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Abstract
Fetal growth is determined largely by the nutrient sup-
ply, placental transport function, and growth hormones. 
Recently, gene mutation and expression, especially of 
those genes associated with the proteins that are re-
lated to the fetal growth, have been reported to play 
an important role in the development of intrauterine 
growth restriction (IUGR). Fetal growth epigenetics, a 
new concept in fetal growth, has resulted from studies 
on fetal programing. This paper outlines the findings 
of our serial studies on IUGR, and summarizes data on 
IUGR animal models, placental function in transferring 
nutrients, cell proliferation dynamics in IUGR, and ex-
perimental treatment of IUGR. We review genetic ap-
proaches to IUGR, especially those relating to growth 
factor genes, angiotensinogen genes and other gene 
mutations. We also discuss the epigenetics of fetal 
growth and future study directions on fetal growth re-
striction. These should be valuable in elucidating the 
mechanisms employed by the fetus and in helping to 
develop interventional strategies that might prevent the 
development of IUGR.
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INTRODUCTION
Intrauterine growth restriction (IUGR) is an important 
obstetric complication affecting 5% of  pregnancies[1]. 
This condition represents an in utero shift from the ex-
pected pattern of  fetal growth potential into reduced 
birth weight. This leads to increased risk for intrauterine 
compromise, stillbirth, preterm birth and adverse peri-
natal and long-term outcomes[2-5]. It is generally accepted 
that IUGR is associated with a poor nutrient and oxygen 
supply, although the specific mechanisms involved in 
IUGR development are mostly unknown.

Fetal growth is determined largely by the nutrient 
supply, which is dependent on placental transport func-
tions. Though placental transportation depends on the 
concentration gradient between maternal and fetal blood, 
it seems that placental blood flow and the activity of  spe-
cific membrane transporters play more important role[6,7]. 
Regardless of  what the exact mechanism for IUGR 
might be, growth factors and their interaction with their 
receptors are most likely to be involved[8]. In addition to 
nutrition, placental function, and growth hormones, gene 
mutation and expression have been reported to be associ-
ated with IUGR[9-13]. Those genes associated with the pro-
teins that are related to the fetal growth such as growth 
factor genes are particularly implicated. In recent years, a 
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new concept in fetal growth, fetal growth epigenetics, has 
resulted from studies on fetal programing[3,14-16].

The information in this paper outlines findings from 
our serial studies on IUGR and reviews the genetic ap-
proaches in recent years. This should be valuable in the 
elucidation of  the mechanisms employed by the fetus and 
help in the development of  interventional strategies that 
might prevent the development of  IUGR.

EXISTING FINDINGS
IUGR animal models
Several methods have been used to establish the animal 
model of  IUGR. These include uterine artery ligation, 
passive smoking, alcohol exposure, administration of  
L-arginine or actinomycin, and maternal malnutrition. To 
date, mouse, rat, guinea pig, rabbit, sheep, monkey, dog, 
and pig have been used to establish the IUGR model[17-19].

We have reported the establishment of  an IUGR rab-
bit model using passive smoking and have studied the 
fetal and maternal plasma amino acid concentration, the 
blood flow of  utero-placenta and changes in cell prolif-
eration cycle in brain, liver and placenta[20,21]. In addition, 
the effect of  treatment with histiocyte activators and 
vasodilators on the IUGR was also observed[7,18]. Recent 
studies on gene mutations have shown that specific genes 
might play an important role in the development of  
IUGR[9-16].

