in 
which epidermal abnormality is not the result but rather 
the stimulus of  inflammation[23]. In light of  this concept, 
this review will evaluate the evidence upholding a pivotal 
role for the epidermis in atopic disease pathogenesis, and 
consider the practical implications for therapy. 

BARRIER DISRUPTION IN ATOPIC 
DERMATITIS
The skin forms an essential barrier between the interior 
of  the body and the external environment. Multiple 
protective roles are fulfilled by the epidermis and many 
are mediated by its outermost layer (and end product of  
keratinocyte differentiation), the stratum corneum (SC; 
Figure 2)[24,25]. 

The SC comprises layers of  protein-rich anucleate 
corneocytes interconnected by corneodesmosomes and 
enclosed within a coat of  cross-linked proteins and lipids 
which together form the cornified envelope (CE)[26]. 
The CE replaces the plasma membrane during terminal 
differentiation of  keratinocytes into corneocytes and is 
in turn surrounded by a matrix of  intercellular lamellar 
sheets enriched by 50% ceramides, 25% cholesterol and 
15% free fatty acids (FFAs)[27]. This amalgam of  highly 
hydrophobic lipids, together with the CE, provides 
selective permeability to the epidermis. 

Intercellular lipids are secreted as precursors from 
a unique epidermal organelle, the lamellar body (LB), 
along with the hydrolytic enzymes required for precursor 
transformation[24]. At the granular cell-to-corneocyte 
transition, LBs fuse with the plasma membrane and 
discharge their contents into the intercellular space by 
exocytosis. LB extrusion also delivers antimicrobial 
peptides (AMPs) and the proteases and inhibitors which 
together orchestrate corneodesmosome cleavage during 
desquamation. Beneath the SC, the stratum granulosum 
(SG) provides a second barrier to environmental stressors; 
keratinocytes in the outer SG layers are intimately connected 
by tight junctions (TJs) - multi-protein complexes which 
control paracellular transport. 

AD is characterised by widespread skin barrier dysfunction 
in both lesional and non-lesional skin[28], as indicated by 
increases in transepidermal water loss (TEWL)[29-31] and 
percutaneous penetration[32]. This enhanced permeability 
has been attributed to abnormalities in the composition 
and architecture of  extracellular lipid bilayers, reductions 
in total lipid and ceramide content[33] and average ceramide 
chain length[34], as well as an altered ceramide profile[33,35]. 
The resultant barrier defect renders the skin of  AD patients 
more permissive to the ingress of  irritants, allergens and 
pathogens.

Atopic skin is more susceptible to bacterial and 
viral infections[10], reflecting defects in the antimicrobial 
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barrier. 80%-100% of  AD patients show colonisation by 
Staphylococcus aureus (S. aureus) compared with 5%-30% 
of  non-atopic individuals[36-38]. Flare-ups of  AD are often 
associated with S. aureus infection, but whether infection 
represents a cause or consequence of  inflammation remains 
unclear. 

In healthy individuals, the desiccating surface, acidic 
pH and resident microflora of  the skin cooperate with 
AMPs and lipids to provide protection against invading 
pathogens[39]. In AD, a number of  factors - including the 
defective epidermal barrier, attenuated innate immune 
response and increased bacterial adhesion - may promote 
skin colonisation by S. aureus[40]. Among the human 
AMPs, levels of  the cathelicidin, LL-37, and human beta-
defensin-2 (hBD-2) are reduced in AD lesions[41], and 
deficiency of  sphingosine - a natural ceramide metabolite 
and potent anti-S. aureus agent - is also evident in the 
SC[42]. Furthermore, in vitro studies have suggested that 
the Th2 inflammatory response in AD may feed back to 
the epidermis to promote bacterial colonisation[41,43]. For 

instance, IL-4, which is over-expressed in AD skin, has 
been reported to increase skin expression of  fibronectin 
and fibrinogen - receptors which may facilitate attachment 
of  S. aureus to the SC[43]. 

Finally, it should be noted that several other protective 
functions of  the skin barrier are impaired in AD. The skin 
of  AD patients shows disrupted SC integrity (reflected 
by excess scale[31]) and widespread xerosis, indicated by 
reduced SC water content[30]. Additionally, pruritus - a 
prominent characteristic of  AD[44] - indirectly aggravates 
skin barrier impairment via the resultant scratching. The 
itch sensation is believed to result from cross-talk between 
the SC, keratinocytes, immune cells and nerve fibres[45]. 
Excoriations directly disrupt the mechanical barrier of  
skin, creating additional portals of  entry for pathogens. 
Moreover, it has been reported that a subset of  AD 
patients develop serum IgE which is auto-reactive against 
a variety of  keratinocyte proteins[46]. Thus damage to the 
epidermis may itself  intensify pruritus, driving the vicious 
“itch-scratch” cycle of  AD[45].
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Figure 1  Clinical features of atopic dermatitis. A: Flexural eczema; B: Eczema and ichthyosis; C: Infected excoriation. Clinical photographs (University of Dundee 
Computing and Media Services, Ninewells Hospital and Medical School) reproduced with patient and/or parental consent.

