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Abstract
Neutrophils are considered as the privates of the innate 
immune system. They are born in the bone marrow, 
migrate to the tissues where they kill putative intruders. 
After their job they are quickly removed from the battle-
field by macrophages. This view of a predetermined 
pathway fitted nicely in their short lifespan of 5 h. How-
ever, recent studies indicated that their lifespan was in 
the order of several days. Recently, it became clear that 
neutrophils have functions beyond killing of pathogens. 
The reported half-life of 5 h is hardly compatible with 
those functions. Moreover, the organism actively invests 
in rescuing primed neutrophils from clearance by the 
body. It appears that their half-life is highly dependent 
on the method used to measure their life span. Here, 
we discuss the literature and show that neutrophils 
compartmentalize which could explain partially the 
differences reported for their lifespan. Moreover, the 
methodology to label neutrophils ex-vivo  could have 
similar deteriorating effects on their lifespan as found 
for transfused red blood cells.
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Core tip: The lifespan of neutrophils is very dependent 
on the method used to determine it. Neutrophils are 
stored in pools and traveling from one location to anoth-
er dependent on the occurrence of inflammation or not. 
It appears that isolating neutrophils and labeling them 
shortens their lifespan considerably. Their longer lifes-
pan enables new functions assigned to them recently.
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INTRODUCTION
Neutrophils are polymorphonuclear leukocytes (PMNs), 
the main cell type of  white blood cells in humans and 
are known for their specific segmented nucleus and their 
granules. They are the human body’s main cellular compo-
nents of  the innate immune system, having an anti-infec-
tious and a pro-inflammatory function. Upon infection, 
neutrophils are the first responders of  the innate immune 
system to migrate towards the site of  inflammation. They 
can ingest and kill invading microorganisms intracellularly 
by phagocytosis and the subsequent fusion of  the phago-
some with lysosomes containing antimicrobial peptides, 
enzymes and reactive oxygen intermediates (ROI). Neu-
trophils can also kill microbes extracellularly by the release 
of  antimicrobial peptides and enzymes, stored in their 
granules[1]. Besides its antimicrobial function, the neutro-
phil is able to express genes encoding inflammatory medi-
ators such as growth factors, chemokines and cytokines[2]. 
The presence of  fully functional neutrophils in tissues is 
critical for the defense against microbial infections. This 
importance is seen in patients with leukocyte adhesion de-
ficiency, which has neutrophil adhesion defects, resulting 
in poor crossing of  the neutrophil across the endothelium 
covering the blood vessel into the diseased tissue area. 
These patients suffer from several bacterial infections, 
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which are life-threatening, due to the inability to destroy 
the pathogens by neutrophil phagocytosis[3]. The impor-
tance of  reactive oxygen species (ROS) formation is seen 
in patients with chronic granulomatous disease, who have 
defective oxidase function and are susceptible to recurrent 
bacterial and fungal infections[4]. 

During activation not only extracellular pathogens are 
affected, the surrounding cells and tissues of  the host are 
also damaged[5]. To reduce the damage on host cells, neutro-
phils are quickly and efficiently removed from an inflamma-
tory site by macrophage phagocytosis after functioning[6,7]. 
However, in neonates[8] and in some clinical settings such as 
sepsis[9,10], COPD and acute coronary syndromes[11-13], neu-
trophils are deactivated or apoptosis is reduced.

Every day, 1011 neutrophils are produced in the bone 
marrow making them the most abundant white blood 
cells[14]. Neutrophils are thought to live only a couple of  
hours outside of  the bone marrow after which they are 
phagocytosed and cleared, in the same rate as the pro-
duction rate[15]. In order to produce this amount of  cells, 
and producing them at such a high rate, the bone marrow 
harbors a large constantly active granulopoiesis com-
partment. When during infection more neutrophils are 
needed, the bone marrow has reserve capacity to scale up 
the production.

Recently, neutrophils were found to have a blood lifes-
pan of  5.4 d[16], which is more than twenty times longer 
than found before[17]. Although there are some concerns 
expressed about these recent findings[18], this new lifespan 
also changes the paradigm of  the neutrophil as a short liv-
ing cell, produced in huge quantities only to kill microbes. 
Interestingly, with this significantly longer life span, new 
functions of  a neutrophil can be foreseen. Indeed the 
first papers appear that describe a role for neutrophils in 
the shaping T-cell independent antibody responses[19,20], 
but also functions such as antigen presentation and in-
teractions with T cells are reported[21-23]. Such functions 
demand a longer life span than the reported 5 h and could 
explain some recently identified roles of  neutrophils in 
inflammatory diseases[24-28].

Here, we review the current knowledge about neutro-
phil production, function and clearance. We address the 
question if  the neutrophil is just a microbe killer with a 
unidirectional short life span or whether the neutrophil 
can reverse its unidirectional fate and by doing so prolong 
its life span.

First a general description of  the exciting life of  a 
neutrophil from birth to death is given. Different parts of  
the neutrophil life cycle are discussed as well as the kinet-
ics. Several functions of  neutrophils and the consequenc-
es of  these functions to their life span will be discussed. 
Subsequently, the clearance of  neutrophils is discussed 
in light of  recent calculations of  neutrophil populations 
and methods used, focusing on how the calculations are 
performed and which assumptions are made.

GRANULOPOIESIS
Neutrophils are produced in the bone marrow, where the 

blood-forming process called hematopoiesis takes place[29]. 
A hematopoietic stem cell (HSC) can proliferate and dif-
ferentiate into a wide range of  white and red blood cells 
(Figure 1A). Approximately two-thirds of  the hematopoi-
esis is devoted to myelopoiesis: the formation of  mono-
cytes, megakaryocytes, red blood cells, dendritic cells and 
granulocytes[1]. Each day, approximately 1011 neutrophils, 
the largest group of  the granulocytes, are produced from 
HSCs under normal conditions (Figure 1B) but the rate 
of  neutrophil production is highly dynamic. Factors influ-
encing the rate of  production are the rate of  neutrophil 
apoptosis and immunological stress conditions. In immu-
nologically stressed conditions, granulopoiesis and thereby 
the formation of  neutrophils, is induced due to the pro-
duction of  several cytokines. For example, T-helper 17 
cells have been shown to secrete interleukin (IL)-17 and 
other cytokines during inflammation that promote granu-
lopoiesis, neutrophil proliferation and accumulation[30]. On 
the other hand, during inflammation, neutrophils produce 
Pre-B cell colony-enhancing factor, thereby inhibiting 
neutrophil apoptosis and subsequently granulopoiesis[31]. 