Active transfer of nutrients through the placenta
Although fetal plasma nutrient concentration is related to 
the maternal concentration, some amino acids, especially 
most essential amino acids, show higher concentrations 
in fetal plasma than in maternal plasma, proving that the 
absorption of  amino acids from the maternal body to the 
fetus is an active process[22]. Maternal rabbit total plasma 
amino acid concentration at 28-d of  pregnancy was less 
than that of  non-pregnant rabbits. These changes were 
more apparent with essential amino acids. In the rabbit 
IUGR model, smoking could reduce the ability of  the 
placenta to transfer nutrients from the maternal to the 
fetal side. It was found that the total amino acid concen-
tration in fetus was lower in rabbits with IUGR induced 
by smoking than in controls. In fetal plasma, the levels of  
all essential amino acids, except threonine, and of  nones-
sential amino acids including serine, glutamine, alanine, 
tyrosine, arginine and histidine showed the same patterns 
in smoking groups as in the control group[7,20].

Dynamics of cell proliferation in IUGR
Cell proliferation in the fetus is very active, especially in 
early embryo phase. Proliferation depends on the cell di-
vision, as measured by analyzing the cell cycle using flow 
cytometry. The more rapid the cell division, the shorter 
the G0 and G1 phases. In another words, lower prolifera-
tion will leave more cells in G0 or G1 phase, while active 
proliferation will result in more in S + G2 + M phases. By 
analyzing the cell cycle using flow cytometry, we found 

that the ratio of  the cells in G0 + G1 phases to the total 
cells was increased and the ratio of  the cells in S + G2 + 
M phases to the total cells was decreased in fetal brain, 
liver and placenta in IUGR rabbits induced by passive 
smoking. This change was particularly prominent in brain. 
These results suggest that the proliferation of  the fetal 
cells and placenta were inhibited significantly, resulting in 
growth retardation of  the fetus. This data demonstrated 
that the transformation from G1 to S phases was restrict-
ed in IUGR and that cell proliferation is prevented[21,23].

Experimental treatment of IUGR
IUGR rabbits caused by passive smoking were treated 
with histiocyte activators (include ATP, Co-A, and Cyt-C) 
and vasodilators (InjectioSalviaeMoltiorrhizaeCom-
posita). The results showed that the vasodilators could 
increase the uteroplacental blood flow by about 35% and 
induced some progress in fetal development, as indicated 
by a 9.8% increase in fetal body weight. The fetal plasma 
amino acid concentration was also higher than that of  
the control group. It seems that the histiocyte activators 
were more effective in promoting fetal development 
(24.6% increase of  fetal body weight) than the vasodi-
lators. Although the effect of  the histiocyte activators 
was not as marked as that of  vasodilators in increasing 
uteroplacental blood flow, the amino acid concentration 
of  fetal plasma increased more after histiocyte activator 
treatment than vasodilator treatment. This suggests that 
vasodilators could be used to treat the IUGR caused by 
vasospasm. Histiocyte activators appear to be better than 
vasodilators in increasing the nutrient transportation of  
the placenta[24].

IUGR AND GENE APPROACHES
Although the human genome contains about 30 000 
genes only a small number of  them are turned on within 
a particular tissue type. Cell proliferation and differentia-
tion results from the ability of  tissues to express different 
genes from the same basic set of  genetic information 
stored in DNA. This small subset of  genes allows the 
cells to produce proteins unique to their functions. Al-
though gene expression is controlled by epigenetic modi-
fications, the gene sequence obviously plays the most 
important role in the proliferation and differentiation of  
cells. 

IUGR and growth factor genes
Several studies have demonstrated altered concentra-
tions of  human placental growth hormones (hPGH), 
insulin-like growth factor-I (IGF-I) and IGF banding 
protein (IGFBPs) in the maternal circulation and the fetal 
compartment in pregnancies with IUGR[25,26]. Koutsaki, 
evaluating the expression status of  the hPGH, the IGF-I, 
IGFBP-1 and IGFBP-3 genes in placentas from human 
IUGR pregnancies of  no apparent etiology, found that 
hPGH, IGF-I, IGFBP-1 and IGFBP-3 expression was 
significantly lower than that in placentas showing normal 
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fetal growth. However, these alterations are not known 
causative factors of  IUGR or associated with other 
pathogenetic mechanisms[27].

