
Disciplined sleep for healthy living: Role of noradrenaline

Rachna Mehta, Abhishek Singh, Birendra Nath Mallick

Rachna Mehta, Abhishek Singh, Birendra Nath Mallick, 
School of Life Sciences, Jawaharlal Nehru University, New Delhi 
110067, India

Author contributions: All authors contributed towards preparing 
this manuscript.

Conflict-of-interest statement: Authors declare no conflict of 
interest. 

Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative 
Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this 
work non-commercially, and license their derivative works on 
different terms, provided the original work is properly cited and 
the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Birendra Nath Mallick, PhD, Professor, 
School of Life Sciences, Jawaharlal Nehru University, New 
Mehrauli Road, New Delhi 110067, India. remsbnm@yahoo.com 
Telephone: +91-11-26704522
Fax: +91-11-26742558

Received: August 19, 2016 
Peer-review started: August 22, 2016
First decision: October 21, 2016
Revised: November 10, 2016 
Accepted: November 27, 2016
Article in press: November 29, 2016
Published online: March 28, 2017

Abstract
Sleep is essential for maintaining normal physiological 
processes. It has been broadly divided into rapid eye 
movement sleep (REMS) and non-REMS (NREMS); one 
spends the least amount of time in REMS. Sleep (both 
NREMS and REMS) disturbance is associated with most 
altered states, disorders and pathological conditions. 
It is affected by factors within the body as well as 
the environment, which ultimately modulate lifestyle. 

Noradrenaline (NA) is one of the key molecules whose 
level increases upon sleep-loss, REMS-loss in particular 
and it induces several REMS-loss associated effects and 
symptoms. The locus coeruleus (LC)-NAergic neurons 
are primarily responsible for providing NA throughout 
the brain. As those neurons project to and receive inputs 
from across the brain, they are modulated by lifestyle 
changes, which include changes within the body as well 
as in the environment. We have reviewed the literature 
showing how various inputs from outside and within the 
body integrate at the LC neuronal level to modulate sleep 
(NREMS and REMS) and vice versa. We propose that 
these changes modulate NA levels in the brain, which in 
turn is responsible for acute as well as chronic psycho-
somatic disorders and pathological conditions. 
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Core tip: Sleep is affected by many internal factors as 
well as lifestyle changes and vice versa. Noradrenaline 
(NA) is one of the molecules affected by lifestyle as 
well as sleep-loss; rapid eye movement sleep-loss in 
particular. Many of the sleep-loss associated cellular-
molecular-behavioral and patho-physiological changes are 
induced by NA. Therefore, we propose that disciplined 
sleep habit, which would maintain optimum level of NA, 
is essential for leading healthy life. 
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INTRODUCTION
The classical proverb of wisdom…..“health is wealth”…..
has been expressed in almost all cultures and ages in 
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some form or the other. To enjoy life, one needs to be 
physically and mentally healthy. “Health” constitutes 
two aspects, the physical body and the mind; the 
substrate for the latter is the brain. Directly or indirectly 
the physical substrates, the body and the brain are 
constantly interacting with their immediate as well as 
distant surroundings, the environment. The interactions 
are complex; synthesis of one is often coupled with trans
formation of another; however they always remain in 
equilibrium for normal and healthy living. Disturbance 
or a shift in such equilibrium results in disease or altered 
state, which if gets rectified, cure or recovery may follow; 
however, in the absence of recovery, irreversible damage 
may precipitate/accumulate. In general, waking and 
sleep are among the fundamental instinct behaviors. 
Broadly and relative to each other, waking is considered 
to be energy consuming process (catabolic) while sleep 
(anabolic) as natural resuscitation. Until about mid
twentieth century sleep was largely considered to be 
a passive phenomenon; however, consistent research 
has proven that it is an active process regulated by the 
brain. Sleep researchers often face questions like why 
sleep is necessary, how much daily sleep is needed and 
how sleep loss exerts its effects and so on. In this review 
we will discuss the role of sleep, rapid eye movement 
sleep (REMS) in particular, in maintaining the level of a 
common factor, noradrenaline (NA), disturbance of which 
induces sleeploss induced/associated effects. 

Sleep is a spontaneous, reversible state of reduced 
sensitivity when the consciousness remains in a sub
dued state; during this state the body recuperates 
by replenishing the exhausted resources. Organisms 
have faced environmental and physiological challenges 
through evolution, which have impacted the quality and 
quantity of sleepwake behavior in various species[14]. 
Also, the amount of sleep varies among different groups 
of individuals and populations depending on the lifestyle 
and environmental conditions. However, the modern 
lifestyle threatens the sleep behavior and pattern, which 
affect the health negatively. For example, the circadian 
misalignment usually seen in shift workers, truck drivers, 
frequent travelers, health support givers (nurses, etc.), 
those on special operation missions, etc., alters the 
natural sleep durations as well as cycle resulting in 
pathophysiological changes including fatigue, irritability, 
anxiety, restlessness, frequent daytime naps, lack 
of concentration, decreased performance at work[5]. 
These sleepdisturbances exert a global effect on body 
physiology leading to short (acute)  and long (chronic)
term pathological conditions. Further, these changes 
inflict significant hidden costs to the individual as well 
as to the society at large, which is not worth tradingoff 
against a few hours of apparent immediate wakefulness. 
However, as we are constantly exposed to various 
psychosocialenvironmental conditions which modulate 
sleep, with the best of efforts it is almost impossible to 
completely avoid sleep disturbance; however, we may 
attempt avoiding the effects if we know the reasons 
(etiology). Keeping this in mind, here we reviewed how 

even environmental and psychosocial factors modulate 
sleep and correlated them with changes in the level of a 
common physiological factor, NA, which is responsible for 
sleeploss related effects. 