The granulopoietic compartment in the bone marrow 
can be divided into three pools: the stem cell pool (HSCs), 
the mitotic pool and the post-mitotic pool. The mitotic 
pool is the group of  progenitor cells that are massively 
proliferating and differentiating. The bone marrow also 
comprises a reserve pool of  mature neutrophils, approxi-
mately 20 times the number of  neutrophils in circulation[14]. 
The fully differentiated mature neutrophils define the post-
mitotic pool, a pool ready for on demand release. Several 
stages of  maturation of  neutrophils can be discerned 
(Figure 1B). As differentiation and maturation progress, 
cells lose their ability to proliferate[1]. In the terminally dif-
ferentiated mature neutrophil state, cells can only progress 
unto death[32]. 

For maintaining homeostatic levels of  peripheral neu-
trophils and other blood cells, proliferation and differenti-
ation of  progenitor cells is tightly regulated and controlled 
by several intrinsic and extrinsic factors. For example, in 
bone marrow niches, HSCs retain in the niches through 
interaction of  β-integrins on their membrane with os-
teoblasts and with the extracellular matrix (Figure 1B). 
An interaction essential for homing of  HSCs and mature 
neutrophils is the interaction of  chemokine receptor 
(CXCR4) with the bone marrow stromal cell derived fac-
tor 1 (SDF-1)[33]. The interaction of  Notch on HSCs with 
Jagged1 on osteoblasts is known to inhibit differentiation 
of  HSCs in the bone marrow[34]. Soluble factors known to 
maintain HSCs in the bone marrow are for example IL-1, 
-6, and -10 and thrombopoietin[34]. 

One of  the main regulating factors essential for tun-
ing the production of  neutrophils, is granulocyte colony 
stimulating factor (G-CSF)[35]. G-CSF affects hematopoi-
etic cells, through commitment of  progenitor cells to the 
granulocyte lineage, massive proliferation of  granulocytic 
precursors (e.g., promyelocytes and myelocytes) and re-
lease of  mature cells from the bone marrow[36]. It induces 
effects via the G-CSF receptor, thereby activating an intra-
cellular signaling cascade via signal transducer and activa-
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tor of  transcription 3 (STAT3). Where loss of  the G-CSF 
receptor decreases the number of  circulating neutrophils, 
injection of  G-CSF increases neutrophil numbers in cir-
culation[37,38]. Furthermore, its production is up regulated 
with neutrophil apoptosis in the bone marrow and down-
regulated when the number of  neutrophils increases. In 
addition, during inflammation, different cytokines induce 
the production of  G-CSF[39] or act in synergy, like IL-
1β[40,41]. Other factors regulating neutrophil maintenance 
are IL-3, granulocyte-macrophage CSF (GM-CSF) and 
lymphoid enhancer-binding factor-1, targeting genes like 
survivin, cyclin D1, CEBP-α and c-myc[42]. 

NEUTROPHIL RELEASE FROM THE BONE 
MARROW
After maturation in the bone marrow, neutrophils are 
stored, awaiting release into the circulation. To exit the 
bone marrow, the neutrophils have to migrate across 
the bone marrow endothelium that separates the mar-
row from the circulation. Stimulation to leave the bone 
marrow occurs during inflammation or infection by the 
presence of  chemoattractant factors as leukotriene LTB4, 
complement factor C5a, CXCL8 and intrinsic regulation 
factors like G-CSF, but recent findings describe that also 
circadian rhythms can contribute to neutrophil recruit-
men from the bone marrow[43]. Under homeostatic condi-
tions, G-CSF is the main regulator release of  neutrophils. 

During maturation, G-CSF receptors maintain highly 
expressed on the surface of  neutrophils[44], as well as on 
bone marrow stromal cells. G-CSF inhibits stromal cell 
production of  SDF-1, thereby inhibiting the interaction 
with its receptor CXCR4 on neutrophils[45]. G-CSF also 
functions in another bone marrow interaction with neu-
trophils. Bone marrow endothelial cells express vascular 
cell adhesion molecule 1 (VCAM-1), which interact with 
the integrin very late antigen-4 on neutrophils. G-CSF 
administration results in a loss of  VCAM-1 on endothe-
lial cells. G-CSF stimulates granule release of  neutrophils, 
which contain proteases able to cleave VCAM-1[46]. A 
third effect of  G-CSF is exerted on the cytokine receptor 
CXCR2, which is essential for neutrophil release. G-CSF 
stimulates the expression of  CXCR2 ligands on bone 
marrow endothelial cells, facilitating neutrophil release[47]. 
In summary, G-CSF stimulates bone marrow endothelial 
cells in several ways to down regulate their neutrophil 
homing receptors and increase the expression of  ligands 
inducing neutrophil release. After release, neutrophils can 
follow the gradient of  chemoattractants into the tissues.