Type I insulin-like growth factor receptor (IGF-IR) 
is widely expressed across many cell types in fetal and 
postnatal tissues. The activation of  this receptor, after 
the binding of  secreted IGF-I and IGF-IR promotes cell 
differentiation and proliferation. An association has been 
found between IGF-IR gene mutations and low birth 
weight[28]. IGF-IR gene anomalies such as heterozygous 
IGF-IR mutation or insufficiency of  the IGF-IR gene 
were found in patients presenting with low birth weight 
and birth height[29,30]. This phenotype is associated with 
family history of  low birth weight and a normal or in-
creased IGF-I level and/or a normal or increased GH 
response to GH stimulation test[31,32]. However, such pa-
tients show less response to GH treatment than common 
small for gestational age short-stature patients[33]. 

Choi et al[34] reported a family with both a novel het-
erozygous mutation of  the IGF-1R gene and a segmen-
tal deletion encompassing the entire IGF-1R, resulting 
in IGF-I resistance and leading to IUGR and postnatal 
growth failure. In vitro studies of  fibroblasts from sub-
jects carrying the gene clearly demonstrated reduced 
IGF-1R expression and subsequent IGF-I resistance, as 
assessed by IGF-1R phosphorylation and post-receptor 
signal transduction. This indicates that IGF-1R muta-
tions should be considered in the differential diagnosis 
of  familial IUGR patients with persistent short stature[34]. 
Umbers found that material inflammation of  the placenta 
could disturb the IGF expression and cause IUGR[35].

Experiments in animals demonstrated the importance 
of  IGF in the regulation of  both intrauterine and post-
natal growth. Baker reported that isolated inactivation of  
IGF-I resulted in restrictions in fetal development (40% 
delay compared with wild type mice) and Liu found that 
postnatal growth was further impaired, reaching only 30% 
of  that in normal mice[36,37]. Knockout of  both IGF-I and 
IGF-II or knockout of  both IGF-II and IGF-I receptors 
resulted in severe growth retardation (Figure 1)[38]. These 
experiments clearly demonstrated that IGF-I is a major 
regulator of  both pre- and postnatal growth. Several au-
thors reporting IGF-IR gene mutations observed effects 
on birth weight, height, serum IGF-I and additional com-
plications (Table 1).

IUGR and angiotensinogen gene
IUGR has been associated with insufficient placental 
circulation, which may result from failed maternal physi-
ologic changes such as abnormal spiral artery remodeling 
and reduced maternal blood volume. Morgan reported 
that spiral artery remodeling might be related to the 
angiotensinogen gene[39]. We compared maternal blood 
DNA in 174 patients with IUGR, 62 patients with pla-
cental abruption, and 60 patients with both preeclampsia 
compared with a control group comprising 400 consecu-
tive cases of  women with term pregnancies and infants 
with birth weight between the 5th and 95th percentiles. 

We also examined 162 DNA samples from fetal blood 
with IUGR and 240 normal fetuses from control group 
for the Thr235 polymorphism[40] (Tables 2 and 3). 

According to the AGT genotyping results using real 
time PCR, angiotensinogen genotypes were divided into 
three groups: MM (homozygous for angiotensinogen 
Met235 allele), TT (homozygous for angiotensinogen 
Thr235 allele), and MT (heterozygous). It has been 
demonstrated that maternal and fetal angiotensinogen 
Thr235 genotypes are associated with an increased risk 
of  IUGR[40]. The angiotensinogen Thr235 allele may 
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Figure 1  Effects of disruption of the insulin-like growth factor system on 
fetal growth in mice, expressed as a percentage of normal body weight[38]. 
IGF: Insulin-like growth factor.

