
advancements in molecular diagnostics of the disease, 
as well as in the understanding of pathogenetic mecha-
nisms. This editorial aims to provide an account that is 
practicable and efficient on the current molecular diag-
nostic procedures for CMT, in correlation with the clini-
cal, pathological and electrophysiological findings. The 
most frequent causative mutations of CMT will also be 
outlined.  
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Core tip: Charcot-Marie-Tooth (CMT) disease is the 
most common neuromuscular disorder affecting at least 
1 in 2500. CMT according to electrophysiological and 
pathological findings is categorised into demyelinating, 
axonal and intermediate forms and inheritance can be 
autosomal dominant, X-linked, or autosomal recessive. 
More than 30 causative genes have been identified. 
This editorial aims to present an efficient account of 
molecular diagnostic procedures for CMT, based on 
clinical, pathological and electrophysiological findings as 
well as summarize the most frequent causative muta-
tions.  
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INTRODUCTION
Charcot-Marie-Tooth (CMT) disease, also known as 
Charcot-Marie-Tooth neuropathy, hereditary motor and 
sensory neuropathy (HMSN) and  Peroneal Muscular 
Atrophy was first described by Charcot et al[1] and Tooth[2] 
in 1886. CMT is the most common inherited neuromus-
cular disorder, with a prevalence of  17-40 per 100000 in-
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Abstract
Charcot-Marie-Tooth (CMT) disease or hereditary motor 
and sensory neuropathy is the most common inherited 
neuromuscular disorder affecting at least 1 in 2500. 
CMT disease is pathologically and genetically hetero-
geneous and is characterized by a variable age of on-
set, slowly progressive weakness and muscle atrophy, 
starting in the lower limbs and subsequently affecting 
the upper extremities. Symptoms are usually slowly 
progressive, especially for the classic and late-onset 
phenotypes, but can be rather severe in early-onset 
forms. CMT is grouped into demyelinating, axonal and 
intermediate forms, based on electrophysiological and 
pathological findings. The demyelinating types are char-
acterized by severely reduced motor nerve conduction 
velocities (MNCVs) and mainly by myelin abnormalities. 
The axonal types are characterized by normal or slight-
ly reduced MNCVs and mainly axonal abnormalities. 
The intermediate types are characterized by MNCVs 
between 25 m/s and 45 m/s and they have features of 
both demyelination and axonopathy. Inheritance can be 
autosomal dominant, X-linked, or autosomal recessive. 
Mutations in more than 30 genes have been associ-
ated with the different forms of CMT, leading to major 
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dividuals[3,4]. Clinically, it is characterized by a variable age 
of  onset and a variable phenotype. The main features of  
CMT comprise, a slowly progressive symmetric weakness 
and muscle atrophy of  the peroneal and distal muscles 
of  the lower limbs, sensory loss, foot deformities (pes 
cavus and hammer toes), and decreased or absent tendon 
reflexes. Hands and forearms are affected later in life. 
Bilateral pes cavus is almost invariably present with sub-
stantial variation in the level of  sensory symptoms and 
signs[5]. According to electrophysiological and pathologi-
cal findings CMT is classified into demyelinating, axonal 
and intermediate forms. The demyelinating types (CMT1 
or HMSN I) are characterized by severely reduced mo-
tor nerve conduction velocities (MNCVs) (median nerve 
MNCV < 38 m/s) and mainly by myelin abnormalities 
on nerve biopsy including onion bulbs[6]. The axonal 
types (CMT2 or HMSN II) with primarily axonal degen-
eration are characterized by normal or slightly reduced 
motor nerve conduction velocities (median nerve MNCV 
> 38 m/s) but reduced amplitudes. Normal amplitudes 
are usually more than 4-6 μV, however this also differs 
between nerves[7-9]. Intermediate types include CMT pa-
tients that have features of  both demyelination and axo-
nopathy with median nerve MNCVs ranging from 25  to 
45 m/s[10]. Inheritance in CMT can be autosomal domi-
nant (AD)[11], X-linked[12,13], or autosomal recessive[14,15]. 
More than 50 loci and more than 30 CMT genes have 
thus far been identified (Table 1, http://neuromuscular.
wustl.edu/time/hmsn.html).The majority of  CMT pa-
tients worldwide have been characterized at the molecular 
genetic level. More than 70% of  all CMT patients have 
mutations in one of  four genes: PMP22, GJB1, MPZ, and 
MFN2. Approximately 25% of  CMT patients are still 
pending molecular diagnosis, the great majority of  them 
with CMT2[16]. Despite major advances in the identifica-
tion of  causative CMT genes, the related pathogenic 
mechanisms still remain to be clarified[17,18].

CMT CLASSIFICATION
CMT is classified into the following 3 types, based on 
clinical and neurophysiological findings, the inheritance 
pattern and associated gene mutations.