Sleep is not a homogenous state; the least fraction of 
sleep time is spent in a unique state when one dreams. 
Based on electrophysiological signals recorded from the 
brain, eye and neckmuscles sleep has been broadly 
divided into REMS and nonREMS (NREMS). REMS is a 
unique physiological process expressed in humans and 
most likely in other higher order vertebrates in evolution 
possessing evolved brain. Role of REMS has been im
plicated with several physiological processes including 
that it maintains brain excitability and thus maintains 
“housekeeping function of the brain”[6].

REMS disturbance has been reported to be associated 
with most physiological dysfunctions and pathological 
conditions including mood, mania, bipolardisorders, 
Alzheimer’s (AD) and Parkinson’s (PD), epilepsy, narco
lepsy, cognitive impairment, cardiovascular and respiratory 
disorders[713], infections, fever and trauma[14,15]. REMS is 
regulated by the interactions of neurons located in different 
brain regions forming complex neural network. Notably 
the NAergic neurons in brainstem are continuously active 
during wake as well as NREMS and cease activity during 
REMS, while they continue firing during REMS deprivation 
(REMSD). Upon REMS loss, the level of NA increases in 
the brain, which has been suggested to induce many 
REMS loss associated acute and chronic effects. Isolated 
studies have shown that several of the symptoms, e.g., 
hypertension, hyperglycemia, hyperexcitability, lack of 
concentration, memory loss, psychosomatic disorders, 
etc., are reported to be modulated by increased NA[1624]. 
Thus, there are enough convincing reasons to accept 
that disciplined sleep, which includes REMS, maintains 
optimum levels of NA in the brain and therefore, it is 
necessary for healthy living, which we would elaborate 
in this review. However, for complete understanding, it 
is necessary we understand how REMS is regulated by 
the brain and hence, first, we would discuss in short the 
essential basic mechanism(s) of REMS regulation. 

BRAIN MECHANISM OF REMS 
REGULATION WITH PARTICULAR 
REFERENCE TO LC
Localizing the brain structures responsible for REMS
Aserinsky first objectively identified the REMS state in 
humans as having desynchronized EEG, phasic eye 
movements in the EOG and complete loss of muscle tone 
in the EMG recorded from the antigravity muscles[25]. 
Later, it was identified in rat, cat and many other mam
malian species. By the time REMS was identified it was 
known that rostral brain stem reticular formation is 
important for EEG desynchronization and waking, while 
the caudal part is responsible for EEG synchronization 
and sleep (NREMS and REMS were not classified until 
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then). Transection and lesion studies identified that the 
areas responsible for REMS regulation are also located 
in the brain stem[26,27]. Some studies reported that 
neurons in the medial[28] and the lateral[29,30] pontine 
reticular structure were critical for REMS. Transection 
made rostral or caudal to the pons showed that signs 
identifying REMS were expressed in the portion of the 
brain which remained connected with the pons[31,32]. 
The pons includes two major nuclei, the LC and the 
laterodorsal and pedunculopontinetegmentum (LDT/
PPT), which have been reported to be important for 
REMS regulation[3335]. Nonpontine brain regions like 
perifornical area[36,37], preoptic area in hypothalamus[3840], 
basal ganglia[41], nucleus accumbens, ventral tegmental 
area, amygdala[42], basal forebrain, prefrontal cortex[43,44], 
dorsal raphe nucleus[45], substantia nigra[46,47], prepositus 
hypoglossus[48], etc., have been reported to modulate 
REMS. 

Based on the firing patterns of neurons associated 
with wakingNREMSREMS, those neurons almost ex
clusively active during REMS were classified as REMON 
type, while those shutoff during REMS were termed as 
REMOFF neurons. The former were identified primarily 
in the LDT/PPT, while the latter in the LC[4954]. Interaction 
between LCNAergic and PPTacetylcholine (ACh)ergic 
neurons has been proposed to regulate REMS and that 
has been the focus of several reviews[49,55]. Briefly, REM
OFF neurons are inactivated for activation of the REM
ON neurons and initiation of REMS. It has been proposed 
that cessation of LC neurons is a prerequisite condition 
for REMS generation[56]. Therefore, the behavior of the LC 
neurons, their afferents (inputs) and efferents (outputs) 
for REMS regulation will be discussed in brief. 

LC-NA-ergic system and REMS regulation 
The LC neurons are normally silent during REMS and 
continue to remain active during REMSD[57]. Stimulation 
and inactivation of the LC neurons had opposite effects 
on REMS. For instance, inactivation of LC neurons by 
local cooling, 6OHDA induced selective loss of NA
ergic neurons in LC or lesion of LC neurons increased 
REMS[5861], whereas stimulation of LC neurons decreased 
REMS[6264]. Tyrosine hydroxylase (TH) mRNA, TH as 
well as NA levels in brain were higher in REMS deprived 
animals[65]. NA concentration has been reported to be 
lower in brain regions[66,67] and blood[68] during REMS as 
compared to NREMS and wakefulness, while NA levels 
were elevated during REMSD[65]. Expression profiles of 
NAergic receptor density have been inversely correlated 
with ontogenetic development of REMS[69]. Therefore, it 
has been proposed that one of the functions of REMS is 
to maintain NAlevel in the brain which in turn maintains 
brain excitability and thus serves housekeeping function 
of the brain[6]. 