LEAVING THE CIRCULATION: 
HOMEOSTATIC VS INFLAMMATORY 
CONDITIONS
Upon infection and inflammation, several pro-inflam-
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etic stem cell to mature neutrophils. Modified from[1]. HSC: Hematopoietic stem cell; NK: Natural killer; DCs: Dendritic cells; PMN: Polymorphonuclear leukocyte.
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matory signals, like fMLP, LTB4, CXCL8, C5a, CXCL1 
and CXCL5, activate the vascular endothelium causing it 
to present adhesion molecules and chemotactic factors 
on the surface[48-50]. P-selectins and E-selectins induced 
on endothelial cells will interact with PSGL-1, L-selectin 
and CD44 on neutrophils, mediating rolling and activa-
tion of  the neutrophil integrins at the site of  maximal 
chemokine concentration. These integrins then interact 
with ICAM-1 molecules on the endothelial cells, caus-
ing neutrophil arrest. Adhesion strengthening occurs 
with subsequent spreading of  the neutrophil, resulting 
in intravascular crawling. The chemotactic process and 
the chemoattractant gradient both lead to a cytoskeletal 
rearrangement, necessary for the spreading and transmi-
gration[51]. The leukocyte adhesion cascade is described in 
detail elsewhere and this information can be found in[49]. 

Once in the tissues, neutrophils are more prone to 
phagocytosis than blood neutrophils. As transmigration 
is partly mediated by fusion of  secretory vesicles with 
the neutrophil membrane, several surface membrane 
receptors are added to the membrane as well as other 
functional proteins like chemoattractant and phagocy-
tosis receptors. Upon stimulation by microbial moieties, 
G-CSF or GM-CSF, tumor necrosis factor-α (TNF-α) or 
Type Ⅰ and Ⅱ interferons in the inflamed tissue, neutro-
phils are functionally activated and start to transcribe and 
produce other chemokines, for example CXCL8[2,52]. 

Priming
Activation of  neutrophils is a two-step process, starting 
with priming by an initial exposure to mediators such as 
cytokines, which don’t activate the neutrophils directly, 
but leave them in a “primed” state. These cytokines can 
be early-phase cytokines like TNF-α, IL-1α and pathogen 
associated molecular patterns like endotoxin, as well as 
the earlier mentioned late-phase chemoattractants as IL-8, 
LTB4 and GM-CSF. Priming can be described as a resting 
state of  a neutrophil but with a functional response (e.g., 
chemotaxis, ROS production) to be amplified upon an-
other stimulus. Without priming, no maximal degranula-
tion and activation of  the NADPH oxidase can occur[53]. 
Priming affects the neutrophil cytoskeletal organization to 
reduce deformability in order to retain in capillary beds[54]. 
In vitro, priming (and subsequent shape change) has 
been shown to be reversible[55], but there is limited data 
on the effects of  priming on neutrophil kinetics in vivo.  
It is suggested that as 15% of  the cardiac output can pass 
through an inflamed site each minute, all neutrophils are 
exposed to the priming stimulus within min. However, 
in vivo studies show a maximum 60% of  primed circulat-
ing neutrophils, suggestive for de-priming in vivo[56]. De-
priming should protect the systemic circulation from the 
potentially damaging effects of  primed cells, for example 
because of  the produced H2O2, a marker of  primed or 
activated neutrophils. Mixed venous blood (blood before 
the pulmonary circulation) has higher H2O2 compared 
with arterial blood (blood after the pulmonary circula-
tion), suggesting the lung to be the de-priming compart-

ment[57]. De-priming may have effects on the life span 
of  the neutrophil, as priming can lead to neutrophil-
mediated tissue damage and therefore these neutrophils 
are phagocytosed by macrophages early in the inflamma-
tory response[58]. Depriming may thus give an alternative 
way of  clearance of  harmful neutrophils in inflammatory 
responses[55].

Functioning of activated neutrophils
Once activated in the tissues, transcriptional activity of  
neutrophils is up regulated, in part mediated by local 
G-CSF production, resulting in the production of  cy-
tokines[2]. Also, the neutrophil will start phagocytosing 
microorganisms, degranulate, activate the oxidative me-
tabolism intracellularly and will finally undergo apoptosis. 

Degranulation is one of  the first steps of  neutrophil 
activation and is initiated during transmigration. The com-
ponents of  the different granules are well known and are 
described elsewhere[59,60]. Not only anti-microbial proteins 
are stored in these compartments, but also proteases, 
components of  the respiratory burst oxidase (described 
below) and a wide range of  receptors, extracellular ma-
trix proteins and soluble mediators of  inflammation[61]. 
Soluble inflammatory factors are for example chemotactic 
proteins[62,63], inducers of  vascular permeability changes[64] 
and antigen presenting cell-activators[65]. Degranulation 
transforms the neutrophil from passively circulating to be-
ing an effector cell of  the innate immune system[60].

Upon activation of  the neutrophil, also the oxida-
tive metabolism of  the cell is activated. Neutrophils are 
very effective at the generation of  ROS, a process called 
the oxygen metabolism or the respiratory burst. ROS or 
ROI are generated by the NADPH oxidase complex on 
the membrane of  the cell. Some components are stored 
in storage sites, like secondary granules, which associate 
with the oxidase complex after fusion of  these storage 
sites with the membrane or with phagosomes[59]. These 
ROS serve as highly effective antimicrobial agents but are 
also highly damaging the host as the produced compo-
nents are highly reactive. ROS producing neutrophils are 
rapidly cleared by macrophages.

