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Abstract
TWIK-related acid-sensitive K+ (TASK) channels give 
rise to leak K+ currents which influence the resting 
membrane potential and input resistance. The wide 
expression of TASK1 and TASK3 channels in the 
central nervous system suggests that these channels 
are critically involved in neurological disorders. It 
has become apparent in the past decade that TASK 
channels play critical roles for the development of 
various neurological disorders. In this review, I describe 
evidence for their roles in ischemia, epilepsy, learning/
memory/cognition and apoptosis.
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Core tip: The leak K+ conductance generated by TWIK-
related acid-sensitive K+ (TASK) channels is crucial 
for neuronal excitability. Because of the substantial 
expression of TASK channels in the brain, it is possible 
that these channels are responsible for numerous 
neurological disorders. However, little is known about 
the roles of TASK channels in the development of 
neurological disorders. In this review, I introduce the 
molecular basis of leak K+ channels and describe the 
possible roles for TASK channels in several neurological 
disorders. 

Toyoda H. Involvement of leak K+ channels in neurological 
disorders. World J Neurol 2015; 5(1): 52-56  Available from: 
URL: http://www.wjgnet.com/2218-6212/full/v5/i1/52.htm  DOI: 
http://dx.doi.org/10.5316/wjn.v5.i1.52

INTRODUCTION
The neurological disorders are diseases of the brain, spinal 
cord, and nerves that make up the nervous system. 
There are a large number of neurological disorders such 
as epilepsy, Parkinson’s disease and stroke. To date, 
many studies have been demonstrated that various ion 
channels expressed in the nervous system are involved 
in the development of neurological diseases[1,2]. The 
ion channels are classified into voltage-gated, ligand-
gated, mechanosensitive and leak channels based on 
the control mechanism, while being classified into Na+, 
K+, Ca2+ and Cl- channels based on the ion selectivity[3]. 
In recent years, the molecular basis of ion channels 
has been elucidated through the development of 
the molecular cell biology and genetic engineering 
method. However, much of the roles of ion channels 
in pathophysiological conditions including neurological 

52

MINIREVIEWS

World Journal of 
NeurologyW J N

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.5316/wjn.v5.i1.52

World J Neurol 2015 March 28; 5(1): 52-56
ISSN 2218-6212 (online)

© 2015 Baishideng Publishing Group Inc. All rights reserved.

March 28, 2015|Volume 5|Issue 1|WJN|www.wjgnet.com



disorders remains unclear[4]. In this review, I will discuss 
the roles of leak K+ channels in neurological disorders. 
In particular, I will focus on the TWIK-related acid-
sensitive K+ (TASK); TWIK, for tandem P domains in 
a weak inwardly rectifying K+) channels (e.g., TASK1 
and TASK3) due to the high expressions in the central 
nervous system.

LEAK K+ CHANNELS
Based on the structural features, K+ channels are 
classified into three major families[5]. Members of the 
first family of K+ channels include the voltage-gated K+ 
channels (the delayed rectifier and transient voltage-
dependent K+ channels)[6] and Ca2+-dependent K+ 
channels[7] and form tetramers with each subunit 
containing six transmembrane domains and one pore 
domain. Members of the second family of K+ channels 
include the inwardly-rectifying K+ channels such as 
ATP-sensitive K+ channels[8] and form tetramers with 
each subunit containing two transmembrane domains 
and one pore domain. Members of the third family 
of K+ channels include the leak K+ (two-pore-domain 
K+) channels[5,9] and form dimers with each subunit 
containing four transmembrane domains and two pore 
domains. In excitable cells such as neurons, a negative 
membrane potential is critical for electrical signaling, and 
it has long been considered that this key mechanism 
is largely mediated by leak K+ currents. However, the 
molecular basis for characterizing functional properties 
of leak K+ currents remained unknown until recently. In 
the 1990s, the discovery of the KCNK gene family has 
been described whose members generate the hallmark 
properties of leak K+ currents[9]. In mammalians, 
fifteen subunits have been identified and divided 
into six subfamilies (TWIK, TREK, TASK, TALK, THIK, 
and TRESK) on the basis of sequence similarity and 
functional resemblance[4,9]. The TWIK group includes 
the weakly inwardly rectifying channels (TWIK1, 
TWIK2, and the nonfunctional KCNK7); the THIK 
group includes halothane-inhibited THIK1 channel and 
related non-functional THIK2; the TREK group includes 
the arachidonic acid and mechanosensitive channels 
(TREK1, TREK2, and TRAAK); the TALK group includes 
the alkaline-activated channels (TASK2, TALK1, and 
TALK2/TASK4); the TASK group includes acid-sensitive 
channels (TASK1, TASK3, and the nonfunctional 
TASK5); the TRESK group includes Ca2+-activated 
channels (TRESK1). Among fifteen subunits of leak K+ 
channels described above, TASK1 and TASK3 are widely 
expressed in the central nervous system[10]. 