Neurochemicals modulating LC neurons and REMS
Many studies investigated influence of various neuro
transmitters and their diverse effects on LC neurons. 
Agonist and antagonist of various neurotransmitters 

injected into the LC modulated REMS. It was observed in 
cats that infusion of NA into the LC decreased REMS while 
adrenergic antagonist increased REMS[70]. Administration 
of ACh into LC decreased REMS[71]. Infusion of GABA and 
its agonist, muscimol into the LC increased[35,72], while GABA 
antagonist, picrotoxin[73], bicuculine[74] and baclophen[72] 
decreased REMS. Orexin (Orx)ergic agonist injection 
into the LC has been shown to reduce REMS[75], whereas 
knockdown of Orxergic receptors in the LC increased 
REMS[76]. Electrical or pharmacological stimulation of Orx
ergic neurons reduced REMS, whereas the effects on 
REMS were abolished by simultaneously blocking Orx 
action in LC[75,77,78]. Infusion of a somatostatin antagonist 
into LC also resulted in marked decrease in REMS[79]. 
Application of serotonin (5HT) into LC inhibited basal 
neuronal discharge rate; however, the effects on REMS 
was not studied[45,80]. Various studies have shown that 
although dopamine (DA) may modulate REMS, detailed 
mechanism and site of action, particularly on the LC 
neurons, are not known[81]. The projections from the 
GABAergic neurons from substantia nigra onto LCNA
ergic terminals have been suggested to act presyna
ptically and fine tune NA release over PPT AChergic 
neurons and initiate REMS[47,55]. Thus, the LC neurons are 
modulated by many of the neurotransmitters in the brain. 
Further, LC neurons project to various areas of the brain 
including on the AChergic and Orxergic neurons and 
modulate physiological processes and behaviors including 
REMS[42]. Thus, complex communications among various 
neurons containing different neurotransmitters affect the 
LC neuronal activities, which would modulate release of 
NA and regulate REMS (Figure 1). 

Therefore, we have sufficient evidence that REMS and 
NAlevel in the brain are closely linked and they modulate 
each other; also REMS tends to maintain NAlevel in the 
brain. Notwithstanding, it is also known that NA affects 
many other physiological processes and NA is modulated 
in many pathological conditions; further, REMS as well as 
many of the pathophysiological conditions are associated 
with lifestyle changes[11,22,8284]. Hence, we propose that 
environmental and lifestyle processes and its associated 
changes might affect either NA levels or REMS and 
thereby may be responsible for many of the acute as well 
as chronic pathophysiological conditions. 

ENVIRONMENTAL FACTORS AND REMS
Modernity and stormy lifestyle have resulted into re
duced sleep. Changes in lifestyle which include shorter 
sleeping hours, electricity and artificial lights at night, 
long television viewing and low physical activity have 
precipitated various health disorders/problems. Several 
studies have reported the effects of changes in lifestyle, 
ambient as well as body temperature and diet on NREMS 
and REMS. Therefore, loss of REMS cannot be overlooked 
and the factors affecting REMS merit attention. Physical 
fitness, nutritious food, stress reduction, exercises, life
style changes motivating positive thinking are essential 
for maintenance of quality sleep including REMS. Even 
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in the brain is responsible for thermoregulation[92,93]; the 
thermosensitive neurons in the medial preoptic area 
possess α1ARs and they are modulated by stimulation of 
brainstem ascending reticular activating system[94]. NA is 
involved in the neural regulation of REMS as well as body 
temperature[69,95]. Increased turnover of NA in specific 
nerve terminals of hypothalamus was observed in rats 
upon exposure to mild thermal stress[95]. As NA stimulates 
metabolic rate[96,97], it could elevate body temperature 
and trigger heat dissipation for thermoregulation. It has 
been suggested that one of the reasons for reduced core 
temperature during sleep is reduced NAergic peripheral 
vasoconstrictor tone resulting in increased peripheral 
blood flow and dissipation of heat[98,99]. Also, NA has 
been shown to induce hypothermia by acting on α1
ARs in the medial preoptic area[100,101]. Abnormalities 
in the body temperature rhythm are associated with 
insomnia and associated symptoms[102]. In fact, in a 
study the body temperature was monitored every 24 h 
during 10 d REMSD in rats. It was found that there 
was hyperthermia during initial about 4 d of REMSD; 
thereafter there was hypothermia if the deprivation 
continued. The authors explained the findings in relation 
to the REMSD associated elevated levels of NA[103]. Thus, 
REMS and associated change in NA level play crucial role 
in thermoregulation and as a corollary their disturbance 
would affect the body physiology. 

Exercise
“The sleep of a laboring man is sweet” is a beautiful 
phrase from biblical times written in the Holy book 

excess sleep may be harmful; as the Greek physician 
Hippocrates wrote “Disease exists if either sleep or 
watchfulness be excessive”. Thus, monitoring quality as 
well as quantity of sleep for the maintenance of healthy 
living beckons serious attention. Disturbance/loss of 
REMS is often associated with multiple symptoms, which 
might be an influence of complex circuitry involved in 
REMS regulation, NA being one of them.

Temperature
In mammals sleep is strongly associated with thermoregu
lation and temperature maintenance is a key determinant 
of sleep[85]. The core body temperature varies along with 
the sleepwake rhythm. In healthy individuals and under 
normal environmental conditions, sleep propensity and 
body temperature vary inversely across day and night[86]. 
As the body and brain temperatures decrease during 
NREMS, while it tends to increase during REMS, it has 
been proposed that one of the functions of REMS is to 
maintain the brain temperature by “warming the CNS”[87]. 