CMT1 (HMSNI): Autosomal dominant demyelinating CMT
CMT1 is the most common type of  CMT and is divid-
ed into different subtypes based on molecular genetic 
findings.

CMT1A is the most common subtype (70% of  de-
myelinating CMT and 40% of  all CMT patients)[16,19,20]. 
CMT1A is caused by the duplication of  a 1.4 Mb region 
on chromosome 17p12 that contains the peripheral 
myelin protein 22 (PMP22) gene[16,21-24]. De novo PMP22 
duplication mutations occur in 6.5% of  CMT1A patients. 
PMP22 protein is a hydrophobic 22 kDa glycoprotein 
that is expressed mainly in myelinating Schwann cells and 
plays an important role in myelination, proliferation and 
differentiation[25,26]. Overexpression of  PMP22 gene dos-
age reduces the proliferation of  Schwann cells and may 

affect the intracellular degradation of  membrane compo-
nents[3,27]. The onset of  clinical symptoms is in the first or 
second decade of  life, usually in childhood, characterized 
by a typical CMT phenotype, and usually a mild disease 
progress. However, disease severity is variable, even in 
individuals of  the same family. In many cases there is also 
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Table 1  Charcot-Marie-Tooth classifications

Type Locus Gene OMIM Ref.

CMT1: Dominant  demyelinating
  CMT1A 17p12 PMP22 *601097 [21,22]
  CMT1B 1q22 MPZ *159440 [28]
  CMT1C 16p13 LITAF (SIMPLE) *603794 [171]
  CMT1D 10q21.3 EGR2 *129009 [37]
  CMT1E 17p12 PMP22 *601097 [21,22]
  CMT1F 8p21 NEFL *162280 [105]
  CMT1 14q32 FBLN5 *604580 [47]
CMT2: Dominant  axonal
  CMT2A 1p36.22 MFN2        *608507 [51,52]
  CMT2B 3q21.3 RAB7 *602298 [55]
  CMT2C 12q24.11 TRPV4 *605427 [61]
  CMT2D 7p15 GARS *600287 [64]
  CMT2E 8p21 NEFL *162280 [66]
  CMT2F 7q11.23 HSPB1 (HSP27) *602195 [69]
  CMT2G 12q12-13.3 Unknown
  CMT2H/2K 8q21.11 GDAP1 *606598 [76]
  CMT 2I/2J 1q22 MPZ *159440 [80,81]
  CMT2L 12q24.3 HSPB8 (HSP22) *608014 [83]
  CMT2M 19p13  DNM2 *602378 [84]
  CMT2N 16q22.1 AARS *601065 [89]
  CMT2O 14q32.31 DYNC1H1 *600112 [93]
  CMT2P 9q33 LRSAM1 *610933 [95,96]
  CMT2Q 10p14 DHTKD1 *614984 [100]
DI-CMT: Dominant intermediate
  DI-CMTA 10q24.1-q25.1 Unknown
  DI-CMTB 19p13  DNM2 *602378 [84]
  DI-CMTC 1p35.1 YARS *603623 [106]
  DI-CMTD 1q22 MPZ *159440 [10]
  DI-CMTE 14q32.33 IFN2 *610982 [107]
  DI-CMTF 3q26.33 GNB4 *610863 [108]
CMT4: Recessive demyelinating
  CMT 4A 8q21.11 GDAP1 *606598 [78]
  CMT 4B-1 11q22 MTMR2 *603557 [112]
  CMT 4B-2 11p15 MTMR13 (SBF2) *607697 [117]
  CMT 4C 5q23-33 SH3TC2 *608206 [119]
  CMT 4D 8q24.3 NDRG1 *605262 [125]
  CMT 4E 10q21.3 EGR2 *129010 [37]
  CMT 4F 19q13.2 PRX *605725 [43,129]
  CMT 4G 10q23.2 HK1 *142600 [134]
  CMT 4H 12p11.21 FGD4 *611104 [137,138]
  CMT 4J 6q21 FIG4 *609390 [141]
AR-CMT2: Recessive axonal
  AR CMT 2A 1q22 LMNA *150330 [144]
  AR CMT 2B 19q13.3 MED25 (ACID1) *610197 [146]
  AR-CMT 2C 8p21 NEFL *162280 [66,150]
  AR CMT2D 8q21.11 GDAP1 *606598 [76]
  AR CMT2E 9q33 LRSAM1 *610933 [95,96]
CMTX: X-linked
  CMTX1 Xq13.1 GJB1 *304040 [153]
  CMTX2 Xp22.2 Unknown
  CMTX3 Xq26.3-q27.1 Unknown
  CMTX4 Xq26.1 AIFM1 *300169 [161]
  CMTX5 Xq22.3 PRPS1 *311850 [165]
  CMTX6 Xp22.11 PDK3 *602526 [166]

OMIM: Online endelian inheritance in man; CMT: Charcot-Marie-Tooth; 
DI: Dominant intermediate; AR: Autosomal recessive.



nerve hypertrophy (25%) and in some hearing loss (5%)[3]. 
The MNCVs are reduced (< 38 m/s) in the early stages 
of  the disease.

