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Abstract
Bone marrow cell death and proliferation are regulated 
by multiple factors including genetic and epigenetic al-
terations of hematopoietic cells, crosstalk of hematopoi-
etic cells with bone marrow mesenchymal cells through 
direct cell-cell interaction or cytokine/chemokine pro-
duction, vascularity of the bone marrow, and interac-
tions of sympathetic nerve system with hematopoiesis. 
Cell proliferation usually predominates over cell death 
in neoplastic processes such as leukemia and myelo-
proliferative neoplasms, while apoptotic processes also 
have a significant role in the pathogenesis of myelo-
dysplastic syndromes. Recently, hematopoietic stem 
cells (HSCs) and leukemia stem cells (LSCs) have been 
identified and their characters on self renewal process, 
differentiation, cell dynamics and drug resistance have 
been implicated. Although most leukemia cells are 
initially sensitive to chemo- or radiotherapy, LSCs are 
resistant and considered to be the basis for disease 
relapse after initial response. HSCs and LSCs may use 
similar interactions with bone marrow microenviron-
ment. However, bone marrow microenvironment called 
niche should influence the normal as well as malignant 
hematopoiesis in different manners. Recent studies 

have expanded the number of cell types constituting 
bone marrow niche and made the issue more complex. 
Since the majority of excellent and contributing studies 
on bone marrow niches have been performed in animal 
models, niches in human tissues are beginning to be 
localized and characterized. In this article, we summa-
rize the relation of hematopoietic cells with niches and 
hope to point a hint to the novel strategy for treatment 
of malignant proliferation of hematopoietic cells.
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INTRODUCTION
Cell dynamics of  hematopoietic cells/leukemic cells may 
be regulated by multiple factors in the bone marrow. Re-
cently, interactions of  hematopoietic stem cells (HSCs) 
with the bone marrow microenvironment have been ex-
tensively studied mainly using animal models with genetic 
modification. Many signaling pathways such as CXCR4/
CXCL12, Jagged/Notch, Wnt, Ang-1/Tie2, SCF, very 
late antigen-4 (VLA-4), VCAM-1, and TGF have been 
shown to regulate the self-renewal, differentiation, prolif-
eration, and apoptosis/senescence of  HSCs[1-11]. Mecha-
nisms of  crosstalk between hematopoietic cells and the 
bone marrow microenvironment would be closely associ-
ated with the pathogenesis of  hematologic diseases in-
cluding malignancies. Although leukemia cells are thought 
to harbor cell-autonomous mutations, the interaction 
with the microenvironment should play an important role 
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in the regulation of  leukemia cell dynamics[12]. This article 
reiterates the importance of  mechanisms affecting the 
functions of  the bone marrow microenvironment on the 
proliferation/apoptosis of  hematopoietic/leukemia cells.

HSCS AND THEIR NICHE
The HSCs have two opposing characters - maintenance 
of  an undifferentiated state analogous to pluripotent stem 
cells, and the execution of  tissue-specific hematopoietic 
functions[13]. In the bone marrow, characters of  HSCs are 
maintained within a special microenvironment called a 
niche. The concept of  niches was proposed in the 1970s; 
however, the nature and function of  these stromal struc-
tures remains unclear. HSCs are in contact with bone-
lining osteoblastic cells, but only a part of  the HSCs seem 
to be located in this endosteal niche region. Instead, many 
HSCs are found in association with the sinusoidal endo-
thelium, referred to as the vascular niche. However, osteo-
blast depletion results in extramedullary hematopoiesis, 
suggesting that a vascular niche alone is not sufficient to 
maintain hematopoiesis[14]. Endosteal and vascular niches 
might regulate different HSC populations, although recent 
data depicts a more complicated feature, with functional 
crosstalk between cells in these two regions[2,15,16].

Recently it was suggested that primitive mesenchymal 
cells, including CXCL12-abundant reticular cells[17-20], nes-
tin-expressing cells with sympathetic nerve system[21-23], 
nonmyelinating Schwann cells[24] and macrophages[25,26] act 
as bone marrow niche-associated cells. The interactions 
between CXCR4 and CXCL12 (SDF-1) are especially 
important in the localization and retention of  HSCs in 
the bone marrow. Furthermore, chemokine interactions 
through CXCL12 can cause the up-regulation of  vascu-
lar cell adhesion molecule-1 and VLA-4 expression[27]. 
CXCL12 also has an essential role in colonization of  the 
bone marrow by HSCs during early development, be-
cause CXCL12-deficient embryos have severely reduced 
HSC numbers and a disturbed function[28]. Further stud-
ies on the interplay of  such regulatory forces as “cell fate 
and localization determinant” will likely shed light on the 
pathogenesis of  hematological diseases. 

BONE MARROW NICHES IN 
HEMATOPOIETIC PATHOLOGY
Recent animal model studies have provided insights into 
the role of  aberrant microenvironment signaling leading 
to the pathogenesis of  hematological diseases. Perturba-
tions in niche signaling in murine models[29] can mimic 
idiopathic myelofibrosis, leading to enhanced stem cell 
mobilization and the creation of  alternate niches[30]. The 
deletion of  the Dicer1 gene specifically in mouse osteo-
blasts (endosteal niches) disrupted the integrity of  hema-
topoiesis. Myelodysplastic syndromes (MDS)-like pheno-
types emerged in spite of  the fact that hematopoietic cells 
had an intact Dicer1[31]. Therefore, perturbation of  specific 
mesenchymal stromal cells can cause disorder in the dif-
ferentiation, proliferation, and apoptosis of  hematopoietic 

cells. In this mouse model, acute myeloid leukemia (AML) 
emerged with several acquired genetic abnormalities, sup-
porting the concept of  niche-induced leukemogenesis. 
Also, in human samples, the impaired expression of  DIC-
ER-associated genes was demonstrated in mesenchymal 
stromal cells from MDS patients[32]. 