Among the sleep stages, REMS is more sensitive 
to changes in ambient temperature; its cycle length 
significantly decreases with an increase in ambient tem
perature from 13 ℃ to 25 ℃[88]. In humans, sensitivity 
to hot or cold stimulation is reduced during REMS com
pared to NREMS and wakefulness[89,90]; however, it is not 
completely abolished. It has been observed in animal 
studies that thermoregulatory response as well as 
thermosensitivity of most of the hypothalamic preoptic 
neurons decrease during REMS[91], which suggested a 
causal relationship between them. Medial preoptic area 
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Figure 1  Schematic illustration of inputs to the locus coeruleus neurons from different regions in the brain, some of them are influenced by the 
environmental changes. The resultant output of the LC neurons is responsible for level of NA in the brain. As those LC-NA-ergic neurons cease activity during 
REMS, disturbance in the latter keeps those neurons active and thus modulates NA level in the brain. This altered level of NA (mostly elevated level) in turn affects 
physiological processes regulated by the brain. PFC: Prefrontal cortex; NAc: Nucleus accumbens; VTA: Ventral tagmental area; DRN: Dorsal raphe nucleus; SNrPr: 
Substantia niagra pars reticulate; PrH: Prepositus hypoglossus; PeF: Perifornical area; POA: Preoptic area; LDT/PPT: Laterodorsal tegmentumpedunculopontine 
tegmentum; LC: Locus coeruleus; ACh: Acetylcholine; DA: Dopamine; GABA: Gamma-amino butyric acid; NA: Noradrenaline.
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Ecclesiastes. Several research groups have examined 
the effects of exercise on sleep. Important relationship 
has been found between sleep and exercise although 
both the behaviors are mediated by physiologically 
different mechanisms. Regular physical activity promotes 
sleep, improves sleep quality and reduces day time 
sleepiness[104]. It is important to note that moderate 
amount of exercise is beneficial to health and upon 
exposure to severe acute exercise a reduction and a delay 
in REMS onset latency as well as an increase in slow 
wave sleep was observed[105108]. These effects could 
be due to the stress associated with intense exercise. 
The observed increased latency for the onset of REMS 
was due to the significant increase in NA[109]. Several 
other studies have also reported significantly increased 
concentration of NA after exercise[110,111]. These results 
support that elevated levels of NA might reduce REMS 
and vice versa and that in turn might affect physiological 
processes. 

Extensive research towards understanding the effects 
of exercise has shown that several brain areas receive 
various feedback inputs from peripheral structures such 
as muscles and joints which then influence the brain 
functions[112]. Exercise is beneficial for synaptic plasticity 
which could be due to molecules like brain derived 
neurotrophic factor that favors neuronal growth and 
plasticity[113,114]. It increases long term potentiation[115,116], 
neurogenesis[117] and thus has beneficial effects on 
learning and memory[118]. As a mechanism of action 
it may be said that sleep including REMS and NA[119] 
have been shown to enhance hippocampus dependent 
memory[120]. In support, sleep and REMS loss has been 
reported to reduce learning and memory formation[121,122]. 
Exercised sleep deprived rats learn and perform nor
mally in comparison to sedentary/control sleep deprived 
rats in whom the learning and memory were severely 
impaired[123]. Regular exercise protocol prevents long term 
potentiation deficits and memory impairment induced by 
sleep deprivation (SD)[124]. As REMSloss has been shown 
to elevate NA level in the brain[65] and that NA has been 
shown to induce apoptosis and neuronal loss[125,126], it 
appears that a critical level of NA in the brain is essential 
for normal healthy brain functioning including memory 
and plasticity. As REMS plays a critical role in maintenance 
of brain level of NA to its optimum levels, we propose that 
optimum REMS is essential for healthy living. 

Several epidemiological studies have shown that 
regular physical activity, such as running, has favorable 
physiological effects. It reduces the risk of neurode
generative disorders like AD, dementia which are also 
associated with REMS disorder; exercise also promotes 
functional recovery from brain injury[127129]. Isolated 
studies in humans have shown exercise in combination 
with mood stabilizers as an adjunctive therapy improves 
manic symptoms of bipolar disorder, which is strongly 
influenced by environmental and genetic factors as well 
as inappropriate amount of sleep[130132]. Moderate aerobic 
exercise also improves sleep quality, antidepressive 
response and immune function in patients with chronic 

insomnia[133]. Thus, one of the possibilities is that the 
exercise mediates its beneficial effect on the body 
physiology by maintaining sleep, NREMS and REMS. 

Yoga, an ancient Indian practice based knowledge, is 
apparently a holistic set of mindbody exercise. Of late 
it has become popular due to its benefits on physical 
and mental health and for amelioration of symptoms 
associated with many altered and pathophysiological 
conditions including insomnia[134,135]. For example, Yoga 
has been shown to reduce the severity of restless leg 
syndrome; it improved sleep in women with restless leg 
syndrome[136,137]. Yogic exercises have been reported to 
improve sleep qualitatively in cancer patients[138]. One of 
the possibilities is that at least some of the benefits of 
the Yoga could be by modulating the quality of sleep of 
an individual. 

Food
Sleep plays an important role in the metabolic control of 
the body[139,140]. Recently, a relationship between circadian 
clock and nutrition has been referred to as “chrono
nutrition”[141]. Not only nutrients quality and quantity, 
the meal timings are also important and thus affect the 
biological (circadian) clock. 