An extend in the antimicrobial activity of  the neu-
trophil is the formation of  neutrophil extracellular traps 
(NETs)[66]. The formation of  NETs is a result of  nuclear 
swelling and dissolved chromatin. Along with the nuclear 
swelling, granules are also disintegrated and as a result, 
large strands of  unpacked DNA are extruded from the 
cell, carrying along proteins from granules and from 
the cytosol. At this time, already 24 different neutrophil 
proteins are associated with NETs, which are primarily 
proteins from primary granules (such as MPO and elas-
tase), secondary granules (e.g., lactoferrin and pentraxin 3) 
and tertiary granules (e.g., MMP9)[66,67]. NETs have been 
shown to trap microorganisms and promote interaction 
with the granule proteins, resulting in microbial recogni-
tion, antimicrobial activity and tissue remodeling. NET 
formation is a cell-death dependent process, also influ-
encing the life span of  neutrophils[66,68]. 
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Deactivation of neutrophils
In addition to being harmful for microbes, the proteins 
that neutrophils secrete also damage the host tissue. 
Therefore it is important to control the influx of  neu-
trophils to prevent excessive tissue damage. Neutrophil 
influx is controlled by several negative feedback loops at 
different stages of  the inflammatory response. For exam-
ple during the chemotactic process, it has been described 
that after a first encounter with CXCL8, neutrophils are 
desensitized to additional chemotactic signals[69,70]. Intra-
cellularly, there are proteins recruiting phosphotyrosine 
phosphatases, which deactivate receptors on the surface. 
For example suppressor of  cytokine signaling 3 down 
regulates G-CSF receptor signaling by blocking the phos-
photyrosine on the activated receptor thereby preventing 
the interaction with STAT3. Extracellularly, neutrophils 
and macrophages partner in the termination of  inflam-
mation[71]. Neutrophils for example will express “eat-me 
signals” due to phospholipid asymmetry, triggering mac-
rophages to phagocytose neutrophils[72].

The receptor Chem R23 on macrophages, DCs and 
endothelial cells mediates activation of  macrophages that 
enhances the phagocytic capacity of  macrophages for 
uptake of  apoptotic neutrophils. Neutrophil apoptosis 
itself  is a specific process with different signals trigger-
ing apoptosis via different pathways. This process is de-
scribed in detail elsewhere[73,74]. Importantly, phagocytosis 
by macrophages reduces the risk of  necrotic neutrophil 
death and down regulates the local G-CSF production to 
limit neutrophil activation[1]. 

Other deactivating processes are granule-proteins like 
LL-37 and cathepsin G that stimulate rolling monocytes 
to migrate into the inflamed tissue. Neutrophil-derived 
proteins then stimulate the extravasated monocytes to 
maturate into macrophages and subsequently phago-
cytose apoptotic neutrophils. The macrophages in turn 
release anti-inflammatory mediators such as IL-10, fur-

ther limiting the damage neutrophils do to host tissues[71]. 
Importance of  these deactivating signals is seen in clinical 
settings such as cystic fibrosis, in which neutrophils are 
insensitive to signals as IL-10 and corticoids[75,76].

Additional known functioning of activated neutrophils
For a long time, neutrophils were thought to only be 
recruited to the inflamed tissue, act as phagocytic cells, 
release lytic enzymes and produce ROS, after which they 
were cleared. However, additional functions of  neutro-
phils in inflammatory sites have recently been described. 
First of  all, neutrophils were shown to express genes en-
coding inflammatory mediators[2]. Secondly, neutrophils 
were found to produce anti-inflammatory molecules and 
factors promoting the resolution of  inflammation, as de-
scribed above and elsewhere[56,77] and thirdly, neutrophils 
were shown to engage in interactions with different cells 
of  the immune system[20]. These new insights are very im-
portant for our understanding of  inflammatory diseases, 
their resolution and possibility of  neutrophils as targets 
to modulate immunity.

In vitro interactions with neutrophils have been shown 
for monocytes[78], macrophages, DCs, natural killer (NK) 
cells, lymphocytes and mesenchymal stem cells in the tis-
sues and were reviewed by[79] (Figure 2). Also, crosstalk 
with platelets[80] and regulatory T cells are described[81]. 
First, neutrophils can induce the maturation of  DCs in vitro  
through contact-dependent interactions involving CD18 
and CEACAM1 on neutrophils and DC-SIGN on DCs. 
Subsequently, mature DCs induce T cell proliferation 
and polarization towards a Th1 response. However, neu-
trophils can also deactivate DCs via the production of  
elastase or ectosomes, containing transforming growth 
factor (TGF)-β1[79,82]. Deactivated DCs showed a reduced 
phagocytic activity, thereby preventing the phagocytosis 
of  neutrophils. 

Second, an interaction was unraveled between neutro-
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phils and NK cells. Neutrophils are required both in the 
bone marrow as well as in the peripherial development 
of  NK cells[83]. They can modulate the survival, prolifera-
tion, cytotoxic activity and interferon γ (IFNγ) produc-
tion of  NK cells via the generation of  ROS and/or the 
release of  granules. NK cells can in turn promote neutro-
phil survival, expression of  activation markers, priming 
of  ROS production and cytokine synthesis[84]. 

Direct cell-cell contact between neutrophils, NK cells 
and DCs has been shown in vitro as well, resulting in the 
increased release of  IL-12 by DCs and an up regulated 
IFNγ expression by NK cells. IFNγ in turn stimulates 
neutrophil survival, expression of  activation markers and 
cytokine synthesis[85]. These effects have only been de-
scribed for neutrophils in vitro, so further in vivo investiga-
tion is needed, but it gives new insights in the expanding 
functions of  inflammatory site neutrophils. The impor-
tance of  these additional functions is still elusive. 

A third interaction is reported for neutrophils and 
lymphocytes. Neutrophils and lymphocytes can modulate 
each other’s recruitment to the site of  infection via the re-
lease of  several released chemokines. Activated CD4+ and 
CD8+ T cells produce cytokines modulating neutrophil 
survival and expression of  activation markers in vitro[86]. In 
a similar fashion, γδ T cells strongly promote neutrophil 
survival and activation by up regulation of  CD64 and 
HLA-DR expression[79]. Neutrophils also play an impor-
tant role in B-cell help where they can even induce class 
switching of  B-cells, a property solely assigned to T-cells[20]. 

The next interaction described is the crosstalk with 
platelets. In transfusion-related acute lung injury, the lead-
ing cause of  death after transfusion therapy, activated 
platelets were described to induce the formation of  NETs[80]. 
In another study, platelet were suggested to bind to neu-
trophils in the lungs, with subsequent activation of  neu-
trophils by platelet toll-like receptor (TLR)4[87]. 