CMT1B is caused by mutations in the myelin pro-
tein zero (MPZ or P0) gene, located on chromosome 
1q22-q23 and account for about 5% of  CMT1 cases[3,16,28]. 
MPZ protein is a 28 kDa glycoprotein that is located in 
Schwann cells. This protein is necessary for normal my-
elin structure and function and is found in abundance in 
the myelin of  peripheral nerve tissues and is completely 
absent from the myelin of  the central nervous sys-
tem[27,29]. CMT1B is characterized by an early onset (usually 
first decade) and most MPZ mutations cause a classical 
CMT1 phenotype, however, some mutations cause a 
more severe Dejerine-Sottas syndrome (DSS-CMT3B) 
or congenital hypomyelination neuropathy (CHN)[30,31]. 
Patients with an early onset have reduced MNCVs and 
patients with a late onset have normal or slightly reduced 
MNCVs[32].

CMT1C is caused by mutations in the lipopolysac-
charide-induced tumor necrosis factor (LITAF)/small 
integral membrane protein of  lysosome late endosome 
(SIMPLE) gene. The gene is located on chromosome 
16p13.1-p12.3 and plays an important role in protein 
degradation[33]. LITAF mutations account for less than 
1% of  CMT patients[34]. The first clinical symptoms in 
patients with CMT1C appear in the second decade with 
a typical CMT1 phenotype and conduction velocities 
around 16-25 m/s[3,33,35,36]. 

CMT1D accounts for less than 1% of  CMT patients 
and is caused by mutations in the early growth response 
element 2 (EGR2) gene, that is located on chromosome 
10q21.3[37]. EGR2 is a transcription factor that is involved 
in the regulation of  myelin genes[38,39]. Most patients have 
very early onset CMT1 or the most severe DSS (DSS-
EGR) or CHN phenotypes, however, patients with late 
onset and a milder phenotype have been described[37,40-43]. 
Patients with cranial nerve deficits, including diseases of  
the pulmonary system, respiratory failure, diplopia and 
vocal cord paresis have been reported[3,34]. Motor nerve 
conduction velocities are slightly to severely reduced (9-42 
m/s)[3].  

CMT1E is caused by point mutations in the PMP22 
gene[21-23]. Patients with PMP22 point mutations have 
more severe symptoms than patients with CMT1A and 
usually have slower NCV[44]. Point mutations of  PMP22 
may cause various other phenotypes such as HNPP, DSS 
(CMT3A) or CHN[45].

CMT1F is caused by mutations in the neurofilament 
light chain (NEFL) gene located on chromosome 8q21. 
The encoded protein plays a role in intracellular transport 
of  axons and dendrites[46]. The first symptoms of  the 
disease appear in the first decade of  life and are usually 
severe, with severely reduced MNCVs (15-38 m/s)[3]. 
NEFL mutations also cause CMT2E and CMT4C2.

CMT1G has been recently described and is caused 
by mutations in the fibulin-5 (FBLN5) gene on chro-
mosome 14q32[47]. FBLN5 is located in an extracellular 
matrix and is a calcium-binding glycoprotein that plays an 

important role in elastic fiber assembly and in endothelial 
cell adhesion[48]. The age of  onset, the phenotype and the 
MNCVs of  the disease vary[47]. 

CMT2 (HMSNII): Autosomal dominant axonal CMT 
CMT2 accounts for 20% of  all CMT patients and is char-
acterized by normal or slightly reduced MNCVs[16,35]. 

CMT2A is the most common form of  CMT2 and 
accounts for 20% of  CMT2 patients[49,50]. It is caused by 
mutations in the mitofusin 2 (MFN2) gene, located on 
chromosome 1q36.22. A mutation in the kinesin motor 
protein 1B (KIF1B) gene has been reported in a Japanese 
family, but mutations in the KIF1B have not thus far 
been confirmed in any other family[51]. MFN2 is a large 
dynamin-like GTPase protein that plays an important 
role in the fusion of  mitochondria. When this protein 
is modified as a result of  gene mutations, it leads to an 
insufficient protein transfer between mitochondria and 
the axons of  peripheral nerves[3]. Most patients (80%) 
have an early onset of  symptoms (< 10 years old) with a 
severe phenotype and usually become wheelchair bound 
by 20 years of  age. The remaining 20% of  patients have 
a later onset of  symptoms (10-50 years old) and a milder 
phenotype[52]. CMT2A patients with optic atrophy, hear-
ing loss, cerebral white matter abnormalities and diabe-
tes mellitus have been described[16,49,50,53,54]. Motor nerve 
conduction velocities are typically normal, however, the 
amplitudes are slightly to severely reduced or absent[54].