Amino acids like tryptophan, glutamate, and tyrosine 
are the precursor molecules for the biosynthesis of 
neurotransmitters like serotonin, GABA, NA and DA 
respectively and they all are involved in sleepwake 
regulation. Therefore, diet can influence the rate of 
biosynthesis and functions of these neurotransmitters 
and affect physiological processes including sleep
wake cycle. Neurotransmitter Orx regulates feeding 
behavior[142] and also enhances wakefulness which 
could be by activating the LCNAergic neurons[77]. GABA 
promotes sleep and is also a food ingredient[143]. Loss 
of GABA and other sleep related nutrients from whole 
grains as in polished grain in diet is considered to be one 
of the key factors for insomnia[144]. Certain other dietary 
nutrients like calcium, magnesium and potassium are 
also associated with improving sleep quality[143].

Body mass index is closely associated with sleep since 
obese and overweight individuals mostly have shorter 
sleep duration compared with normal subjects[145]. This 
association between sleep duration and body mass index 
has also been reported in patients with sleep disorders 
like obstructive sleep apnea, narcolepsy, insomnia, 
restless leg syndrome or periodic limb movements during 
sleep[146]. Also, habitual short/long sleep duration as well 
as intervening sleep restriction have been suggested 
as a risk factor for weight gain, obesity[147], insulin 
resistance, type 2 diabetes[148,149] and hypertension[150,151]. 
Obese adults show high amount of NREMS though 
very low REMS percentage[145]. A low carbohydrate diet 
with high fat content increases NREMS while REMS is 
reduced[152,153]. This might be due to higher metabolic 
demand of REMS[154] because greater glucose utilization 
occurs during this stage as compared to NREMS[155]. 
Different studies have shown that consuming food closer 
to the bed time negatively influences sleep; it increases 
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REMS latency and decreases REMS percentage in healthy 
individuals[156]. Dietary constituents influence sleep 
and adequate sleep protects against several nutritional 
and metabolic disorders including insulin resistance, 
diabetes[157159], obesity[160], dyslipidemia[146]. Thus, main
tenance of proper diet and sleep patterns is a necessity 
for healthy living. 

Light
Light is one of the most important external factors for 
maintaining normal healthy living. Depending on the 
intensity, light affects sleep directly by preventing us 
from falling asleep and indirectly by altering the circadian 
clock. Light not only regulates sleep timing but also elicits 
acute changes in many behaviors. As night approaches 
reduced light intensity is detected by the photoreceptors; 
in higher animals they are primarily located in the retina. 
The retina projects to the suprachiasmatic nucleus of 
the hypothalamus, which is the biological master clock 
and the site for homeostatic regulation of circadian func
tions[161]. Removal of suprachiasmatic nucleus abolishes 
the circadian rhythm including that of sleepwaking in 
individuals[162]. The effects of circadian phase shift and 
SD were more pronounced on NREMS[163]. The NREMS 
was selectively enhanced during short light periods while 
REMS was elevated during short dark periods[164]. 

Exposure to light in late night hours resets the 
internal clock and makes it difficult to return to sleep. 
For example, in shift workers or travelers across time 
zones, the internal clock adjusts to the altered day
night cycle which mostly predisposes these individuals 
to insomnia when trying to sleep outside their internal 
temporal phase. Definitely this is a serious concern for 
such individuals like pilots, physicians, nurses, public 
safety workers, police, etc. These individuals may fall 
asleep during work or driving and may cause threat to 
life in addition to other disorders. Sleep was recorded 
in humans with morning type and evening type sleep 
for 3 successive nights and then after shifting sleep 
during daytime for next 3 d. Although night time sleep 
was not significantly affected, the day time sleep was 
shortened; REMS episode was found to be longer without 
much difference in NREMS[163]. Thus, it appears that 
a homeostatic mechanism operates to regulate REMS 
quantity and it suggests that circadian rhythm related 
periodic appearance of REMS is necessary to avoid sleep 
related disorders. 

Different neurotransmitters are involved to regulate 
the sleep response to light. For instance, the levels of 
melatonin, NA, ACh decrease, while serotonin increases 
under the influence of light[165,166]; NA exhibits a clear 
circadian variation[5]. NA levels were highest in the brain 
during night in rat, a nocturnal animal while during 
the day in rabbit and cat[167]. Notwithstanding, isolated 
studies have shown that exposure of light to sites other 
than eyes (extraocular light) during sleep also sig
nificantly increased REMS[168]. This suggests that light 
exposed to sites other than eyes may also influence 

brain functions although the mechanism of such action 
needs further investigation[169]. Thus, the lightdark is 
likely to affect the sleepwaking rhythm, affecting various 
neurotransmitters, or vice versa, which then affect other 
physiological processes. 

ENVIRONMENT INTERACTS WITH 
GENOME TO MODULATE REMS
As discussed above, the brain modulates various be
haviors including waking, NREMS and REMS by releasing 
biomolecules, the neurotransmitters. The latter are 
directly or indirectly modulated by gene expression, 
which are affected by modifications on the DNA per se or 
at the epigenetic level. 

The susceptibility and vulnerability to diseases are 
strongly influenced by genetic makeup of individual as 
well as environmental conditions[170173]. However, it is 
neither the genetic makeup nor the environment alone 
but their interactions, which decide the phenotype of 
an organism and expression of behaviors in health and 
diseases. Here, we would discuss these events with 
particular reference to NA and REMS in acute and chronic 
conditions in health and diseases. 