Concerning the bone marrow cell dynamics in MDS, 
excessive apoptosis of  hematopoietic cells was observed 
to be induced by the bone marrow microenvironment[33-48]. 
The apoptosis was mediated by paracrine as well as auto-
crine factors, implicating both medullary stromal cells and 
hematopoietic cells in the pathology of  the disease. Pro-
inflammatory cytokines such as tumor necrosis factor in 
the bone marrow microenvironment are mainly paracrine 
mediators of  apoptosis. As autocrine stimulation mecha-
nisms, it has recently been shown that the deregulation 
of  ribosome biogenesis can initiate a stress response in 
hematopoietic cells through the p53-mediated signaling 
pathway. Thus, both the stromal cells of  the bone marrow 
microenvironment and hematopoietic cells themselves 
possess a common and characteristic biology in this het-
erogeneous disease entity.

In human samples, the microenvironment has also 
been studied in multiple myeloma[49]. Self-renewal path-
way activation in the niche (such as the canonical Wnt 
pathway) has been postulated to result in enhanced 
myeloma cell survival[50]. Another example of  microen-
vironment-associated disease is the WHIM (Warts, Hy-
pogammaglobulinemia, Infections, and Myelokathexis) 
syndrome. This rare syndrome is known to exhibit con-
genital neutropenia often caused by mutations in CXCR4 
with increased sensitivity to CXCL12[51].

LEUKEMIA STEM CELLS AND NICHES
Like many cancers, AML has been identified as a cell au-
tonomous disorder. Namely, the genetic events leading 
to transformation of  the normal hematopoietic cell are 
found within leukemia cells and are necessary and suffi-
cient for the generation of  leukemia. However, many stud-
ies have demonstrated evidence of  functional heterogene-
ity among AML cells. In particular, there seems to be a 
subpopulation of  AML cells referred to as “leukemia stem 
cells” (LSCs) that alone have long-term repopulating po-
tential and the ability to propagate and maintain the AML 
phenotype[52]. To understand the difference of  LSCs from 
HSCs, clarification of  the crosstalk between LSCs and 
niches would be very important. Niche-mediated mecha-
nisms promote the engraftment and survival of  LSCs. 
The biology of  LSCs has been determined by studies of  
primary human AML cells transplanted into NOD-SCID 
or NOD-SCID IL2Rγnull mice[53,54]. In these xenograft 
models, AML cells have a phenotypic hierarchy, which 
parallels that of  normal hematopoietic stem/progenitor 
cells[1,55-58]. For example, the CD34+CD38- AML popula-
tion could engraft efficiently in NOD-SCID mice, but 
the more differentiated CD34+CD38+ and CD34- AML 
cells were unable to engraft and yield colony-forming 
progenitors. Human AML cells preferentially engrafted in 
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the bone marrow endosteal region in NOD-SCID IL2Rnull 
mice, and remained adjacent to bone marrow osteoblasts 
for up to 4 mo following transplantation[54]. Homing to 
the microenvironment appears important in sustaining 
the survival of  LSCs. Moreover, these cells were highly 
enriched for quiescent cells and were resistant to cytosine 
arabinoside chemotherapy[59]. 

CROSSTALK OF LSCS WITH NICHES
Next, the specific mechanisms of  niches regulating LSC 
fate should be clarified[60]. For example, the interaction be-
tween CXCR4 and CXCL12 is known to regulate normal 
HSC proliferation and survival[61-63]. What is the case in 
LSCs? Actually, CXCR4 is also expressed on primary leu-
kemic cells, and high-level expression of  CXCR4 on AML 
cells is a negative prognostic factor of  relapse-free and 
overall survival[64,65]. Treatment with the CXCR4 antago-
nist was shown to inhibit stromal cell-induced prolifera-
tive signals in AML cells and to increase the sensitivity to 
chemotherapy, resulting in the extended survival of  AML-
transplanted mice compared with treatment with chemo-
therapy alone[66]. These data suggest that LSCs possess 
a CXCR4-dependent homing capacity that is analogous 
to normal hematopoietic cells, and antagonism of  the 
CXCR4/CXCL12 axis is a logical therapeutic strategy for 
the treatment of  acute leukemia. 

However LSCs are rather heterogeneous. Even in LSCs, 
different patterns of  interactions with niches were identi-
fied[67]. The homing of  pre-LSCs was similar to long-term 
HSCs, while the homing of  established LSCs was most 
similar to that of  committed myeloid progenitor and dis-
tinct from HSCs.

After homing to the bone marrow niches, leukemia 
cells are retained in these niches through cellular adhesion 
molecules such as VLA-4 and LFA-1 integrins[68]. In-
creased VLA-4 expression has been demonstrated to cor-
relate with increased bone marrow blast counts in AML[69]. 
Furthermore, VLA-4-highly expressing AML cells show 
relative resistance to chemotherapy-induced apoptosis, 
and the administration of  VLA-4 neutralizing antibodies 
inhibits this resistance[70]. 

On the other hand, the leukemia cells were able to 
directly modulate the niche at the expense of  normal he-
matopoietic stem and progenitor cells by down-regulating 
CXCL12 levels in areas of  leukemia infiltration[71]. It has 
been shown that stem cell factor, a niche regulator, was 
secreted by the leukemia cells, leading to the abnormal 
retention and engraftment of  normal HSCs in the micro-
environment with leukemic infiltration. Thus, identifying 
the mechanisms involved in the generation of  various 
signals by HSCs, LSCs, and niches might provide new in-
sights into the pathogenesis of  acute leukemia as well as 
MDS and myeloproliferative neoplasms.
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