CMT2B is caused by mutations in the RAS-associated 
GTP-binding protein (RAB7) gene located on chromo-
some 3q21.3[55]. RAB7 is a GTPase protein that localizes 
to late endosomes and lysosomes and is involved in the 
regulation of  late endocytic traffic[56,57]. Clinical symp-
toms appear between the second and fourth decades and 
include typical CMT phenotype and mild to moderate 
sensory loss, that often leads to foot ulcerations and sub-
sequently infections and amputations[58,59]. MNCVs are 
normal to slightly reduced with usually reduced ampli-
tude.

CMT2C is caused by mutations in the transient recep-
tor potential vanilloid 4 (TRPV4) gene located on chro-
mosome 12q24.11[60,61]. The TRPV4 protein is a cation 
channel (Ca2+ channel) that activates pathways leading to 
the regulation of  systemic osmotic pressure[62]. CMT2C 
is characterized by weakness of  proximal muscles, vocal 
cord, diaphragmatic paresis and occasionally a fatal out-
come. Some other features have been reported including 
sensorineural hearing loss, raspy voice, bladder urgency 
and incontinence[7,61,62]. The age of  onset is between the 
second and fifth decades of  life and MNCVs are normal 
(> 50 m/s)[61,62].

CMT2D is caused by mutations in the glycyl-tRNA 
synthetase (GARS) gene located on chromosome 
7p15[63,64]. The encoded protein plays an important role 
in translation processes and GARS gene mutations af-
fect protein synthesis, which is important for the normal 
function of  the motor nerve[3]. The first symptoms ap-
pear between first and forth decade and primarily affect 
the upper extremities and then to a lesser extent the 
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lower extremities[64,65]. MNCVs are normal.
CMT2E is caused by mutations in the NEFL gene[66]. 

NEFL mutations also cause CMT1F and CMT4C2[66,67]. 
CMT2E is clinically similar to CMT1F, although typically 
it is less severe, with normal or slightly reduced MNCVs.

CMT2F is caused by mutations in the heat shock 
protein B1 (HSPB1, also known as HSP27) gene located 
on chromosome 7q11.23[68,69]. The HSPB1 protein pro-
tects the structure of  other proteins (bind and prevent 
misfolding and aggregation of  nascent proteins) and 
also interacts with the NEFL protein and protects mo-
tor neurons[57,70]. Symptoms progression is slow and they 
begin with symmetrical weakness of  the lower extremi-
ties resulting in foot drop, foot deformities, and sensory 
dysfunctions and then progresses slowly to the upper ex-
tremities[71]. The age of  onset of  the disease is in the first 
or second decade of  life and the MNCVs[72].

CMT2G maps to chromosome 12q12-q13.3 but asso-
ciated gene mutations are still unknown[73,74]. The age of  
onset varies from the first to the eighth decade, although 
most patients developed symptoms in the second decade. 
Clinical symptoms include foot deformity and difficulty 
in walking, with very slow progression and absent ankle 
reflexes[73]. MNCVs are normal or mildly decreased.

CMT2H and CMT2K are caused by mutations in the 
ganglioside induced differentiation associated protein 1 
(GDAP1) gene on chromosome 8q21.11[75,76]. GDAP1 
mutations also cause axonal recessive CMT (CMT4C4) or 
demyelinating recessive CMT (CMT4A)[76-78]. The clinical 
symptoms in CMT2H/K appear in the second decade 
with a mild to moderate and slowly progressive pheno-
type with vocal cord paralysis and occasionally with optic 
nerve atrophy and normal or slightly reduced MNCVs[79].

CMT2I and CMT2J are caused by mutations in the 
MPZ gene[80,81]. The first symptoms appear very late 
(between 45 and 60) with a typical CMT2 phenotype, 
although there are some patients with pupillary abnor-
malities, deafness and sensory disturbances[16,81]. MNCVs 
are normal or slightly reduced (> 38 m/s), but during the 
progress of  the disease they are decreased (< 38 m/s)[3].

CMT2L is caused by mutations in the heat shock 22 
kDa protein 8 (HSPB8) gene, also known as heat shock 
protein 22 (HSP22) on chromosome 12q24[82,83]. HSPB8 
is highly expressed in the spinal cord and in the motor 
and sensory neurons and is mainly localized to the plas-
ma membrane. Also it possesses chaperone-like activity 
and inhibits protein aggregation and degrades misfolded 
proteins[57]. Clinical symptoms start between 15-35 years 
old and include distal muscle weakness and atrophy, 
mild sensory loss and scoliosis present in some patients. 
MNCVs are normal or near-normal. 