Gene expression 
Point mutation of prion proteingene was possibly the 
first to be linked to human sleep disorder, fatal familial 
insomnia[174]. Later in 1999 through genetic studies, Orx 
was shown to be involved in human narcolepsy[175,176]. 
Sleepwakefulness is associated with widespread 
changes in gene expressions in the mammalian brain[177]. 
REMS is a complex phenomenon and its regulation is 
multifactorial, therefore, many genes and their interac
tions are likely to contribute to its regulation and 
pathologies associated to REMS disorders, which are 
increasingly gaining recognition[178]. However, presently 
most of the studies have correlated gene expressions 
with loss of total sleep, which includes loss of both 
NREMS as well as REMS; not many studies have 
correlated changes in gene expressions upon exclusive 
loss of REMS. In 1970s and 1980s it was known that 
transcription is accelerated during sleep[179] and sleep 
promotes mRNA translation. Microarray experiments 
have shown that the patterns of gene expressions vary 
during sleep and wakefulness[180,181]. Subsequently, it has 
been demonstrated that extended wakefulness, due to 
SD, hinders the expression of several genes including 
those required for memory formation and learning[182185]. 

During wakefulness, the NAergic system induces 
increased expression of genes encoding BDNF, NGF1 
and phosphorylated cAMP response element binding 
(pCREB) protein (required for neurogenesis and memory 
among other functions), cfos (immediate early gene 
expression for several proteins), Arc and BiP[181]. 
Inactivity of NAergic system during sleep prevents 
the expressions of BDNF, Arc and pCREB, thus causing 
impairment of longterm memory formation during 
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sleep[180]. Transcriptional regulatory molecule CREB, 
which is critical for synaptic plasticity and memory con
solidation[186], also regulates the expression of TH gene 
which is essential for biosynthesis of NA and this factor in 
turn modulates REMS. Also, NA regulates the expression 
of transcription factors like CREB involved in memory 
formation and consolidation.

Sleep has been suggested to have an anabolic 
function by replenishing the wakefulness associated loss 
of energy (glycogen stores). This has been reported 
to be achieved by increasing protein targeting to glyco
gen, decreasing glycogen synthase and glycogen pho
sphorylase mRNA[187]. Further, this increased protein 
targeting to glycogen mRNA during wakefulness has 
been suggested to be due to increased level of NA during 
wakefulness. 

In PD there is reduced expression of TH and dopa
mine β hydroxylase (required for biosynthesis of NA) 
resulting in reduced NA synthesis along with the loss of 
nigrostriatal DAergic and some other catecholamine 
neurons. These have been proposed to be caused by 
unknown exogenous environmental factors and by endo
genous genetic factors suggesting interaction(s) between 
genes and environment[188]. However, although the role 
and mechanism of action of NA affecting wakefulness
NREMSREMS have been investigated, their genetic 
regulation in health and diseases, particularly in relation 
to sleep and REMS disturbance needs to be studied. 

Epigenetic regulation
Gene expression induces transcription and involves 
several processes including epigenetic modifications. 
Some of the important epigenetic changes are DNA 
methylation and chromatin remodeling through histone 
modifications. These regulate chromatin uncoiling and 
thus allow access to transcription factors and activation 
of the transcriptional machineries. Environmental 
as well as pathophysiological changes have been 
reported to modulate epigenetic machineries to regulate 
the genomic organizations in living organisms[189]. 
Increasing evidence (mostly indirect though) suggests 
that epigenetic changes induce chronic disorders 
including long term sleeploss associated disorders and 
associated behavioral changes of sleepwake states[190]. 
DNA methylation modulates the transcriptional and 
synaptic responses of neurons to sleep loss[191]. Genomic 
imprinting, which is established by epigenetic processes, 
also extends its effects to sleepwake regulation[192]. 
Both REMS and NREMS are regulated by separate sets 
of imprinted genes which are differentially expressed 
in brain regions[193]. Maternally expressed imprinted 
gene, e.g., Gnas, has also been shown to modulate 
the expression of sleepwake states[194]. These and 
similar other studies reinforce the concept of the role 
of epigenetic changes in sleepREMS and theirloss 
associated sustained pathophysiological changes 
particularly for understanding the associated molecular 
circuitry underlying behavioral phenomena.

Independent studies have shown that the bio
molecules (factors) regulating levels of NA and molecules 
affecting NA in the brain, for instance TH[65,195], α1 
adrenergic receptor[196,197] and monoamine oxidase[198] 
are transcriptionally regulated and they are modulated 
by REMSD[65,199201]. These factors are encoded by one 
or more specific genes at the molecular level; however, 
our understanding about their transcriptional regulation 
in association with REMS and its loss in particular, are 
still lacking. Furthermore, many of the neurological 
disorders, including depression, AD, Schizophrenia, PD, 
cognition disorders, ageing, attention deficit/hyperactivity 
disorder, anxiety, posttraumatic stress disorder, etc., are 
associated with dysregulation of REMS as well as LCNA
ergic system. As those disorders are generally chronic 
by nature, the component of those disorders modulated 
by NA is likely to be modulated directly or indirectly by 
epigenetic modulation of NA synthesis, or by the factors 
responsible for modulating the NA level at the synapse. 
However, direct evidences which can relate the role of 
epigenetic modifications of the NAergic system in these 
neurological disorders, especially in relation to REMS or 
its loss or dysfunction, are lacking. Recently we have 
proposed a model explaining the possible mechanism 
of REMSloss associated epigenetic modifications of 
NA synthesis in LC neurons in the brain leading to 
sustained (chronic) associated symptoms[202]. The model 
explains how upon REMSloss epigenetic modifications 
would regulate NA levels in the brain which in turn 
might modulate factors for transcriptional regulation of 
other biomolecules in the brain. An understanding of 
these mechanisms is expected to provide insights into 
the detailed role of NA mediated regulation of REMS 
or its loss in health and diseases. Interactions among 
environment, genome and REMS for the regulation of 
the common mediator molecule, NA and their effects on 
physiological processes have been shown in Figure 2. 