Table 1  IGF-I  receptor mutations

Gene mutation Birth 
weight (SD)

Birth 
height (SD)

Complications

Arg108Gln/
Lys115Asn

-3.5 -4.8 Microcephaly, abnormal 
speech[29]

Arg59Ter -3.5 -3.0 Microcephaly, Delay in 
speech[29]

Arg709Gln -1.5 -2.6 Mental retardation[28]

Gly1050Lys -2.1 -4.0 Insulin resistance[32]

Arg281Gln -3.1 -5.0 Decreased cell 
proliferation[31]

Val599Glu -2.3 -2.1 Developmental delay[33]

Gly1125Ala -1.8 -3.6 Microcephaly, clinodactyly, 
delayed menarche, diabetes 
mellitus[30]

Table 2  Maternal AGT Thr235 genotypes[40]

Groups No. Genotype P  value

MM (%) MT (%) TT (%)

Control 400 170 (42.5) 158 (39.5) 72 (18.0)
IUGR 174   33 (19.0)   66 (37.9) 75 (43.1) < 0.001
Preeclampsia + 
IUGR

  60   11 (18.3)   24 (40.0) 25 (41.7) < 0.001

Placental 
abruption

  62     9 (14.5)   27 (43.5) 26 (41.9) < 0.001

IUGR: Intrauterine growth restriction.
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Figure 2  Real-time polymerase chain reaction for angiotensinogen M235T genotyping with a single labeled fluorescein probe[42]. A: 5’-fluorescein-labeled 
23-mer (blocked at the 3’-end with phosphate) homologous to the wild-type sequence, covered the polymorphic site with the fluorescein opposite two genes; B: The 
probe was included in the PCR amplification mixture with primers. Melting curve data are presented as fluorescein vs temperature; C: Curves for homozygous wild 
type (peak at 69.4oC), homozygous mutant type (peak at 63.54oC), heterozygous (two peaks at 63.54oC and 69.44oC respectively) and no-template control are 
shown; D: Placental cross section HE staining from AGT MM, MT, and TT placentas. Quantitative analysis of the placenta indicated that the villus area (red) and capil-
lary area (bright red) in smoking-induced intrauterine growth restriction were significantly decreased.

predispose women to deliver growth-restricted fetuses. 
Further studies have shown that mutation of  angioten-
sinogen gene Thr235 is also a risk factor for preeclampsia 

and placental abruption[41] (Table 2). In addition, quantita-
tive analysis of  the placenta indicated that the villus area 
was decreased significantly in the IUGR group induced 
by smoking exposure. The capillary area in the villus was 
also significantly less in IUGR groups. There were also 
some important changes observed under the electronic 
microscope, such as the retardation and reduced number 
of  microvilli, fatty degeneration and mitochondrial swell-
ing of  the syncytial cells[42]. Studies on human placenta 
showed that villus volume and capillary area in IUGR 
were significantly decreased (Figure 2 and Table 4).

Other gene mutations
It has been reported in many publications that certain 
gene mutations are associated with IUGR (Table 3). 
Pericentric inversion of  chromosome 6 causes haplo-
insufficiency of  the CDK19 gene resulting in micro-
cephaly, congenital bilateral falciform retinal folds, nys-
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Table 3  AGT Thr235 alleles frequencies analysis[40]

Groups AGT genotype T Allele 
Freq.

P  value

Met235 
alleles

Thr235 
alleles

Maternal DNA
   Control (400) 498 302 0.378
   IUGR (174) 140 208 0.598 < 0.001
Preeclampsia + IUGR (60)   44   76 0.633 < 0.001
   Placental abruption (62)   45   79 0.637 < 0.001
Fetal DNA
   Control (240) 298 182 0.379
   IUGR (160) 131 189 0.591 < 0.001