CMT2M is caused by mutations in the dynamin 
2 (DNM2) gene located on chromosome 19p13[84,85]. 
DNM2 is a large GTPase protein involved in membrane 
trafficking and endocytosis[86]. CMT2M is characterized 
by distal muscle weakness and atrophy of  the lower ex-
tremities, mild weakness of  upper extremities and foot 
deformities, including pes cavus and toe clawing[87,88]. The 
symptoms appear between the age of  20-55 years and the 

MNCVs are normal to slightly reduced.
CMT2N is caused by mutations in alanyl-tRNA syn-

thetase (AARS) gene on chromosome 16q22.1[89]. AARS 
protein is an aminoacyl-tRNA synthetase (ARS). ARSs 
are ubiquitously expressed, essential enzymes that ligate 
amino acids to produce tRNAs needed for global protein 
synthesis[90]. Clinical features include mild to moderate 
weakness of  lower limbs and milder or absent weakness 
of  the upper limbs. Some patients had foot drop, pes 
cavus, hammer toes, absent ankle reflexes and hypore-
flexia[89,91,92]. The age of  onset is varying (6-54 years old) 
and MNCVs are normal.

CMT2O is caused by mutations in the dynein cyto-
plasmic 1 heavy chain 1 (DYNC1H1) gene on chromo-
some 14q32.31[93]. Dyneins are a group of  ATPases that 
help to convert chemical into mechanical energy. Cyto-
plasmic dynein is a large motor protein complex that is 
involved in intracellular functions, including reversing 
axonal transport in neurons[93,94]. Clinical features include 
progressive distal lower limb weakness, pes cavus, vari-
able sensory loss and in some patients proximal weakness 
and waddling gait[93]. The first symptoms occur in child-
hood and the MNCVs are normal.

CMT2P is caused by mutations in the leucine rich 
repeat and sterile alpha motif  containing 1 (LRSAM1) 
gene on chromosome 9q33.3. The inheritance can be 
autosomal recessive (AR-CMT2)[95] or autosomal domi-
nant (CMT2P)[96,97]. LRSAM1 is a multifunctional RING 
finger E3 ubiquitin ligase that plays an important role in 
endocytosis and in neuronal cells adhesion[98,99]. The first 
symptoms for CMT2P appear between the second and 
fifth decade of  life and include distal weakness in the 
lower limbs and in some patients also present in the up-
per limbs. Other features have been reported in some pa-
tients including episodic cramps, bilateral pes cavus, foot 
drop, absent tendon reflexes, severe loss of  sensation in 
feet and legs and mild loss of  sensation on fingertips, 
sensory and motor dysfunction[95-97]. MNCVs are normal 
to slightly reduced.

CMT2Q is caused by mutations in the dehydrogenase 
E1 and transketolase domain-containing 1 (DHTKD1) 
gene on chromosome 10p14[100]. This gene encodes a mi-
tochondrial 2-oxoglutarate-dehydrogenase-complex-like 
protein that is involved in the degradation of  several ami-
no acids pathways[100,101]. The age of  onset is in the first 
and second decade and the phenotype is typical CMT2, 
including distal muscle weakness of  the lower limbs, de-
creased or absent tendon reflexes, and mild to moderate 
sensory loss[100]. MNCVs are normal (> 40 m/s).

Late onset CMT2 is caused by mutations in the me-
thionyl-tRNA synthetase (MARS) gene[102]. This type has 
recently been identified in one CMT2 family. Clinically it 
is characterized by late onset (> 50 years old) and a mild 
CMT2 phenotype[102]. MNCVs studies confirmed an axo-
nal neuropathy.

DI-CMT: Autosomal dominant intermediate CMT
Dominant intermediate CMT types (DI-CMT) are char-
acterized by intermediate MNCVs (25-45 m/s) and the 
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clinical symptoms are moderate to severe. Electrophysi-
ological and pathological features include both axonal 
and demyelinating types.

DI-CMTA has been mapped to chromosome 
10q24.1-q25.1, but the responsible gene is unknown[103,104]. 
The phenotype is typical CMT and the MNCVs are mod-
erately reduced[103].

DI-CMTB is caused by mutations in the DNM2 gene 
that also cause axonal dominant CMT (CMT2M). Pa-
tients present with a classic CMT phenotype at the age of  
2-50 years old. MNCVs are ranging from 26 to 54 m/s.  
DI-CMTC is caused by mutations in the tyrosyl-tRNA 
synthetase (YARS) gene located on chromosome 
1p35.1[105,106]. YARS plays an important role in protein 
synthesis and in signal transmission from nerves to mus-
cles[106]. The age of  onset is between the first and sixth 
decades with a classic CMT phenotype and numbness in 
some patients[106]. MNCVs are from 30-40 m/s.