In the interaction with monocytes, apoptotic neutro-
phils trigger the monocyte elicit an anti-inflammatory cy-
tokine response through IL-10 and TGF-β, and to down-
regulate the production of  pro-inflammatory cytokines 
TNF-α and IL-1β. In order to induce this response, cell-
cell contact between the apoptotic neutrophil and mono-
cytes was required[78]. 

THE MARGINATED POOL
After leaving the bone marrow, the neutrophil becomes 
part of  one of  the two compartments found in blood: 
the circulating pool and the marginated pool. The circu-
lating pool consists of  neutrophils flowing freely through 
vascular spaces and the marginated pool consists of  
neutrophils adhered to the endothelium of  capillaries 
and post capillary venules, often in the lung, liver and 
spleen[15]. Already in 1867, Cohnheim observed cells in 
a marginal position along venule walls. Almost 50% of  
labeled granulocytes injected into healthy volunteers dis-
appear rapidly from the circulation[17]. This gave rise to 
the hypothesis that a marginated pool should exist. Next, 

it was found that leukocytes circulate freely in the blood, 
then adhere to the vascular endothelium, especially in 
sites where the blood flow is slow and then re-enter 
the circulation in a continuously exchanging process[88]. 
The relative size of  the marginated and circulating pool 
however, can be affected during exercise or induced by 
adrenaline or drugs (Figure 3). It has been suggested 
that during infection the marginated pool is minimized, 
while the freely circulating pool becomes larger[89]. The 
marginated pool consists of  neutrophils adhered to the 
endothelium of  capillaries and postcapillary venules, of-
ten in the lung, liver and spleen. The bone marrow has 
also been suggested as a margination site[90]. Margination 
means a prolonged transit through these specific organs, 
resulting in an intravascular neutrophil pool. The lung has 
been a controversial margination site. Some data suggest 
that the lung is the predominant site of  margination[91], 
but this has been called into question by others[92]. Inter-
estingly, different neutrophil types localized in different 
organs[93]. Suratt et al[93] showed that mature peripheral 
blood neutrophils localize to the liver, bone marrow and 
to a lesser extent to the spleen. Younger marrow-derived 
neutrophils prefer to home back to the bone marrow, a 
process that will be described below, and inflammatory 
peritoneal neutrophils prefer the liver and the lungs. The 
biodistribution of  inflammatory neutrophils might be 
non-comparable with homeostatic conditions as these 
neutrophils are different in surface expression of  recep-
tors and in functioning.

HOMING
Apoptotic neutrophils are not detected in normal circula-
tion, so the need for an efficient removal system is evi-
dent, as 1011 neutrophils are believed to be produced and 
removed every day. 

Surface receptor expression is highly dynamic upon 
infection, but receptor expression also changes upon ag-
ing. As neutrophils become senescent, expression of  a 
receptor for chemotaxis, CXCR2, decreases, while the ex-
pression of  a chemokine receptor, CXCR4, increases[77,94]. 
Interestingly, the responsiveness to SDF-1α, the ligand 
of  CXCR4, increases in coincidence, resulting in homing 
of  senescent neutrophils to the bone marrow. CXCR4 
thus is not only a signal to retain neutrophils in the bone 
marrow, but is also acting on homing senescent cells to 
the marrow for destruction.

CXCR4 expression is up regulated just before apopto-
sis and after homing to the bone marrow, the neutrophils 
will undergo apoptosis and are subsequently phagocy-
tosed by stromal macrophages, which are present in the 
hematopoietic cords[73,95]. Furze et al[96] showed that in 
mice, about one third of  111In-labeled neutrophils were 
cleared via bone marrow stromal macrophages. Before, 
stromal macrophages were only known for the removal 
of  cellular debris and non-productive B cells[97]. Inter-
estingly, if  the labeled neutrophils were pretreated with 
pertussis toxin that inhibits the chemokine receptors, 
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neutrophil clearance via the bone marrow was inhibited 
for 75%, which is consistent with a role for chemokines, 
as clearance by the liver was unaffected by pertussis toxin 
treatment[96].

Homing neutrophils must actively migrate through 
the bone marrow endothelium, a process that is not pos-
sible for apoptotic neutrophils. Neutrophils also home 
back to the bone marrow while the liver and spleen also 
remove circulating neutrophils. Furze et al[96] showed that 
phagocytosis of  neutrophils in the bone marrow stimu-
lates G-CSF production which in turn induces neutro-
phil production in the bone marrow. Interestingly, when 
apoptotic neutrophils are phagocytosed by reticular en-
dothelial macrophages in the spleen and liver or by mac-
rophages on a site of  infection, the production of  G-CSF 
is suppressed to limit the inflammation[98]. This way, via 
the up regulation of  G-CSF production directly in the 
bone marrow, the production of  new neutrophils can be 
tightly regulated. So if  neutrophils are already apoptotic 
in circulation, the spleen and liver will clear them. On the 
other hand, senescent neutrophils can migrate back into 
the bone marrow and will be cleared there, as a positive 
feedback loop for neutrophil production. 

To determine whether homing neutrophils can return 
to circulation, isolated neutrophils from the bone mar-
row and peripheral blood of  mice were labeled and in-
jected back into the mice[92]. About 20 percent of  labeled 
mature bone marrow neutrophils remobilized during 
an inflammatory response. However, homed bone mar-

row peripheral neutrophils could not be remobilized in 
response to inflammation. Therefore, the bone marrow 
could be seen as a site for clearance. In addition, this 
study also showed that infused marrow neutrophils may 
be remobilized. Other experiments indicated that 10% of  
labeled injected HSCs could leave the bone marrow, enter 
the blood, re-enter the bone marrow and still mature into 
granulocytes[99]. It would be very interesting to further 
investigate the recirculating potential of  mature neutro-
phils, as this can greatly influence our understanding of  
neutrophil kinetics.