Figure 2  Outside-inside and inside-outside barrier functions of the epidermis. A: The epidermis forms a barrier against multiple external threats and prevents 
excessive transepidermal water loss (TEWL, indicated by the dashed blue arrow) from the interior of the body; B: Components of the stratum corneum (SC) and 
stratum granulosum (SG) barriers. During terminal differentiation of SG keratinocytes into corneocytes, lamellar bodies (LBs) fuse with the plasma membrane and 
their contents is extruded at the SG-SC interface. LB-derived lipids are processed and arranged into continuous bilayers parallel to the corneocyte surface using the 
covalently bound corneocyte lipid envelope (pale blue) as a scaffold. NMF: Natural moisturising factor.
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impairs the paracellular skin barrier in AD remains unclear. 
However it is plausible that the cytoskeletal abnormalities 
associated with filaggrin deficiency impede the granular 
cell-to-corneocyte transition and thus formation of  the SC 
extracellular environment. Consistent with this hypothesis, 
impaired cargo loading into LBs, partially compromised LB 
secretion and disorganised lamellar bilayers are observed in 
the skin of  AD and IV patients[84,85]. Reduced expression 
of  SG TJ proteins[84] is also likely to further contribute to 
barrier impairment.

Alternatively or in addition, it may be the biochemical 
consequences of  filaggrin deficiency that are important 
in AD pathogenesis. FLG null mutations effect a dose-
dependent reduction in SC NMF levels[86-89], which in 
turn correlate inversely with skin surface pH[87,89] and 
TEWL[89]. Additionally, FLG exhibits intragenic copy 
number variation, and a lower number of  repeats correlates 
significantly with AD risk[90], SC UCA levels[90] and the 
presence of  self-perceived “dry skin”[91]. Thus enhanced 
TEWL in FLG-associated AD can be explained in part 
by reduced SC hydration; deficiency of  hygroscopic 
NMF components would be expected to result in lower 
SC water content hence a steeper water gradient across 
the epidermis. In addition, altered skin pH is likely to 
perturb the natural balance of  enzymatic activities in 
the SC. The elevated pH of  AD patient skin would be 
predicted to favour the net activity of  SC-resident serine 
proteases (SPs)[78,80] whilst reducing that of  key SC lipid 
biosynthesis enzymes. SP hyperactivity drives premature 
degradation of  corneodesmosomes and lipid-processing 
enzymes[80], likely contributing to defective lamellar bilayer 
formation. In line with the proposed mechanisms, it has 
been demonstrated that levels of  filaggrin breakdown 
products correlate with aberrant SC lipid organisation 
and decreased barrier function in AD patients[34,86,92]. A 
recent study using a reconstructed human epidermis 
model has suggested that filaggrin deficiency may also 
promote enhanced epidermal sensitivity to UVB[93], but 
this connection remains to be demonstrated in patients.

Finally, filaggrin deficiency in AD has implications 
for the antimicrobial skin barrier. As described, the 
natural acidity of  the SC in healthy individuals provides 
innate antimicrobial protection - a function which is 
likely to be diminished in NMF-deficient AD patients. 
Furthermore, recent data suggest that filaggrin may play 
a unique role in protection against S. aureus infection, by 
mediating keratinocyte secretion of  sphingomyelinase 
- an enzyme which reduces the number of  S. aureus 
α-toxin binding sites on the keratinocyte surface[94]. 
These findings indicate a mechanism by which filaggrin-
deficient skin may be preferentially targeted by S. aureus-
induced cytotoxicity. Clinically, the consequences of  FLG 
null mutations in AD manifest as a 7-fold increase in the 
risk of  recurrent bacterial infections relative to wild-type 
FLG patients[62].

Thus our understanding of  the mechanisms by 
which FLG genotype translates to disease phenotype 
remains incomplete. Furthermore, recent findings 
indicate additional levels of  complexity to the FLG-AD 

EPIDERMAL DIFFERENTIATION PROTEINS
Filaggrin-related barrier dysfunction
The outside-inside phenomenon of  AD drew sharp 
attention from the research community when a significant 
link between loss-of-function variants in the gene encoding 
filaggrin (FLG) and AD was demonstrated in three 
European case collections[47]. FLG mutations were originally 
identified as the cause of  ichthyosis vulgaris (IV)[48] and 
have since been demonstrated to be the strongest known 
risk factor for AD in European and Asian populations[49-56]. 
Cases of  AD associated with FLG mutations are more likely 
to be severe, persistent[57-60], and complicated by secondary 
infections[61,62] than non-FLG-related cases. Importantly, 
FLG mutations are now established as an independent 
risk factor at every step of  the atopic march including 
allergic sensitization[60,63-68], allergic rhinitis[60,64,66-68], food 
allergies[69,70] and the sub-phenotype of  asthma associated 
with AD[7,60,63,64,66-68].