DI-CMTD is caused by mutations in the MPZ 
gene[10]. MPZ mutations are also associated with CMT1B 
and CMT2I/2J. DI-CMTD is characterized by a variable 
severity, distal muscle atrophy, weakness, and sensory loss 
in the lower and upper limbs. MNCVs are 30-40 m/s. 

DI-CMTE is caused by mutations in the inverted 
formin-2 (IFN2) gene on chromosome 14q32.33[107]. The 
encoded protein may function in polymerization and 
depolymerization of  actin filaments. INF2 mutations dis-
rupt actin dynamics in peripheral Schwann cells, leading 
to disturbed myelin formation and maintenance result-
ing in CMT[107]. The clinical phenotype is typical CMT, 
including distal muscle weakness and atrophy and distal 
sensory loss, with focal segmental glomerulonephritis 
(FSGS) including proteinuria that progresses to renal dis-
ease. The first symptoms appear between the first to third 
decade and MNCVs are normal to moderately reduced 
(23-45 m/s).

DI-CMTF is caused by mutations in the guanine 
nucleotide binding protein, beta polypeptide 4 (GNB4) 
gene[108]. GNB4 protein may play a role in peripheral 
nerve regeneration. DI-CMTF is characterized by slowly 
progressive distal muscle atrophy and weakness, and atro-
phy of  the upper and lower limbs, steppage gait and dis-
tal sensory loss with decreased reflexes with onset around 
adolescence.  MNCVs are between 16 to 45 m/s.

CMT4: Autosomal recessive demyelinating CMT
CMT4 is a demyelinating type of  hereditary polyneuropa-
thy with autosomal recessive inheritance[109].

CMT4A is caused by mutations in the GDAP1 gene. 
Clinically severe motor disturbances and progressive 
scoliosis are observed[110]. CMT4A is characterized by an 
early age of  onset and reduced MNCVs (25-35 m/s).  

CMT4B1 is caused by mutations in the myotubula-
rin-related protein 2 (MTMR2) gene on chromosome 
11q22[111,112]. MTMR2 protein has phosphatase activity 
and influences transcription and cell proliferation[112]. The 
phenotype of  the disease is severe CMT1 and diaphrag-
matic and facial weakness may occur, as may scoliosis in 
adult patients[113-115]. Onset is usually in childhood and 

MNCVs are severely reduced (10-25 m/s). 
CMT4B2 is caused by mutations in the set bind-

ing factor 2 (SBF2) or myotubularin related protein 13 
(MTMR13) gene located on chromosome 11p15[116,117]. 
The encoded protein is a pseudophosphatase that 
is involved in membrane trafficking[118]. The clinical 
phenotype, age of  onset and MNCVs are similar to 
CMT4B1[116,119].

CMT4C is caused by mutations in the SH3 domain 
and tetratricopeptide repeat domain 2 (SH3TC2) gene 
that is located on chromosome 5q32[119,120]. SH3TC2 
protein is expressed in Schwann cells of  the peripheral 
nerves and localizes to the membrane with a possible 
function in myelination and in regions of  axoglial interac-
tions[121]. CMT4C is characterized by early-onset, distal 
weakness, foot deformities, walking difficulty, scoliosis 
and occasionally facial and bulbar weakness, sensorineural 
deafness and respiratory insufficiency[119,122-124]. MNCVs 
are reduced (10-35 m/s).

CMT4D (HMSN-L) is caused by mutations in the 
N-myc downstream-regulated gene 1 (NDRG1) on chro-
mosome 8q24.3[125]. NDRG1 protein appears to play a 
role in growth arrest and cell differentiation[126]. CMT4C 
is characterized by distal muscle wasting and atrophy, foot 
and hand deformities, absent tendon reflexes, and senso-
ry loss. The age of  onset is between the first and second 
decade. Deafness is an invariant feature of  the phenotype 
and usually develops in the third decade.

CMT4E (Congenital Hypomyelinating Neuropathy-
CHN) is caused by mutations in the EGR2 gene[37]. 
EGR2 mutations are also associated with CMT1D. 
CMT4E is characterized clinically by an early age of  on-
set, hypotonia, absent of  reflexes, distal muscle weakness, 
and extremely reduced MNCVs (< 10 m/s).  

CMT4F is caused by mutations in the periaxin (PRX) 
gene located on chromosome 9q13.2[127-129]. PRX is a 
Schwann cell protein that plays an important role in 
axon-glial interactions and is needed for the maintenance 
of  peripheral nerve myelin and regenerating axons[130,131]. 
CMT4F is characterized, by distal muscle weakness and 
atrophy, affecting the lower more than the upper limbs, 
by distal sensory loss and occasionally sensory ataxia. The 
age at onset is variable, from first to fifth decade and the 
MNCVs are severely reduced (< 15 m/s)[128,132]. PRX mu-
tations also cause DSS (CMT3D)[128].