TASK CHANNELS
TASK channels are two-pore–domain channels that 
generate pH-sensitive K+ currents with little time-
dependence and weak rectification[5]. In heterologous 
expression systems, TASK5 was found to be inactive 
while TASK1 and TASK3 were able to form functional 

homomeric channels[9]. In addition, there is evidence 
that TASK1 and TASK3 might form functional 
heterodimers in vitro and in vivo[11,12]. The unitary 
conductance of TASK3 channel (approximately 28 pS) 
is about two times larger than that of TASK1 channel 
(approximately 14 pS)[13]. Although the macroscopic 
currents arising from these two channels are similar, 
the sensitivity to extracellular pH is different. The pK 
for TASK1 inhibition is approximately 7.4 while that 
for TASK3 is approximately 6.7[13]. TASK channels are 
inhibited by extracellular acidification, local anesthetics 
and G-protein-coupled receptors[5]. In contrast, TASK 
channels are activated by phospholipids and volatile 
anesthetics such as halothane and isoflurane[5]. 

INVOLVEMENT OF TASK CHANNELS IN 
NEUROLOGICAL DISORDERS
Ischemia
Neuronal damage caused by ischemic stroke is a 
major health care problem for persistent disability 
and death in clinical practice[14]. When ischemic state 
occurs, the transient membrane depolarization is 
induced in neurons. Consequently, the release of 
neurotransmitters such as glutamate, neuropeptide and 
Zn2+ is enhanced[15]. It is well known that the excessive 
glutamate causes neurotoxicity including neuronal 
dysfunction and degeneration. When the ischemic 
events continue to occur, cell death is induced[16]. On the 
other hand, mild hypoxia can induce neuroprotective 
signaling cascades that prevent neuronal death

[17,18]. 
The activation of K+ channels causes membrane 
hyperpolarization, which increases cell survival during 
cellular stress conditions. The decreased neuronal 
activity and the resultant lower metabolic demands 
could enhance neuronal survival under stress conditions. 
Thus, the protective effect of K+ channels would reduce 
the development of ischemic stroke. 

TASK1 and TASK3 channels are sensitive to 
acidic pH and hypoxic conditions. In addition, TASK3 
homomeric channels are selectively suppressed by 
Zn2+[19]. Considering that acidic pH and hypoxia are 
observed and the release of Zn+ is enhanced during 
ischemic conditions, it is likely that TASK1 and TASK3 
channels are involved in the development of ischemic 
stroke. Indeed, the roles of these channels in the 
ischemic stroke development have been revealed by 
pharmacological inhibitors and genetic knockout (KO) 
mice. In a study using a mouse model of cerebral 
ischemia, transient middle cerebral artery occlusion 
(MCAO), the infarct volume in TASK1 KO mice was 
significantly larger than that in its control mice while 
there was no significant difference in the infarct volume 
between TASK3 KO and its control mice[20]. The increased 
infarct volume could be mimicked by the TASK1 inhibitor 
anandamide[20]. Furthermore, in a study using a mouse 
model of permanent MCAO, the expression of TASK1 
channel gene reduced the infarct volume, most likely 
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by a general influence on blood pressure[21]. These 
finding suggest TASK1 expressed in the brain decreases 
neuronal damage when stroke occurs. 

Epilepsy
Epilepsy is a brain disorder that is characterized by 
the presence of spontaneous episodes of neuronal 
discharges[22]. Excessive and/or synchronous discharges 
in the brain cause the disruption of consciousness and 
disturbance of sensation and movement[22]. K+ channels 
contribute to nearly all aspects of cellular electrical 
signaling and are important determinants of seizure 
susceptibility[23]. Therefore, K+ channels have been 
considered as practical targets for anti-epileptic drug 
development. 