Profilaggrin is a large precursor molecule (> 400 kDa) 
containing 10, 11 or 12 tandem repeats of  the 37 kDa 
filaggrin peptide[71]. Insoluble, heavily phosphorylated 
profilaggrin is the main constituent of  keratohyalin granules 
in the SG. During terminal differentiation, profilaggrin is 
dephosphorylated and cleaved in a multistep process to 
release filaggrin monomers, which bind and aggregate keratin 
filaments, facilitating the collapse of  the cytoskeleton and 
contributing to the flattening of  keratinocytes to produce 
corneocytes[72]. Filaggrin, along with several other cytosolic 
proteins, is cross-linked into the CE by transglutaminases. 
As corneocytes move outwards through the SC, filaggrin 
detaches from the CE and undergoes further degradation 
within the cytosol, ultimately generating a hygroscopic 
pool of  amino acids and derivatives thereof  [including 
pyrrolidone carboxylic acid (PCA) and trans-urocanic 
acid (UCA)], contributing to natural moisturising factor 
(NMF)[73]. NMF appears to play a role in multiple aspects 
of  epidermal homeostasis including SC hydration[73,74], UV 
photo-protection[75], immunosuppression[76,77] and by acting 
as a natural acidifier, modulation of  enzymatic activity[78-80] 
and antimicrobial defence[81]. 

Each of  the reported null mutations in FLG has 
an equivalent biological effect, producing a truncated 
profilaggrin molecule[82]. This precursor cannot be fully 
processed into filaggrin monomers thus individuals 
with two FLG null alleles (homozygous or compound 
heterozygous, FLG-/-) exhibit an almost complete absence 
of  functional filaggrin[82]. Inherited filaggrin deficiency 
results in both intracellular and extracellular changes in 
keratinocyte architecture and altered epidermal physiology. 
Histological examination of  skin from FLG-deficient 
AD and IV patients reveals increased SC thickness[83] 
and a granular cell layer that is either strongly reduced 
or absent[84]. At the ultrastructural level, reduction in 
filaggrin correlates with perinuclear retraction of  granular 
cell keratin filaments, impaired corneocyte integrity and 
reduced corneodesmosome density, concomitant with 
reduced SC cohesion[84]. The molecular mechanisms by 
which deficiency in filaggrin - an intracellular protein - 
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relationship which are likely to influence the pathogenic 
mechanisms discussed above. For instance, preliminary 
data indicate that epigenetic, as well as genetic variation 
can influence disease outcome. Indeed, a recent study has 
shown that methylation of  a specific CpG site adjacent 
to FLG can modify the influence of  FLG null mutations 
on AD risk[95]. Whether inherent variation in enzymes 
involved in profilaggrin biosynthesis and maturation 
can also affect atopic disease pathogenesis has yet to be 
ascertained. Future lines of  investigation should clarify 
how individual variations in filaggrin biology at the DNA, 
RNA and protein levels interact to determine distinct 
atopic phenotypes.

Epidermal differentiation genes in addition to FLG
Whilst inherited variation in FLG undoubtedly contributes 
to skin barrier dysfunction in AD, FLG null variants are 
carried by less than one-third of  European patients with 
AD[66] and broad defects in epidermal differentiation are 
characteristic of  the disease regardless of  FLG genetic 
status[96]. Taken together, these observations suggest that 
other factors must modify epidermal homeostasis. Genetic 
association studies have identified links between AD 
and gene variants distinct from FLG but also located on 
chromosome 1q21 within the Epidermal Differentiation 
Complex - a region comprising over sixty genes essential 
for epidermal structure and function[97]. Of  note, a single 
nucleotide polymorphism (SNP) 7 kb downstream of  
the gene encoding hornerin (HRNR) and an 8-amino 
acid insertion in the gene encoding small proline-rich 
protein 3 (SPRR3) have been identified as risk factors for 
AD[98,99]. Additionally, a recent study by Margolis et al[100] 
using whole-exome sequencing and targeted analysis in 
an African American cohort has identified mutations 
in FLG2 (encoding filaggrin-2) that show a significant 
association with persistent AD - the first established link 
between a skin barrier gene and AD in subjects of  African 
descent. However, it should be noted that these risk 
variants lie within a block of  linkage disequilibrium and it 
remains possible that they are tagging unidentified variants 
within FLG. Hornerin and filaggrin-2 are S100-fused 
type proteins, and thus share a structural organisation 
similar to filaggrin. Both proteins mirror the subcellular 
localisation of  filaggrin in the differentiating epidermis 
are believed ultimately (along with SPRR3) to become 
incorporated into the CE[97]. The precise contributions of  
these proteins to skin barrier function remain unknown, 
but available data indicate that filaggrin, hornerin and 
filaggrin-2 have overlapping or complementary functions 
in the epidermis[97] and the expression of  each may be 
down-regulated in AD skin[96]. 