REMS LOSS ASSOCIATED PATHO-
PHYSIOLOGICAL DISORDERS
Cardiovascular system
In humans, mean blood pressure was higher during 
REMS as compared to the remaining phases of sleep 
accompanied by progressive decrease in heart and 
respiratory rates[203,204]. During REMS, both hemispheric 
and brainstem blood flow increased even higher than 
during wakefulness[205,206]. REMSD may contribute to 
arterial hypertension and arthrosclerosis by altering 
blood parameters associated with cardiovascular disorder 
risk[207,208]; hypertensive patients have been reported 
to have significantly reduced REMS[209]. It has been 
observed that 96 h REMSD in young rats led to decrease 
in homocystein, an amino acid that is considered an 
independent risk factor for cardiovascular disease and 
stress[210]. Neves et al[211] reported that REMSD by 
platform method induced significant and sustained blood 
pressure elevation in rats with partial predisposition 
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to developing hypertension. Association of REMS with 
considerable peripheral vasoconstriction has also been 
reported in humans[212]. Heart rate, cardiac pressure, 
cardiac output, arterial pressure, and breathing rate 
become irregular when one goes into REMS. In general, 
respiratory reflexes such as response to hypoxia diminish 
during REMS.

The NA is an important and common factor for the 
regulation of autonomic functions, e.g., cardiovascular
respiratory systems[213], it increases heart rate, cardiac 
contractility and vascular tone[214]. Impaired neuronal 
NA reuptake transporter activity has been reported in 
hypertension and postural tachycardia syndrome[215]. 
Also, in common heart diseases, such as congestive 
heart failure, ischemic heart disease and stressinduced 
cardiomyopathy, NA transporter function seems to be 
reduced[214]. Patients with chronic sleep apnea associated 
with heart failure have been shown to be associated 
with higher urinary and plasma NA levels along with 
an increase in sympathetic activity[216,217]. As NA is an 
important factor to regulate both NREMS as well as 
REMS, a healthy sleep habit is likely to be very important 
to maintain overall physiological processes including the 
autonomic cardiovascular responses. 

Immune functions
Sleep is compromised in most infections and diseased 
conditions[218223]. Immune responses also vary in relation 
to sleep conditions and quantity, while immune challenge 
alters sleep[220]. Shift workers and students studying 

overnight compromising sleep time have been seen to 
have propensity to suffer from cold or flu, suggesting 
sleep loss possibly enhances susceptibility to infections. 
A relationship between amount of sleep and number of 
white blood cells was observed across 26 mammalian 
species. Those with more sleep had more white blood 
cell count favoring better immunocompetency[220]. The 
amount of time spent in NREMS increases while REMS 
is reduced in cases of several infections[224]. REMSD 
has been reported to affect several hormones, meta
bolites[225], interleukins[221,226228], enzymes[229], neuronal 
structural proteins and apoptosis[125,126] in the brain. 
REMS loss possibly initiates acute phase response. 
REMSD rats increased ceruloplasmin, an acute phase 
response protein[230,231]. A component of immune system 
like IL1β is somnogenic, it has been shown to enhance 
NREMS[232,233]. The number and activity of phagocytes 
and natural killer cells, the white blood cells, decreased 
in the REMS deprived animals suggesting severely weak
ened immune system. In experimental rats, increased 
tendency of acquiring infection, lesions in foot paws and 
gastric mucosa after total SD and REMSD have been 
reported[234,235]. 

Supporting the general theme of this review, it 
has been reported that after REMSD the level of NA 
increases significantly in the blood[236] and the brain 
(Mehta et al, 2016 MS under revision), and NA is known 
to modulate the immune system[237]. NA has multiple 
roles in the body; it acts both as a hormone as well 
as neurotransmitter. Among the adrenoceptors, β2
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subtypes are mostly expressed on immune cells[16]. 
NA is essential for the maintenance of normal level of 
antibody production in vivo and thus augments the 
CD4+T cell and Bcell activity[237]. NA suppresses the 
expressions of proinflammatory molecules, such as 
TNFα and IL1β, while increasing the expressions of anti
inflammatory molecules, like IκB, by signaling through 
α1, α2, and βadrenergic receptors on astrocytes 
and glia[24]. Thus, both NA levels and REMS contribute 
to optimum immune responses and their deficiencies 
predispose the body to compromised immunity. 

Neurological disorders
Post-traumatic stress disorder: REMS disturbance 
is a hallmark symptom of posttraumatic stress disorder 
(PTSD)[238]; in some cases REMS is reduced, while it is 
increased in other cases[238240]. NAergic involvement 
in PTSD is supported by the fact that pharmacologic 
stimulation of NAergic neurons evoked PTSD sym
ptoms[241,242] and adrenoreceptors antagonist reduced 
nightmares and sleep disruption in patients with chronic 
PTSD[243]. Mellman et al[244] found that heart rate (LF/HF 
ratio) was higher during REMS of PTSD patient than non
PTSD group.