KINETICS 
The kinetics of  neutrophil production, the amount of  
cells that are produced each day, is measured as a rate of  
turnover of  neutrophils in the blood. Blood neutrophil 
turnover has been determined by labeling neutrophils with 
[32P] DFP (di-isopropyl fluorophosphate) and has been 
described to be about 1.5 × 109 cells/kg per day[100,101]. 

Marrow neutrophil production has been determined 
from the number of  neutrophils in the post mitotic pool, 
divided by their transit time (the appearance in circulating 
neutrophils of  injected 3H-thymidine) (Figure 4). The post 
mitotic pool consists of  about 5.5 × 109 neutrophils/kg 
body weight and the transit time was about 6.6 d. The 
marrow neutrophil production has therefore been calcu-
lated to be 0.85 × 109 cells/kg per day. This amount cor-
responds to the calculated neutrophil turnover in blood. 
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However, when cells were labeled with di-isopropylflu-
orophosphate-32P, a larger turnover of  neutrophils was 
found. Care should thus be taken with calculations and 
amounts, as they depend on the method to label cells[14]. 

The different maturation stages all have different kinet-
ics, which are studied in vivo and in vitro using radioiso-
topic labeling. These studies indicate that between the 
myeloblast and the myelocyte stages, approximately five 
cell divisions occur[102,103]. Myelocytes probably undergo 
about three cell divisions, indicating the major expan-
sion of  the neutrophil pool to be at the myelocyte stage. 
The mitotic pool of  neutrophils contains about 2 × 109 
cells/kg[14], whereas the post mitotic pool contains about 
four times as much. These radionuclide studies suggest 
that the transit time from myeloblast to myelocyte takes 
about 135 h, divided over the different myelocyte stages 
(Figure 2). The transition from myelocyte to blood neu-
trophil takes about 131-158 h, indicating a total time of  
approximately 12 d from precursor to mature neutro-
phil[102]. During infection, transition time from myelocyte 
to blood neutrophil can be shortened to 48 h.

Following production, mature post mitotic neutro-
phils (approximately 1011 cells) will remain in the bone 
marrow for 4-6 d[14,104]. In response to infection, the stor-
age pool in the bone marrow will be used as source of  
neutrophils for blood neutrophilia[105]. In conclusion, be-
fore a neutrophil leaves the bone marrow, it takes 17 d to 
be produced and maturated[106]. 

The kinetics of  neutrophils leaving the vascular com-
partment and their take-over by new neutrophils can eas-
ily be measured by labeling neutrophils and measure the 
transit time through the vascular compartment. When 
healthy individuals are injected with neutrophils, they leave 
the vascular compartment with a 7 h half  life time[17,107]. 
Using radiolabelled neutrophils and other analytical tech-
niques, the neutrophil intravascular transit time has been 
measured for the liver, spleen and bone marrow, being 
respectively 2 and 10 min. The intravascular transit time 
can be seen as the mean time taken for neutrophils to pass 
through the capillary bed of  a specific organ. The influ-
ence of  the marginated pool, homing back to the bone 
marrow and the kinetics in the spleen and liver on this 
transit time is unknown.

As the regulation of  neutrophil production and clear-

ance is an important homeostatic mechanism and also 
involved in the development of  systemic inflammatory 
states, it is of  great importance that the kinetics of  cir-
culation and clearance are clear. Now we know that not 
only the liver and spleen, but also the bone marrow clears 
neutrophils, and that the different organs clear different 
types of  neutrophils[92]. But the function of  neutrophils 
leaving the vascular compartment is largely unknown.

As described before, inflammatory neutrophils were 
found to have many more functions then only clearance 
of  microbes. Possibly, neutrophils in marginated sites 
outside the vascular compartment, also have additional 
functions. There is growing evidence that to a certain ex-
tend neutrophils influence the adaptive immune response, 
either through pathogen shuttling to the lymph nodes[108], 
through antigen presentation[109], and through modulation 
of  T helper responses[110]. However, these described func-
tions have still not been shown in vivo and also, are they 
neutrophil specific or do they occur as side effects of  the 
functioning as a microbe-killer? 

Methodology used for obtaining kinetic data: the effects 
of radioactive labeling
Without signs of  infection, neutrophils do not get acti-
vated and have no need to go into the tissues. They also 
do not exocytose their granules, meaning that they are 
not as harmful for the host as activated neutrophils. The 
fate of  these unactivated neutrophils is hard to inves-
tigate. Labeling neutrophils has revealed some of  their 
fate, but labeling can also cause changes in the neutrophil 
(e.g., prime or activate), which makes it a non-optimal 
technique for measuring unprimed circulating neutro-
phils. However, the studies which labeled neutrophils and 
followed their route through the human body are still 
very useful in this context.

In studies measuring neutrophil kinetics, different 
types of  radioactive labeling have been used. 32P-diiso-
propylfluorophospate (DFP32) is a potent and irreversible 
esterase inhibitor, which binds to granulocytes without 
modifying the viability of  the cells and without being re-
used after degradation of  neutrophils. Furthermore, the 
label is only slightly or not at all attached to lymphocytes 
or monocytes[111]. Other radioactive labels are In-111 ox-
ine, Tc-99m sulfur colloid, Ga-67 labeling and Na2
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or SnCl2-reduced 99mTcO4
-. The effects of  these radioac-

tive labels on neutrophils have been studied by several 
authors, for example the effects on chemotactic respon-
siveness[112]. Some labels are no longer in use, for example 
Na2

51CrO4 and SnCl2-reduced 99mTcO4
-, which showed 

less optimal results in the chemotactic responsiveness 
studies. Other labels are still used, for example 32DFP or 
3H-thymidine. 