TJs comprise both cytoplasmic and transmembrane 
proteins, key among which are the claudins, representing 
the main determinants of  barrier selectivity against 
macromolecules[101]. Claudin-1 expression is down-
regulated in non-lesional AD skin and inversely correlated 
with Th2 cytokines. Variants within the claudin-1 gene, 
CLDN1, have shown association with AD in two ethnically 
distinct North American populations[102]. Interestingly, this 

study also demonstrated links between CLDN1 variants 
and AD severity, total serum IgE and asthma in subjects 
of  African, but not European ancestry. Given that at 
present, FLG null mutations appear to be considerably 
less prevalent in African populations relative to European 
or Asian cohorts[89], these findings (together with those 
of  Margolis et al[100] regarding FLG2) indicate population 
specificity in the genetic mechanisms which dominate skin 
barrier dysfunction in AD.

Finally, protein regulators of  lamellar bilayer formation 
have been implicated in the pathogenesis of  AD. 
Mutations in the gene encoding fatty acid transporter 4 
(FATP4)[103] and MATT (encoding mattrin, a component 
of  the LB secretory system in flaky tail (maft) mice[104]) are 
associated with increased risk of  AD[105]. Maft mice harbour 
mutations in both Flg and Matt genes, and have been used 
for many years as an experimental model of  AD. However, 
it has recently been shown that ma/ma mice, which carry 
mutations in Matt but not in Flg, exhibit enhanced TEWL 
and decreased SC hydration, and develop the spontaneous 
dermatitis and atopy exhibited by maft mice to a greater 
extent than the filaggrin-null (Flg-/-) mice[104-106]. Matt 
may therefore play a greater role than Flg in driving the 
dermatitis phenotype in maft mice, supporting a key role 
for SC lipid secretion in the development of  AD.

Thus skin barrier genes may act alone or in combination 
with FLG to modify AD pathogenesis. Whether or not the 
same genes are also associated with subsequent steps of  the 
atopic march remains to be elucidated.

Epidermal proteases and protease inhibitors
Maintenance of  epidermal physiology is dependent on 
the coordinated activities of  skin-resident proteases and 
anti-proteases. Perturbation of  this balance in favour of  
protease hyperactivity can result in pathogenic barrier 
disruption, as exemplified in Netherton syndrome (NS). 
NS is an autosomal recessive disorder featuring ichthyosis 
and atopic manifestations, which is caused by loss-of-
function mutations in SPINK5[107] - the gene encoding 
lympho-epithelial Kazal-type-related inhibitor (LEKTI)[108]. 
In healthy skin, proteolytic LEKTI fragments specifically 
co-localise with and regulate the activity of  multiple 
SPs, including members of  the kallikrein (KLK) family. 
KLKs are central to desquamation[109] and also indirectly 
promote profilaggrin proteolysis[110]. In the skin of  NS 
patients, residual LEKTI expression correlates inversely 
with enhanced KLK activity[111] resulting in dramatic 
SC thinning and attenuation of  the permeability barrier 
through unrestricted degradation of  corneodesmosomes[109] 
and lipid-processing enzymes [111] respectively. Permeability 
barrier function may additionally be compromised through 
activation of  protease-activated receptor 2 (PAR-2), which is 
expressed in nucleated epidermal layers and can be induced 
by specific SPs to down-regulate LB secretion[112-114].

A number of  association studies have identified 
SNPs in SPINK5 which are associated with AD risk in 
different ethnicities[115-119]. In particular, one such variant, 
LEKTI E420K, has also been linked to elevated serum 
IgE[118], food allergies[116], AD severity[116] and AD-
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associated asthma[120]. In vitro analysis has shown protease 
hyperactivity resulting from the E420K mutation to result in 
increased corneodesmosomal destabilisation and premature 
profilaggrin proteolysis[121], suggesting a functional pathway 
by which E420K may contribute to filaggrin deficiency 
and the development of  AD. In addition to SPINK5 
polymorphisms, a mutant allele of  the CSTA gene (which 
encodes the skin-resident cysteine protease inhibitor, cystatin 
A) has been reported to associate with AD in a small UK 
cohort[122]. Fewer data exist for associations between AD and 
epidermal protease genes; an association between AD and a 
putative gain-of-function insertion in the 3’ UTR of  KLK7 
has been described in a British case-control study[122] but 
failed to be confirmed in subsequent investigations[123,124].