PD: PD is primarily due to loss of DAergic neurons. How
ever, NA is also a catecholamine synthesized following 
the same pathway, and found to be involved in wide 
range of brain functions. It is important to note that in 
PD patients there is loss of the enzyme synthesizing NA, 
decreased NA level and there is some loss of LCNA
ergic neurons[245,246]. PD patients show sleep disturbance, 
particularly reduced REMS[247]. In addition, PD patients 
show increased latency to sleep, fragmented sleep and 
symptoms like restless legs, daytime sleepiness which 
are usually associated with REMS disturbance and REMS 
behavior disorders[83]. Normally, REMS and NA level in 
brain are inversely related; REMSD induces elevated level 
of NA in brain. In case of diseases like PD the relationship 
between REMS and NA level in brain is lost and both are 
affected.

AD: Like other neurodegenerative diseases, AD patients 
also suffer from sleep disturbances. Polysomnography 
indicated the loss of REMS and increased REMS latency 
in AD patients[7,248,249]. REMS behavior disorder like 
REMS without atonia are distinguishing feature in AD[250]. 
Although the brain of the patients suffering from AD shows 
significant loss of cholinergic population in brain, loss of 
LC neurons has also been reported with progression of 
AD[251253]. The surviving NAergic neurons are reported 
to be highly active possibly for maintenance of high 
NA level in the brain in aging and AD[254]. Prazosin that 
blocks the action of NA was found to improve aggression 
and agitation symptoms in AD[255]. Compensation of NA 
level in the brain by NA reuptake inhibitor are helpful 
in early stage of AD, possibly due to its anti oxidant 
property[256,257] and neuroprotective role[258,259]. Although 
both REMS and NAergic mediators are affected in AD, 

the role of NA and REMS in pathogenesis of AD needs 
further investigation.

Depression: REMS loss is a characteristic symptom of 
depression; alterations in REMS have been observed 
in patients with depressive episodes[260]. An increase 
in total duration and density of REMS and decreased 
REMS latency have been observed in patients with 
major depressive disorder[261,262]. Depression is primarily 
associated with dysregulation of the LC NAergic 
system[263,264]. Also, disruptions in serotonin, NA and 
DA neurotransmissions are generally observed during 
major depression. In general, the monoaminergic hypo
function has been traditionally accepted as the cause of 
depression[265,266]. Antidepressants inhibit reuptake of 
the monoamine neurotransmitters, inhibits monoamine 
oxidase (which degrades NA), or antagonize the in
hibitory presynaptic NAergic autoreceptors[23]. These 
are likely to enhance availability of NA at the synapse 
resulting in facilitation of NAmediated neurotransmission 
and amelioration of the symptoms of depression.

Cognitive dysfunctions: Sleep has been implicated in 
the neuronal plasticity in the brain that underlie learning 
and memory[267]. Indications that sleep participates in 
the consolidation of fresh memory traces come from a 
wide range of experimental observations[268]. Sleep loss 
is associated with decreased concentration, attention, 
vagueness, longer reaction time, lack of coordination, 
disorientation and making mistakes[269,270]. Also, REMS 
has a positive effect on memory while its loss adversely 
affects memory[271,272]. NA is an essential modulator 
of memory formation because of its ability to regulate 
synaptic plasticity[119]. It is released during arousal and 
has a central role to play in the emotional regulation of 
memory[273]. The memory deficits observed during AD 
could be due to the loss of NAergic system reported 
during the disorder[251253]. Thus, NA can be attributed 
to be a common molecule in most of the neurological 
disorders where REMS is also disrupted. 

Obstructive sleep apnea: There are several sleep 
disorders where both REMS and NA are affected. 
Obstructive sleep apnea (OSA) is one such disorder chara
cterized by sporadic collapse of upper airway during 
sleep leading to arousal. OSA patient suffers sleep loss, 
complains persistent drowsiness and daytime sleepiness. 
OSA events have been reported during both NREMS and 
REMS. During REMS the excitatory input to motoneurons 
regulating upper airway reduces due to cessation of NA
ergic neurons, consequently in OSA patients the REMS 
is often associated with higher propensity and frequency 
of obstructive events[274]. Epidemiologically observed such 
relationship is also known as “REMS related OSA”[275]. 
OSA patients show the multitude of the symptoms 
like hypertension, metabolic dysfunction, vascular irre
gularities and oxidative stress; these are associated with 
altered NA level in body. In fact, sympathetic activity and 
plasma NA is reported to be high in OSA patients[276]. 
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Reduction in the number of catecholaminergic neurons 
is shown in OSA; there are also reports of activation 
of hypothalamic pituitary axis that may increase the 
NAergic activity in brain. The remarkable association 
of REMS and NA with OSA indicates their therapeutic 
importance of the disease.

CONCLUSION
Both quantity as well as quality of sleep (NREMS and 
REMS) is essential for healthy living. Interactions among 
various intracellular and extracellular factors viz. nutrition, 
light, temperature, exercise, genetic as well as epigenetic 
mechanisms affect/contribute to the regulation of sleep 
which affects health in short and long term. The NA 
system plays a significant role in regulating NREMS 
as well as REMS. The role of NA in relation to REMS 
and REMSD has been investigated in more detail; NA 
level decreases during REMS while it increases during 
REMSD. Broadly, it has been observed that NA is a key 
molecule which induces REMSD associated changes 
from molecule to behavior. As sleep is affected by life
style changes, we propose that many of the lifestyle 
related pathophysiological conditions could be due to 
dysregulation of sleep (NREMS and REMS) and the 
effects are mediated by elevated levels of NA. Thus, 
sleep discipline plays a key role in maintenance of good 
health. 
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