The ideal radioactive agent should have the following 
properties: only label cells in vivo, only label neutrophils, 
do not elute from cells after labeling or being reused after 
degradation of  the neutrophil, cause no radiation damage 
to the cells, emit γ radiation suitable for external detection 
and have a long enough half-life for studies without radio-
active decay but short enough to limit patient-suffering[113]. 
For a long time, only in vitro labeling was possible, where 
neutrophils were isolated from a blood sample, which 
could easily stimulate the neutrophils. Upon stimula-
tion, neutrophils release their granules and are altered in 
surface receptor expression, and although the labeling 
experiments have been improved hardly any research was 
done to assess the activation of  neutrophils or the change 
in surface receptor expression due to labeling[114]. Some 
authors claim that there is no difference in neutrophil ac-
tivation, without showing the data. But as neutrophils are 
quick responders to differences in their homeostatic envi-
ronment, in vitro, in vivo or in situ labeling can have tremen-
dous effects on the cell, affecting the outcome of  a study 
as well. In mice, neutrophils were shown to have a half-life 
of  8 to 10 h when labeled in vivo[115]. But when neutrophils 
were labeled ex vivo, 90% were cleared after 4 h, resulting 
in a half-life of  only 1.5 h[92]. This shows that the methods 
for labeling can have an devastating effect on the outcome 
of  the study. But unfortunately, extrapolation of  mice 
experiments is often very difficult. In mice, neutrophils 
are not the main circulating white blood cell-type, they do 
not express the same receptors as human neutrophils (for 
example there is a lack CXCR1) and also chemoattractant 
CXCL-8 does not exist in mice. Therefore, care should be 
taken when mice are used for calculating neutrophil life 
spans. 

Most experiments done with in vitro labeling have not 
been repeated with in vivo labeling, meaning that some 
knowledge needs to be adjusted. Recently, Pillay et al[16] 
used 2H2O, a new labeling method for labeling neutro-
phil pools in vivo, to calculate the rate of  division of  the 
mitotic pool in the bone marrow, the transit time of  new 
neutrophils through the post mitotic pool and the delay 
in mobilization of  neutrophils from the post mitotic pool 
to the blood. They recalculated the life-span of  neutro-
phils and found an average circulatory neutrophil lifespan 
of  5.4 d, which is 10 times longer than previously report-
ed[14]. However, there are also doubts concerning this re-
port, as the previously used radioactive labels (e.g., 32DFP, 
H3-Th, Cr-51, In-111 and Tc-99m) all showed a lifespan 
of  approximately 10 h. The new model is thought to lack 
the right temporal resolution to make these conclusions, 
as the mean value of  the total life span of  a neutrophil 

is in line with the previously described total life span[102]. 
Also, the authors did not show that the deuterium was 
not reutilized in newly dividing neutrophil precursor, 
thereby possibly influencing the results[18]. Furthermore, 
if  a concentration of  3 × 106 neutrophils/mL blood is 
maintained, the disappearance from the blood should be 
5 h, considering the production rate of  1 × 109 cells/kg 
body weight[88]. Either one of  these two numbers should 
be reconsidered. 

Interestingly, different maturation states of  neutro-
phils are labeled by different radioactive labels. Warner 
and Athens compared the three most common radioac-
tive labels in vitro until 1964, 3H-thymidine, 32P-labeled 
sodium phosphate and 32DFP, in their kinetics regarding 
the blood granulocyte radioactivity curves measured after 
administration[103]. 3H-thymidine, a compound built in the 
DNA of  newly formed neutrophils, showed a labeling of  
myelocytes and more immature forms, but neither PMN 
neutrophils in the blood nor PMNs and metamyelocytes 
in the bone marrow were labeled. 32P-labeled phosphate 
was found in the same subsets of  neutrophils, as it is also 
incorporated in DNA[103]. 32DFP labels granulocytes intra-
cellularly and therefore, PMNs are directly labeled in the 
blood. The component(s) in the granulocytes to which 
DFP binds is unknown as DFP binds many different 
esterases and proteolytic enzymes[111]. When the blood 
kinetics of  all three populations is compared, they are all 
three totally different: 32DFP levels start high, where after 
the labeled neutrophils disappear in marginated pools and 
the level of  32DFP declines. 3H-thymidine labeled neu-
trophils appear later in the blood, after proliferation and 
differentiation and then the level declines (Figure 5). 

In our opinion in vivo labeling is the better method. 
Isolating blood cells, processing and inject them again in 
the recipient can have dramatic effects on their life span. 
When leukemia patients are transfused with donated red 
blood cells after bone marrow transplantation, the half  
life on the donated red blood cells is dramatically reduced, 
leading to massive clearance of  red blood cells. The re-
leased iron due to this enhanced turnover is a well known 
complication of  red cell transfusion[116]. This indicates that 
even careful isolation of  blood cells without any labeling 
has an impressive effect on their life span.

A proper understanding of  the lifespan and distribu-
tion of  the neutrophil is very important, as the neutrophil 
can vary in phenotype and function with a longer lifes-
pan, and the lifespan determines the need for influencing 
the neutrophil function in inflammatory diseases. Further 
investigation of  these different labeling techniques, their 
influence on neutrophil life span and the actual life span 
of  a neutrophil are needed.

BEHAVIOR OF TISSUE NEUTROPHILS IN 
COMPARISON TO BLOOD NEUTROPHILS
Besides the effects of  labeling neutrophils, the behavior 
of  blood neutrophils compared to tissue neutrophils 
should also be taken into account. During in vitro culture, 
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neutrophils are able to spontaneously enter apoptosis, a 
process which initiation can be accelerated or delayed by 
several factors. Danger signals such as TLR ligands are 
potently anti-apoptotic[117] while pro-inflammatory cyto-
kine GM-CSF[118] and signaling from death receptor Fas 
can induce cell death[119]. Furthermore, culturing neutro-
phils in hypoxia reduces apoptosis, which improves the 
lifespan in vitro[120]. Interestingly, neutrophil apoptosis and 
the regulation of  death processes are almost all studied in 
blood neutrophils, while the bulk of  neutrophil apoptosis 
takes place in the tissues, as well as the clearance. This 
results in a lack in information about tissue neutrophil 
apoptosis. Tissue neutrophils can be obtained in vitro by 
experiments with so-called aseptic skin chamber tech-
niques[121]. These transmigrated neutrophils have different 
gene transcription and behave differently than peripheral 
blood neutrophils[122], as transmigration induces mobili-
zation of  certain intracellular granules[123]. Interestingly, 
these transmigrated neutrophils also differ in responsive-
ness to stimulating agents. A wide variety of  anti-apop-
totic factors (the earlier mentioned TLR ligands and GM-
CSF) were unable to delay apoptosis in transmigrated 
neutrophils[124]. This way, Christenson et al[124] showed 
functional differences in transmigrated tissue neutrophils 
compared to blood neutrophils. As tissue neutrophils dif-
fer from blood neutrophils in surface receptor expression 
and respond differently to certain stimulation, maybe ear-
lier made conclusions regarding apoptosis pathways and 
life spans based on studies on blood neutrophils are only 
particularly true for tissue neutrophils, and this has to be 
further investigated.