BASIS FOR BARRIER-INITIATED 
INFLAMMATION 
The above pathways together may account for the skin 
barrier phenotype in AD, but the mechanisms linking 
epidermal disruption and concomitant allergic inflammation 
remain unclear. The maft and more recently generated 
Flg-/- mouse models[106,125] serve as useful systems in 
which to study the aetiology of  the immune response in 
the context of  inherited barrier impairment. Although 
showing differences in disease phenotype, both mice 
exhibit increased percutaneous allergen penetration and 
a reduced inflammatory threshold to skin irritants and 
allergens[106,126]. Based on these observations, it is widely 
postulated that inflammation in AD is a secondary 
reaction to increased entry of  allergens and irritants 
through the compromised skin barrier. Whilst this is yet 
to be confirmed in human subjects, it is worth noting that 
AD patients with FLG null mutations have a significantly 
increased risk of  allergic sensitization[60] and irritant contact 
dermatitis[127], and display elevated numbers of  allergen-
specific CD4+ T cells compared with wild-type FLG 
patients[128]. Furthermore, it seems likely that in addition to 
the inflammatory response to penetrating antigens, barrier 
impairment itself  may intrinsically promote downstream 
inflammation. For instance, elevated SP activity (induced in 
AD along the pathways described above) not only promotes 
epidermal barrier breakdown but leads to increased release 
of  active IL-1α and IL-1b[129,130] from the corneocyte 
cytoplasm, thereby initiating inflammation. Furthermore, 
SP hyperactivity may stimulate inflammation indirectly by 
accelerating the degradation of  transition desmosomes, 
leading to secretion of  IL-1b, IL-8 and TNF-α from 
mechanically stressed keratinocytes[131]. Finally, accumulated 
data indicate that following activation by SPs, PAR-2[131], 
together with pro-inflammatory cytokines, induces NF-kB-
mediated over-expression of  the pro-Th2 cytokine, thymic 
stromal lymphopoietin (TSLP)[132], and IL-6[133]. Evidence 
in support of  the latter pathway has been observed in 
studies of  maft mice and FLG knock-down keratinocytes 
in vitro[134], suggesting that this immunologic cascade may 
operate downstream of  a primary filaggrin deficiency. 

Whilst these data are compelling, the same pathogenic 

mechanisms have yet to be demonstrated in human AD. 
Nonetheless, the strength and number of  independent 
associations between FLG and atopic disorders greatly 
surpass those of  any other gene expressed in the skin to 
date[123]. As such, filaggrin deficiency is widely regarded 
as a primary abnormality leading to skin inflammation in 
AD[135-138]. Leading on from this, a putative pathogenic 
pathway has been described in which the reduction in 
filaggrin acts as a central stimulus for increased SP activity, 
which in turn triggers the inflammatory response[139]. AD 
patients with FLG null mutations exhibit increased skin 
levels of  IL-1 cytokines, in a manner inversely correlating 
with NMF levels[87]. This observation has been attributed 
to pH-induced stimulation of  SPs, which can promote 
inflammation by the mechanisms described above[139]. 
However, no correlation between SC pH and levels of  
either IL-1α or IL-1b could be demonstrated in the same 
study, and recent findings have indicated that FLG status 
is not an essential determinant of  SC pH[79,93,106]. Thus 
whilst these data do not rule out a role for skin pH 
changes in initiation of  inflammation in FLG-related AD, 
it is likely that protease activity and consequently IL-1 
levels are modulated by additional factors. For instance, 
Kezic et al[87] have proposed that increased SC calcium 
concentration (resulting from reduced SC hydration) 
may favour the activation of  calcium-dependent SPs, but 
based on our current knowledge, this pathophysiological 
pathway remains entirely speculative.

INSIDE-OUTSIDE PATHOGENIC 
MECHANISMS
Despite the undisputed involvement of  FLG null variants 
in the atopic march, it is important to note that filaggrin 
deficiency is observed in AD patients even in the 
absence of  known FLG mutations[96]. Whilst this may be 
explained in part by other forms of  genetic regulation, it 
is apparent that a number of  additional factors can reduce 
expression of  functional filaggrin, resulting in barrier 
disruption. In particular, accumulating evidence points 
to components of  the acquired immune response as key 
players in endogenous barrier impairment, prompting the 
proposition of  a self-sustaining “outside-inside-outside” 
pathogenic loop in AD[139].

Studies in maft mice have shown that following 
initial sensitization, further defects in barrier function 
occur, suggesting exacerbation of  the primary barrier 
impairment by the induced inflammatory response[126]. 
Consistent with this, the Th2 cytokines, IL-4, IL-13, IL-22 
and IL-25, which are over-expressed in AD lesions, have 
been shown to inhibit expression of  filaggrin[136-138] and 
profilaggrin-processing enzymes[140,141] in vitro. Inflammation 
in AD may also compromise skin barrier function by 
a number of  filaggrin-independent mechanisms. The 
epidermal AMPs, LL-37, hBD-2 and hBD-3, are down-
regulated in a Th2-dependent manner[41,142-144] and roles for 
Th2 cytokines in disruption of  SC lipid synthesis[145-147], SC 
protease activity[148,149] and multiple processes in epidermal 
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differentiation[147,149-151] have been reported. Finally, whilst 
not endogenously perturbing the skin barrier per se, the 
cytokines TSLP and IL-31 induce itch[152,153], thereby 
aggravating the itch-scratch cycle.