IUGR: Intrauterine growth restriction.
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tagmus, and mental retardation[9]. Chromosome 1p32-
p31-deletion syndrome and haplo-insufficiency of  the 
NFIA gene may present as ventriculomegaly, corpus 
callosum hypogenesis, abnormal external genitalia, and 
IUGR in the third trimester[10]. Smigiel reported on 
two brothers affected with restrictive dermopathy, who 
died in the neonatal period[43]. Molecular analyses were 
performed in the second child, for whom biological 
material was available, and on both parents. Compound 
heterozygous frameshifting mutations were identified in 
exon 1 (c.50delA) and exon 5 (c.584_585delAT) of  the 
ZMPSTE24 gene. The autosomal recessive inheritance 
was confirmed by genomic analysis of  the parents. Par-
tial loss of  Ascl2 function affects all three layers of  the 
mature placenta and causes IUGR[44]. The expression of  
c-fos is critical in the oxidative stress pathway. In fetal al-
cohol syndrome in mouse, it was shown that alcohol ad-
ministration during pregnancy results in differential gene 
expression in the stress signal pathway, particularly in c-fos. 
C-fos expression in the decidua increases from 6 to 24 h 
after alcohol injection, but does not change in the em-
bryo, which may contribute to alcohol-induced damage 
in fetal alcohol syndrome (Table 5)[45].

Epigenetics of fetal growth
Mechanisms leading to the attenuation of  fetal birth 
weight and adverse pregnancy outcomes are complex. 
Many studies have begun to focus, not only on the 
contribution of  maternal and fetal genes to phenotypic 
outcome, but also on epigenetic changes associated with 
fetal growth[46].

Imprinted genes have a central role in the develop-
ment and function of  the placenta and have been implicat-
ed in a variety of  disorders affecting fetal growth[14-16,47,48]. 
Gene inactivation studies in mice and chromosomal rear-
rangements in humans have demonstrated that many of  

these imprinted genes play key roles in placental develop-
ment and function as well as in fetal growth. Those stud-
ies have also demonstrated that imprinted genes act in a 
complex manner at many levels to affect the energy bal-
ance between the mother and fetus. More recent studies 
also support a role of  imprinted genes in a compensatory 
response to reduced fetal growth in humans.

During early embryonic development, the first stage 
of  embryo differentiation establishes two cell lineages. 
These are the inner cell mass that forms all the tissues 
of  the adult, and the trophectoderm that eventually pro-
duces placental structures. Generally speaking, the inner 
cell mass becomes gene hypermethylated and the troph-
ectoderm becomes gene hypomethylated. These meth-
ylation patterns may be preserved throughout the whole 
pregnancy period[49,50]. Mouse and human models suggest 
the epigenetic regulation of  fetal growth may also play a 
significant role through the placental imprinted genes.

Lambertini et al[48] investigated the differential meth-
ylation status of  the imprinted genome to gain insights 
into the importance of  the epigenetic regulation of  these 
genes in fetal development by comparing IUGR with 
normal placentas. They found that differential methyla-
tion showed a highly significant correlation with gene 
length. The data also suggests that differential meth-
ylation changes in growth-restricted placentas occur 
throughout the genomic regions encompassing genes 
actively expressed in the placenta. Kumar studied 11 IGF 
related genes and found upregulated ZNF127 gene ex-
pression and down regulated PHLDA2 gene expression. 
This change confirmed an increased placental expression 
of  growth-promoting imprinted genes and decreased 
expression of  growth-suppressive imprinted genes with 
advancing gestational age. These changes in placental 
gene expression could potentially explain accelerated fetal 
growth seen in the third trimester[51]. McMinn presented 
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Table 4  AGT genotype and placental findings[42]

AGT genotype MM MT TT

No. of placentas 8 13 14
Clinical findings
   Maternal age (yr) 26.0 ± 4.7   26.6 ± 6.6 29.8 ± 6.5
   Gestational age (wk) 36.2 ± 4.5   36.6 ± 1.9 36.7 ± 3.1
   Fetal birth wt. (g) 2730 ± 967   2642 ± 541 2620 ± 535
Placental quantitative findings:
   Number of villi (mm2) 155.3 ± 14.1   145.8 ± 28.0 146.3 ± 27.7
   Villous CS area (μm2/villous) 4422.2 ± 550.0   4400.9 ± 813.5   4248.6 ± 1191.9
   Villous volume/1 cm3 placenta (cm3)   0.668 ± 0.034      0.626 ± 0.022b      0.587 ± 0.059b,c