TRANSMIGRATION OF TISSUE 
NEUTROPHILS
Neutrophils are thought to have little functional plastic-
ity after differentiation, in comparison to monocytes and 
macrophages[125]. After recruitment into the tissue, they 
fulfill their immune function and die by apoptosis and 
phagocytosis by macrophages. Studies with rats have 

suggested that neutrophils can emigrate out of  inflamed 
tissue and return to the circulation[126]. Recently, a study 
in humans showed neutrophils that emigrate out of  the 
tissues in vitro via the lymphatics[127], in a manner similar to 
that described for monocytes[128]. These reverse transmi-
grated neutrophils are phenotypically and functionally dif-
ferent from circulating neutrophils and are found in vivo in 
the blood of  healthy persons. Interestingly, these neutro-
phils are also found at significantly higher levels in patients 
with chronic active inflammatory disease, suggesting a 
role for these neutrophils in the persistence of  inflamma-
tions in humans. This new perspective on the possibility 
of  neutrophils to reverse transmigrate gives new insight in 
chronic inflammation, but also in the kinetics of  neutro-
phil clearance in the tissues. The clearance of  neutrophils 
in tissues is no longer only subscribed to apoptosis and 
phagocytosis, but also to reverse transmigration back into 
the circulation. The in vivo kinetics of  transmigration is 
therefore a much needed future study. 

CONTAMINATION
When using sensitive quantitative studies such as RT-PCR 
or measuring cytokine production, there is a big risk of  
contamination by monocytes and lymphocytes. Depend-
ing on the cytokine, neutrophils possess 10-20 fold lower 
RNA levels per cell than monocytes or lymphocytes. 
This means that neutrophils synthesize 10-300 times 
less cytokines than monocytes individually and causes a 
1%-2% monocyte contamination to influence the RNA 
yield with 20%-30%[2]. It is thus important when measur-
ing cytokine levels, to keep the level of  contamination 
with monocytes and lymphocytes very low (< 0.5%). The 
neutrophil-specific surface marker CD66b could be used 
to determine purity of  samples[129]. 

As earlier mentioned the exclusion of  prestimulation 
of  neutrophils is important. Every reagent, solution or 
lab ware with small levels of  endotoxin can stimulate 
neutrophils. Inappropriate methods of  erythrocyte lysis 
can lead to stimulation as well. To exclude stimulated 
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neutrophils, the cells should be checked for CD62L, a 
membrane bound antigen, rapidly released upon neutro-
phil stimulation[130]. 

With this in mind, it will be interesting to investigate 
some of  the current papers about neutrophil kinetics. For 
example in the paper of  Suratt et al[92], the neutrophils are 
only tested for viability using Trypan blue dye exclusion. 
No control experiment for CD62L expression and thus 
activation was performed. The authors did obtain neu-
trophils with a modified method, to ensure depletion of  
contaminating monocytes. 

Other studies compared tissue neutrophils with blood 
neutrophils, but no investigation into the functionality 
of  neutrophils after collecting them was done[124]. Care 
should be taken when drawing conclusions from papers 
without proper controls for monocyte contamination or 
neutrophil activation. Also the type of  labeling is impor-
tant and the type of  neutrophil used for different studies, 
as tissue neutrophils differ from blood neutrophils. 

CONCLUDING REMARKS
The neutrophil has more functionality than just killing 
microbes, it also has a role in signaling to both the innate 
and adaptive immunity, the resolution of  inflammation 
and cellular signaling with DCs and T cells. The mecha-
nism of  clearance of  neutrophils and homing to the bone 
marrow is of  great importance to the balance of  cellular 
homeostasis. Clearance in the bone marrow leads to new 
neutrophil production; clearance in the spleen, liver and 
tissues reduces damage. This way, our body is able to 
continue the cellular homeostasis and the levels of  cir-
culating neutrophils. The neutrophil is important, but its 
clearance too. Because neutrophils are readily activated 
in experiments, a proper in vivo experiment is difficult to 
set up. More investigation is needed to elucidate the role 
of  the different types of  neutrophils in immunity. Tissue 
neutrophils differ from blood neutrophils, as well as the 
marginated pool differs from the circulating pool. 

There are numerous studies done to the kinetics and 
life span of  the neutrophil. The calculated blood circula-
tion time varies from 10 h to over 5 d, each life span hav-
ing tremendous effects on the functions of  neutrophils. 
Further investigation to the lifespan and production rate 
is necessary, as current calculations are all based on dif-
ferent labeling techniques with different disadvantages 
and no clear conclusions can be drawn. In analogy to red 
blood cells, it is to be expected that after collection of  
cells, the life span decreases tremendously. In vivo labeling 
of  neutrophil can prevent such effects on life time of  a 
neutrophil. Also, the different pools that are present have 
to be taken into account when assessing the lifetime of  
neutrophils. Many tools for investigating the function of  
neutrophils in mice in vivo are now available. Although 
understanding the role of  the neutrophil in vivo in man 
is much more difficult, it is of  great importance for the 
potential role of  neutrophils as targets in inflammatory 
diseases.
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