ENVIRONMENTAL STRESSORS 
PLAY UPON BARRIER DEFECTS TO 
EXACERBATE DISEASE ACTIVITY
The avoidance of  exogenous irritants is an important part 
of  atopic disease management. Diverse environmental 
factors are known to exacerbate atopic disorders, but 
several are now recognised as having detrimental effects 
on the skin barrier. For instance, prolonged exposure to 
reduced ambient humidity (as may occur in centrally heated 
homes) has been shown to accelerate TEWL and promote 
profilaggrin proteolysis[73], potentially driving further 
depletion of  cutaneous filaggrin[139]. External modifiers 
of  skin surface pH may also aggravate disease activity via 
enzyme-mediated pathways; use of  neutral-to-alkaline soaps 
is known to induce SC thinning and precipitate flares of  
AD[154]. Protease activity in the epidermis of  AD patients 
may be further intensified by airborne proteins; proteolytic 
allergens produced by house dust mites and cockroaches 
have been shown to penetrate the skin and can exacerbate 
barrier dysfunction[155,156] both directly, by degrading barrier 
components[157,158] and indirectly, through activation of  
PAR-2[159-161]. Staphylococcal infection also has a number 
of  implications for skin barrier function. Essential S. 
aureus surface proteins confer resistance to the bactericidal 
action of  human epidermal FFAs and AMPs[162] and once 
established on the skin, coagulase-negative staphylococci 
can secrete peptidases and lipid hydrolases[163] which may 
further erode the skin barrier. Indeed it has been shown that 
elevated levels of  the enzyme ceramidase (which catalyses 
the degradation of  ceramide to sphingosine and FFAs) are 
secreted by the bacterial flora of  AD patient skin relative to 
healthy controls[164]. Finally, psychological stress (PS) may 
precipitate atopic diseases[165] by disturbing the permeability 
barrier[166,167], SC integrity[166] and antimicrobial defences[168] 
in the skin of  mouse models, via a mechanism thought 
to be mediated by increased production of  endogenous 
glucocorticoids[167-169]. 

ALLERGIC SENSITIZATION AND TSLP: 
THE ATOPIC MARCH
The mechanistic link between AD and subsequent 
phenotypes in the atopic march remains unclear and 
has been the subject of  intensive research in recent 
years. Generally, current data favour a model in which 
the downstream systemic effects of  allergen penetration 
through the impaired skin barrier cause immune cells 
to mount an exaggerated inflammatory response at any 
allergen-exposed epithelial surface[136,154,170]. This theory 
fits with several observations: (1) AD is usually the first 
manifestation of  atopy[18]; (2) FLG is not expressed in 

bronchial airways[171] nor the oesophageal epithelium 
beyond the oro-pharyngeal mucosa[172], suggesting that 
filaggrin does not directly influence permeability of  
these epithelia; and (3) allergic sensitization induced 
by epicutaneous exposure to peanut allergen inhibits 
subsequent oral tolerance in mice[173]. 

Central to the uncertainty over the atopic march is 
the strength of  the connection between early allergic 
sensitization in AD and the risk of  allergic airway 
disease, with the epidemiological data being somewhat 
inconsistent[14]. Functional studies on the atopic march 
have identified a prominent role for the cytokine TSLP as a 
promoter of  the Th2 response in AD and a trigger linking 
epicutaneous sensitization to subsequent asthma[174,175]. 
TSLP is expressed primarily in lung and skin epithelia[176] 
where it is recognised as a “master switch” from epithelial 
barrier disruption to Th2 inflammation[177,178]. Accordingly, 
TSLP expression is up-regulated in the SC of  AD 
patients compared with healthy subjects[179]. Notably, a 
recent study using mice in which TSLP is selectively and 
inducibly ablated in epidermal keratinocytes suggests 
that skin-derived TSLP is essential for skin allergic 
inflammation and epicutaneous sensitization, which in 
turn leads to allergic asthma[180]. This study, in contrast 
to previous findings[181,182], indicated that keratinocyte-
derived TSLP acts as an essential “adjuvant” to the Th2 
response induced by topical allergen treatment, but that 
skin expression of  TSLP caused by barrier disruption 
alone (i.e., without allergen) is not sufficient to promote 
the full inflammatory phenotype. It is also noteworthy 
that in this model sensitization was achieved through 
barrier-defective skin (as opposed to intraperitoneal or 
intradermal injection of  allergen[181,183]), followed by airway 
challenge, conditions representative of  those in human 
AD. Airway inflammation appears to require an antigen-
specific memory CD4+ T cell response[180,183], but occurs 
independently of  TSLP presence in the lung[175,180,183] and 
circulating TSLP[183], suggesting that skin-derived TSLP is 
both necessary and sufficient for manifestation of  asthma 
symptoms. 