CMT4G or CMT-Russe (HSMNR) is caused by muta-
tions in the Hexokinase 1 (HK1) gene that is located on 
chromosome 10q23.2[133,134]. HK1 protein is involved in 
the controlled production of  ATP and in the regulation 
of  cell survival. Also HK1 is highly expressed in the ner-
vous system and it is involved in NGF-mediated neurite 
outgrowth[57,134]. Clinically it is characterized by an early 
age of  onset (5-16 years old), distal muscle weakness 
progressing to severe on lower limbs, prominent sensory 
loss, hand and foot deformities[133,135]. MNCVs are mildly 
reduced (30-35 m/s).

CMT4H is caused by mutations in the FYVE, Rho-
GEF and PH domain containing 4 (FGD4) gene, on 
chromosome 12p11.21[136,137]. FGD4 (or Frabin) protein 
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is involved in the myelination process, although the mo-
lecular mechanisms by which FGD4 mutations cause 
CMT4H are completely unknown[57,137,138]. CMT4H is 
characterized by distal muscle weakness and atrophy, 
areflexia, sensory loss, foot abnormalities and occasion-
ally scoliosis, hypotrophy of  thenar and hypothenar 
muscles[136,139,140].

CMT4J is caused by mutations in the FIG4 homo-
log, SAC1 lipid phosphatase domain containing (FIG4) 
gene, located on chromosome 6q21[141]. FIG4 protein has 
been shown to possess phosphoinositide phosphatase 
activity and plays a key role in intracellular transport ves-
icles[141,142]. The clinical phenotype is severe CMT1 with 
early onset (childhood but sometimes adult onset) and 
severely reduced MNCVs (< 10 m/s)[3]. 

AR-CMT2: Autosomal recessive axonal CMT
AR-CMT2 also called CMT4C is a recessive axonal he-
reditary neuropathy that is very rare.

AR-CMT2A or CMT2B1 or CMT4C1 is caused by 
mutations in the lamin A/C (LMNA) gene on chromo-
some 1q22. Lamin A/C is an intermediate filament pro-
tein that forms the nuclear lamina[57]. Lamin proteins are 
involved in nuclear stability, chromatin structure and gene 
expression, and also the A-type lamins are important in 
the protection of  the cell from mechanical damage[29,143]. 
Clinical symptoms usually appear in the second decade 
(onset between 5-25 years old) with a severe CMT phe-
notype including proximal muscle involvement although 
some have a milder phenotype. LMNA mutations have 
also been associated with other phenotypes including 
Emery-Dreifuss muscular dystrophy, cardiomyopathy 
and Dunnigan-type familial partial lipodystrophy[144,145]. 
MNCV are normal or just slightly reduced.

AR-CMT2B or CMT2B2 or CMT4C3 is caused by 
mutations in the mediator complex subunit 25 (MED25) 
gene, also known as ACID1, that is located on chromo-
some 19q13.33[146-148]. The encoded protein is a compo-
nent of  the Mediator complex that plays a role in gene 
transcription and also is important in myelination[146,149]. 
Clinical phenotype is typical CMT2 with late onset, in 
the third to fifth decade of  life, and normal or mildly de-
creased MNCVs[147,148].

AR-CMT2C or CMT4C2 is caused by mutations in 
the NEFL gene. The clinical phenotype is severe CMT2 
with early onset (< 2 years old) and severely reduced 
MNCVs (10-25 m/s)[150].   

AR-CMT2D or CMT4C4 is caused by mutations 
in the GDAP1 gene. The clinical phenotype is more 
severe than CMT2H/K, with early onset and normal 
MNCVs[76,151,152].  

AR-CMT2E is caused by mutations in the LRSAM1 
gene with a more severe clinical phenotype than CMT2P 
and earlier age of  onset (first and second decade)[95-97]. 

CMTX: X-linked CMT
CMTX is an X-linked CMT with dominant or recessive 
inheritance. Clinically heterozygous females are more 
mildly affected (or asymptomatic) than hemizygous 

males[153].
CMTX1 is the second commonest form of  demy-

elinating CMT with a frequency of  12% among all CMT 
patients[16,20]. CMTX1 has both demyelinating and axonal 
features and is caused by mutations in the gap junction 
binding 1 (GJB1) gene that is located on chromosome 
Xq13.1[154]. The encoded protein CX32 (connexin 32) is 
a transmembrane protein that forms gap junction chan-
nels that allow the transfer of  small molecules between 
cells[153]. Clinically males have more severe symptoms, 
than females. Symptoms in males appear in childhood 
and later in females[35,155]. MNCVs are slightly reduced, 
between 30-40 m/s in affected males and 30-50 m/s in 
affected females[156]

CMTX2 has been mapped to chromosome Xp22.2 
and the associated gene mutations are still unknown[157,158]. 
CMTX2 also has both demyelinating and axonal features 
and the clinical phenotype is characterized by onset in 
infancy, weakness and atrophy of  the lower limbs, absent 
reflexes and pes cavus in males. MNCVs are normal to 
slightly reduced.