   Capillary volume/1 cm3 placenta (cm3)   0.131 ± 0.029     0.107 ± 0.034    0.070 ± 0.030b

Intervillous volume/1 cm3 placenta (cm3)   0.332 ± 0.034      0.374 ± 0.022b      0.413 ± 0.059b,c

Placental quantitative analysis:
   Volume of trimmed placenta (cm3)   324.8 ± 128.0   355.2 ± 80.3 374.1 ± 70.2
   Villous total volume per placenta (cm3) 215.8 ± 81.8   222.1 ± 50.7 219.9 ± 52.6
Intervillous space per placenta (cm3) 108.9 ± 47.8   133.1 ± 31.1  154.2 ± 38.6a

   Villous capillary volume per placenta (cm3)   45.1 ± 27.4     41.4 ± 23.2    26.6 ± 14.4a

   Percentage of villous capillary volume (%) 19.81 ± 5.12 17.41 ± 7.3  12.06 ± 5.45a

   Villous surface area per placenta (m2)   9.029 ± 3.285     9.560 ± 2.031 10.370 ± 2.725
   Villous surface per 1 g plac. Villi (cm2) 390.6 ± 35.0   401.6 ± 40.5 438.6 ± 73.8

aP < 0.05, bP < 0.01 vs MM; cP < 0.05 vs MT.

Zhang XQ. IUGR and genetics



an excellent example of  the complexity of  the imprint 
gene in placenta[52]. He showed that a small group of  im-
printed genes (PHLDA2, MEST, MEG3, GATM, GNAS 
and PLAGL1) and an additional 400 genes were affected 
in IUGR placentas. 

Many studies have reported changes in imprinted gene 
expression and methylation levels in response to IUGR. 
These include reports of  abnormal methylation in multi-
ple imprinted loci[16], IUGR placental methylation decrease 
in the IGF2/H19 locus[53], and differential expression in 
multiple imprinted genes in IUGR placentas[54].

PROBLEMS AND FUTURE DIRECTION 
IUGR animal models and clinical IUGR
IUGR animal models have been established by several 
methods. Most of  the methods affect nutrients, placental 
function, or maternal fetal circulation although some may 
affect gene expression. These IUGR models have pro-
vided valuable simulations allowing study human IUGR, 
especially the IUGR resulting from nutritional factors, 
placental function, or toxic materials. However, no animal 
IUGR model induced by gene mutation or altered gene 
expression, simulating human IUGR related to specific 
genes has been reported. To date, the development of  
gene engineering and transgenic techniques have made it 
possible to produce specific gene mutation/expression 
altered IUGR animal models. This kind of  animal model 

will provide a direct and definite method to study the 
specific genes involved in IUGR.

Single gene study and many genes related to IUGR
A concern of  the present studies is that only limited 
numbers of  genes have been studied among the thou-
sands genes that are expressed in placenta, while many 
genes are in fact associated with fetal growth. Evalua-
tion of  their important roles in fetal growth still requires 
the accumulation of  multiple collections of  data on the 
mutation, phenotype, epigenetics, and metabolomics as-
sociated with fetal growth characteristics. Specifically, the 
pathways involved in the mutation or epigenetics result-
ing in IUGR phenotype are mostly unknown. Basic study 
of  the pathways involving these genes may help us to 
understand why and how the phenomenon occurs at the 
molecular level. 