The relative importance of  TSLP in the human 
atopic march remains to be clarified. A recent study in an 
American paediatric AD cohort identified the TSLP variant 
rs1898671 (which produces attenuated TSLP) as protective 
against the development of  persistent AD[184] however no 
association with comorbid asthma was identified[184]. It has 
further been demonstrated that risk of  childhood asthma 
is influenced by epistasis between SPINK5 and TSLP[185]. 
The authors postulate that TSLP and SPINK5 function 
in a common pathway in which LEKTI deficiency 
ultimately leads to TSLP production, an exaggerated Th2 
response and allergic lung inflammation[185]. Although the 
analysed cohort comprised both asthmatic patients with 
and without concomitant AD, these findings support the 
view that the systemic consequences of  an epidermal 
pathway are sufficient to induce inflammation at remote 
epithelia in the human atopic march (Figure 3). Thus it 
will be interesting to see if  evidence for a similar pathway 
in patients with AD-associated asthma emerges in the 
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coming years. Together, the above findings reinforce 
the attractive idea that early and aggressive intervention 
directed towards the skin barrier may impede the 
progression from AD to subsequent airway inflammation 
in atopic patients.

CLINICAL IMPLICATIONS: A PARADIGM 
FOR THERAPY? 
The pathogenic mechanisms described above create a 
strong case for prioritising protection and restoration 
of  the skin barrier in atopic individuals. The current 
foundations of  general AD management include the 
avoidance of  triggering factors and optimal skin care[165], 
with efforts to address epidermal barrier defects centred 
on the regular use of  emollients. Emollients help to 
hydrate the skin and soothe pruritus[186]; when applied 
liberally, they can provide a short-term artificial barrier 
to reduce TEWL and protect against the penetration of  
allergens and irritants. The benefits of  emollient therapy in 
controlling the cutaneous symptoms of  AD are accepted 
on the basis of  clinical experience[186]. A recent feasibility 
study of  early emollient therapy for AD prevention has 
shown promising preliminary results[187], but further trials 
are warranted before the efficacy of  this approach can be 
confirmed. Thus far, emollient monotherapy has rarely 
proved sufficient for disease resolution in moderate-to-
severe AD, in which the use of  anti-inflammatory agents 
is often necessary for exacerbation management[165].

However, corticosteroids and topical calcineurin 
inhibitors are associated with a spectrum of  cutaneous and 
systemic side effects[165,188] including the impairment of  
both permeability and antimicrobial barrier functions in 
AD skin[189-191]. Interestingly, selected emollients have also 
been reported to disrupt the skin barrier. The majority 
of  over-the-counter (OTC) moisturisers contain non-
physiological ingredients (e.g., petrolatum and lanolin) 
which function by undefined biological mechanisms 
and in certain cases have been found to compromise SC 

integrity, permeability barrier function[192] and epidermal 
differentiation[193]. The above findings, together with recent 
advances in our understanding of  skin pathophysiology, 
have shifted interest towards novel “barrier replacement 
strategies”. Such therapies aim to correct underlying 
biochemical abnormalities; they are based upon physiological 
components and may therefore minimise the likelihood 
of  an unfavourable response[194]. For instance, prescription 
barrier repair creams (BRCs) are based on SC lipids and 
differ from their non-physiological counterparts in that 
they are taken up by keratinocytes, packaged into LBs 
and ultimately secreted to form lamellar bilayers[195]. In 
accordance with the lipid deficits in AD skin, a number of  
“designer” ceramide-dominant and triple-lipid-based barrier 
repair formulations have now been tested in AD patients[196]. 
Trials of  one ceramide-dominant BRC demonstrated 
significant reductions in disease severity[197,198] and marked 
restoration of  the epidermal barrier when used as adjunct 
to topical anti-inflammatories[197]. Moreover, improvements 
in severity, pruritus and sleep were comparable to the 
effects of  the TCS fluticasone[198], suggesting that BRCs 
hold potential steroid-sparing effects. However small 
study size, variation in study design, commercial pressures 
and the possibility of  publication bias make such data 
difficult to interpret. Furthermore, it is worth noting that 
the direct comparison of  OTC emollients with BRCs has 
demonstrated equal efficacy for the treatment of  mild-to-
moderate AD[199], with a notably significant cost disparity 
between the two treatments. Thus the prescription of  
BRCs over cheaper and simpler OTC alternatives remains 
contentious. Large-scale randomized control trials will be 
necessary to determine whether BRCs are indeed superior 
for long-term management of  AD.