CMTX3 has been mapped to chromosome Xq26 and 
the associated gene mutations are also still unknown[159]. 
The disease onset is in first and second decade are pa-
tients and clinically characterized by progressive weakness 
of  lower limbs and decreased tendon reflexes[157,158]. Elec-
trophysiological findings are compatible with both axonal 
and demyelination features with MNCVs in the range of  
25-57 m/s.

CMTX4 (Cowchock syndrome) is caused by muta-
tions in the apoptosis-inducing factor, mitochondrion-
associate 1 (AIFM1) gene on chromosome Xq26.1[160,161]. 
CMTX4 is characterized by an early childhood onset, dis-
tal muscle weakness and atrophy, sensory loss, areflexia 
and in some patients (approximately 60%) deafness and 
mental retardation[160]. Heterozygous females are asymp-
tomatic[162]. MNCVs are normal to slightly reduced (33-56 
m/s) with decreased sensory conduction velocities.

CMTX5 is caused by mutations in the phosphoribo-
sylpyrophosphate synthetase 1 (PRPS1) gene located in 
chromosome Xq22.3[163-165]. PRS1 protein is an enzyme 
critical for nucleotide biosynthesis[57]. Symptoms appear 
in the first decade of  life and the phenotype is character-
ized by severe peripheral neuropathy with sensorineural 
deafness, and optic atrophy[165]. MNCVs are normal (43-51 
m/s). Heterozygous females are asymptomatic.

CMTX6 is caused by mutations in the pyruvate dehy-
drogenase kinase isoenzyme 3 (PDK3) gene on chromo-
some Xp22.11[166]. PDK3 is involved in the regulation 
of  the pyruvate dehydrogenase complex (PDC). PDC 
catalyzes the oxidation of  pyruvate to acetyl-CoA that is 
a key enzyme involved in the Krebs cycle and lipogenic 
pathways[166,167]. Disease onset is in the second decade and 
includes progressive moderate-to-severe wasting below 
the knees, minimal weakness of  the hand muscles, foot 
deformity, steppage gait, absent ankle reflexes distal lower 
limb weakness and sensory abnormalities[166]. MNCVs are 
normal (> 38 m/s).
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MOLECULAR GENETIC TESTING
As outlined above the CMT group of  disorders is char-
acterized by a high variability in the clinical phenotype, 
and great differences exist in the age of  the onset, disease 
progression and severity. There are many types of  CMT 
and a large number of  causative genes. As a result of  
this complexity and the considerable cost of  molecular 
studies, it is useful to establish an algorithm for targeted 
molecular analysis. Several studies have been published 
that suggest particular methodologies for performing 
genetic analysis based on clinical and electrophysiological 
findings, age of  onset of  symptoms, family history and 
relative frequencies of  gene mutations[19,20,34,35,145,168,169]. 
However, some laboratories are currently switching to 
new screening methods, such as the next generation se-
quencing (NGS) technology for whole exome and whole 
genome analysis, slowly replacing the more traditional 
Sanger sequencing based screening methods. The estab-
lished flowchart is based on the different CMT types that 
are determined following the clinical and electrophysio-
logical evaluation of  the patient and the existing frequen-
cy of  causative mutations (Figure 1). PMP22 duplication 
is the most frequent genetic abnormality and accounts 
for about 40% of  CMT patients, GJB1 for 15%, MFN2 
for 10%, MPZ for 5%, PMP22 point mutation for 2.5%; 
mutations in each of  the other CMT genes account for 
less than 1%[16,19,35,170].     

FUTURE STRATEGIES
Traditional Sanger sequencing based screening methods 
are important tools in genetic research. However, the 

NGS technology already used as a diagnostic tool in 
some centers will provide new potential capabilities in 
molecular diagnostic services. NGS is a high throughput 
technique with low cost and enables sequencing of  multi-
ple known and unknown genes in a single run. Addition-
ally, NGS, in combination with other new technologies, 
such as proteomics and cellular reprogramming may play 
an important role in the effort to elucidate the pathogenic 
mechanisms of  the disease and lead to the discovery of  
new therapeutic approaches in CMT and other diseases. 

CONCLUSION
Despite the progress in molecular genetics and the de-
velopment of  new techniques, molecular diagnosis of  
patients with CMT is still challenging. New genes causing 
CMT continue to be identified and there exist many more 
that need to be identified. Increased understanding of  
the biological processes involved in CMT will enable bet-
ter understanding of  the CMT neuropathy pathogenetic 
mechanisms and contribute further towards the goal of  
inventing more effective therapeutic strategies.
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