In pathological conditions such as ischemia and 
epilepsy, it has been demonstrated that the extracellular 
pH was changed in the brain[24,25]. In the CA1 
hippocampal areas, recurrent epileptiform activity caused 
biphasic pH shifts, consisting of an initial extracellular 
alkalinization followed by a slower acidification[25]. The 
authors indicated that the different extracellular pH 
shifts between CA1 and dentate gyrus might have 
caused the regional difference in seizure susceptibility 
between these two areas[25]. Because TASK channels 
are highly sensitive to changes in extracellular pH, 
several studies implicated the involvements of these 
channels in the generation of epilepsy. The changes in 
neuronal excitability within the hippocampus are one of 
the hallmarks of temporal lobe epilepsy[26]. Therefore, 
it is conceivable that TASK channels expressed in the 
hippocampus play essential roles in the generation of 
epilepsy. First, the role of TASK1 channels in epilepsy 
was investigated in the hippocampus of gerbils[27]. 
Between the hippocampi of young seizure-resistant 
(SR) and seizure-sensitive (SS) gerbils (1 to 2 mo 
old), there was no difference in the TASK1 and TASK2 
immunoreactivites. In adult SS gerbil hippocampus, 
TASK1 immunoreactivity in astrocytes was higher 
compared to the adult SR gerbil hippocampus. 
After seizure events, TASK1 immunoreactivity was 
significantly downregulated in astrocytes of the SS 
gerbil hippocampus. Furthermore, several anti-epileptic 
drugs selectively reduced the TASK1 immunoreactivity 
in astrocytes of the SS gerbil hippocampus[27]. These 
findings indicated that upregulation of TASK1 channels 
in astrocytes may be responsible for the seizure activity 
of adult SS gerbils and that downregulation of TASK1 
channels in astrocytes may suppress the seizure 
activity. In addition to TASK1 channels, the role of 
TASK2 channels in epilepsy was examined by using a 
rat model of experimental temporal lobe epilepsy[28]. 
Following status epilepticus, TASK2 expression in the 
CA1 pyramidal cell layer was downregulated, probably 
due to damage or loss of CA1 pyramidal cells. On the 
other hand, the TASK2 expression was significantly 
upregulated in the dentate granuler and CA3 pyramidal 
cell layers and endfeet of perivascular astrocytes[28]. 

These findings suggest that upregulation of TASK2 
channels may make a contribution to adaptive 
responses by inducing hyperpolarization and reducing 
seizure activity. 

Ion channels are essential for the regulation of 
excitability in the central nervous system[3]. It is believed 
that various inherited diseases associated with abnormal 
excitability of the affected neurons are caused as a 
result of mutations in ion channel encoding genes[2]. 
Several studies reported the discovery of epilepsy-
related mutations in genes encoding TASK channel 
proteins. Childhood absence epilepsy is an idiopathic, 
generalized, nonconvulsive epilepsy that occurs in 
otherwise normal children. The KCNK9 gene coding for 
the TASK3 channel is present on chromosome 8 in a 
locus that shows positive genetic linkage to the human 
absence epilepsy phenotype[29]. Furthermore, in the 
genetic absence epilepsy rats from Strasbourg (GAERS), 
an additional alanine residue in a polyalanine tract within 
the C-terminal intracellular domain was detected in 
the KCNK gene. For this reason, TASK3 channels were 
regarded as a promising candidate gene for absence 
epilepsy. However, there were no significant differences 
in the physiological properties between the wild-type 
and mutant TASK3 channels[30]. In addition, leak K+ 
currents were almost similar between thalamocortical 
neuros in GAERS and nonepileptic animals[30]. These 
observations suggest that TASK3 gene was not 
associated with absence epilepsy. On the other hand, a 
mutation analysis of the TASK3 gene was performed in 
patients with children and juvenile absence epilepsy[31]. 
Only one silent polymorphism was detected in exon 2 
of the TASK-3 coding region. However, since there was 
no relationship between the exon 2 polymorphism and 
absence epilepsy[31], the human TASK-3 appears not to 
be involved in the absence epilepsy. 

Apoptosis
During brain development, the cell excitability is an 
important determinant for neuronal survival and 
proliferation[32]. K+ channels are responsible for the 
resting membrane potential and action potential 
duration. Activation of K+ channels results in membrane 
hyperpolarization, which significantly influences 
neuronal death or survival. It has been demonstated 
that activation of K+ channels induced neuronal 
apoptotic cell death[33,34] whereas it protected neurons 
from ischemia[35] and glutamate-induced cell death[36]. 
Previous studies revealed that the expression of TASK 
channels may substantially affect cell viability in either 
direction[37]. It has been demonstrated that TASK3 
channels are responsible for K+-dependent apoptosis in 
cultured cerebellar granule neurons. Neuronal death was 
caused by apoptosis when cerebellar granule neurons 
were cultured in vitro in physiological K+ concentration, 
but was prevented when they were cultured in high 
K+ concentration. The cell death of granule neurons 
was also suppressed by pharmacological inhibition 
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revealing insights into the neurological disorders. 
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