The identification of  filaggrin deficiency as a strong 
predisposing factor for atopic disorders has opened the 
prospect of  filaggrin or NMF restoration as another 
barrier repair strategy. Topically applied recombinant 
filaggrin peptide has been shown to penetrate to the SG 
of  reconstructed human epidermis, and is internalised and 
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Figure 3  Hypothesised pathways from skin barrier impairment 
to inflammation and the atopic march. Deficiencies in FLG and 
LEKTI promote enhanced activity of KLKs, which induce over-
expression of TSLP and IL-6 through the PAR-2-NF-kB pathway. 
KLK hyperactivity also degrades transition desmosomes, inducing 
the release of pro-inflammatory cytokines from mechanically 
stressed keratinocytes. The pro-inflammatory environment 
triggers eosinophil and mast cell recruitment and activation. TSLP 
activates LCs which promote the differentiation of naïve (Th0) T 
cells into Th2 cells in lymph nodes. Allergen ingress (dashed red 
arrow) promotes allergic sensitization and may, with TSLP, stimulate 
downstream airway inflammation. FLG: Filaggrin; LEKTI: Lympho-
epithelial Kazal-type-related inhibitor; KLKs: Kallikrein proteases; 
TSLP: Thymic stromal lymphopoietin; IL-6: Interleukin-6; IL-1b: 
Interleukin-1b; LCs: Langerhans cells; SC: Stratum corneum; 
PAR-2: Protease-activated receptor-2; NF-kB: Nuclear factor 
kappa-light-chain-enhancer of activated B cells.
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processed to restore epidermal structure in maft mice[200]. 
Furthermore, a recent study has identified a candidate drug 
that promotes filaggrin mRNA and protein expression in 
vitro, and suppresses the development of  skin inflammation 
when administered orally in the NC/Nga mouse model of  
AD[201]. These findings, whilst preliminary, hold promise 
for filaggrin restoration as part of  future AD therapy. 
Clarification of  the relative importance of  the functions of  
profilaggrin, filaggrin and filaggrin degradation products 
will be useful in directing research in this area[202].

Thus the new appreciation of  skin barrier pathophy-
siology should encourage greater clinical emphasis on 
the optimization of  skin care and avoidance of  barrier-
breaching products in neonates and children. Yet a 
number of  important questions remain. For instance, can 
restoration of  the permeability barrier alone help to 
normalise epidermal gene expression? Will barrier-based 
interventions also protect against inflammation and the 
development of  comorbid atopic disorders in patients 
with AD? Long-term follow-up studies with examination 
of  treatment efficacy at the molecular level will be 
required. Finally, additional potential treatment avenues 
(e.g., selective inhibition of  SPs and TSLP) have yet to be 
explored and it is expected that further elucidation of  the 
mechanisms of  skin barrier dysfunction in the coming 
years will identify practicable therapeutic targets. 

CONCLUSION
The discovery of  loss-of-function mutations in FLG 
has led to a new appreciation of  skin barrier dysfunction 
as primary pathogenic mechanism in atopic disease. 
Undoubtedly one of  the greatest challenges for future 
research is the dissection of  the complex interactions 
between multiple genetic, environmental and immunologic 
factors which influence disease pathogenesis (Figure 4). 
Some interactions with FLG have already been identified. 

Of note, the combined occurrence of  mutations in FLG, an 
epidermal gene, and in the genes encoding IL-10 and IL-13, 
mediators of  acquired immunity, have been shown to have 
a multiplicative effect on AD risk[203] and inter-regulation 
by SC and SG skin barriers at the mRNA and protein 
levels has been reported[101,204]. These interactions, whilst 
yet to be demonstrated in human patients, may present 
further difficulties in determining the relative importance 
of  individual barrier components in AD pathogenesis. 
Progress in the molecular genetics of  atopic disease 
has been accelerated by advances in next-generation 
sequencing techniques, but the additional complexity of  
multiple gene-gene and gene-environment interactions 
requires further development of  bioinformatics analysis. 
The integration of  genetic, transcriptomic and proteomic 
analyses is also computationally demanding. However, 
a recent transcriptomic analysis of  AD skin used FLG 
genotype to stratify data and has offered insight into 
novel pathways and predicted functional networks[205]. The 
expanding understanding of  epigenetic variation is also 
predicted to contribute further novel mechanistic insights 
in the coming years. 

Understanding the interplay between atopic genes 
and environmental factors will be vital to explaining 
(and perhaps controlling) the rising prevalence of  atopic 
diseases. This will require long-term epidemiological 
studies in which early genetic profiling of  FLG and 
other disease genes is coupled with careful monitoring 
of  patient environment. Such studies may help to explain 
how specific gene variants act in the context of  different 
external insults to induce a range of  related yet distinct 
atopic phenotypes. Evaluation of  FLG genetic status is 
not commonplace in pharmacogenetic studies or current 
clinical management of  AD. However careful clinical 
examination can identify FLG null genotype[206] and as 
the multiple influences of  filaggrin on atopic disease 
trajectory are clarified, this will benefit clinical care and 
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Figure 4  The combination of genetic and environmental 
factors in the natural history of atopic disease. Note 
that some allergens (e.g., house dust mite allergens) can 
also contribute to total protease activity in the skin. Stress: 
Psychological stress; TCS: topical corticosteroids; S. aureus: 
Staphylococcus aureus.
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prognostic predictions. More detailed knowledge of 
genotypes associated with atopic phenotypes could in 
the future help to direct the prescription of  personalised 
therapeutic regimes, including focused instructions for 
disease prevention and targeted treatment. Thus early 
control of  skin barrier function in high-risk patients 
may in future prevent allergic sensitization and what had 
previously been considered the inevitable path through 
the atopic march.
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