Role of genes in IUGR
Although it seems simple to define the diagnosis of  
IUGR as an estimated fetal weight falling below the 10th 
percentile of  normal body weight, that definition also 
captures births that are part of  the normal variation in a 
population. Clinical diagnostic criteria are based on the 
fetal growth curve and umbilical blood velocity abnor-
malities. However, IUGR is still an extremely complex 
phenotype to dissect because of  the many factors in-
volved, maternal, fetal, placental, and environmental. Al-
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Table 5  Gene and fetal growth

Gene Gene mutation/expression Phneotypic effects/complications

CDK19 Chromosome breakpoints in 6p12.1 and 
6q21

Microcephaly, congenital bilateral falciform retinal folds, nystagmus, and 
mental retardation[9]

NFIA Chromosome 1p32-p31 deletion syndrome Ventriculomegaly, corpus callosum hypogenesis, abnormal external 
genitalia, and intrauterine growth restriction in the third trimester[44]

IGF1R Novel c.420del mutation in exon 2 of the 
IGF1R gene

Reduced IGF1R expression and represents haploinsufficiency of the IGF1R 
gene. IUGR and neonatal growth retardation[10]

hPGH, IGF-I, IGFBP-1 Decreased expression Decreased expression is associated with IUGR[27]

c-fos Decreased expression Fetal alcohol syndrome[45]

11b-HSD2 Glucocorticoid metabolism Under expression cause IUGR, small placenta[55]

GSTP1 Glutathione transferase enzymes pathway Fetal growth and neonatal growth[56]

ZMPSTE24 Fetal growth IUGR, dermopathy, neonatal death[43]

Ascl2 Placenta development Three layers malformation, IUGR[44]

TFRC Transferrin receptor function IUGR[13]

DIO3 Type 3 deiodinase Highly expressed in placenta and fetus. IUGR and hypothyroidism[47]

DLK1 Growth promoter Expressed in placental villi. Methylation defects associated with IUGR[16]

HYMAI Non-coding RNA Transient neonatal diabetes and IUGR[57]

IGF2 Growth Factor Placental and fetal growth restriction[58]

KCNQ1OT1 Non-coding RNA Control placental Kcnq1 domain. Involved in Beckwith-Wiedemann 
syndrome[59]

MAGEL2/NDNL1 Similarity to NDN Neonatal growth retardation, alter metabolism[60]

MEST Neuronal differentiation Fetal growth restriction, smaller placentas[52]

PEG10 Retrotransposon-derivedgene Severe growth retardation, absence of spongiotrophoblast layer, embryonic 
lethality[61]

PEG3 Inhibits WNT-signalling Placental and fetal growth restriction and abnormal maternal behavior[62]

PLAGL1 Zac1 Tumor suppressor Skeletal defects, neonatal lethality, IUGR, and disrupted transactivation of 
Igf2[63]

SFRP2 WNT signaling Reduction in vitro of extra villous trophoblast invasion[64]

HBII-85/PWScr C/D Box small RNA Implicated in Prader Willi, Postnatal growth retardation[65]

IUGR: Intrauterine growth restriction.
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most all recent gene expression studies are based on small 
number of  samples. It is unrealistic to expect to find 
one or a few genes responsible for causing IUGR using 
this approach. Most gene expression studies have found 
genes that are dysregulated in IUGR. In addition, most 
of  these genes, such as IGF-I, IGFBP1, corticotropin-re-
leasing hormone, are reported to be related to the regula-
tion of  cell division and proliferation. We are still unable 
to to determine whether this is a compensatory response 
to restricted fetal restricted growth or a the factors which 
induces fetal growth restriction. The use of  transgenic 
engineering technique in animals to study some specific 
gene may provide an ideal model to study the phenotype 
related to these genes in human clinical subjects.

Gene promoting and IUGR
Some specific imprinted genes are related to IUGR. 
These genes can be separated into two categories: genes 
participating in reducing fetal growth, and those which 
increase fetal growth as a compensatory response when it 
is sensed that the fetus is at risk. The evidence supporting 
mutations in imprinted genes that negatively influence 
fetal growth is summarized in the table and genes which 
the positively influence fetal growth are also indicated. 
We may expect that reducing expression of  the negative 
genes and increase the expression of  the positive genes 
would result in fetal growth. However, there is still a long 
way to go from basic animal model studies to reach clini-
cal applications using gene-regulating techniques.
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