World Journal of Obstetrics and Gynecology

World J Obstet Gynecol 2020 December 6; 9(1): 1-17

Published by Baishideng Publishing Group Inc

W J O G World Journal of Obstetrics and Gunecology

Contents

Continuous Publication Volume 9 Number 1 December 6, 2020

MINIREVIEWS

Myasthenia gravis and pregnancy 1

Je G, Ghasemi M

ORIGINAL ARTICLE

Retrospective Study

Streptococcus agalactiae: Sensitivity profile in pregnant women attending health units in northeastern Brazil 11 de Oliveira TVL, Santana FAF, Oliveira CNT, Santos MLC, de Melo FF, Souza CL, Oliveira MV

Contents

Continuous Publication Volume 9 Number 1 December 6, 2020

ABOUT COVER

Editorial board member of World Journal of Obstetrics and Gynecology, Dr. Muhammad Faisal Aslam is a Distinguished Associate Professor at Michigan State University, United States. Having completed his professional training in both the United Kingdom and United States, Dr. Aslam is the only urogynecologist in the United States who is both a Fellow of the Royal College of Obstetricians and Gynecologists United Kingdom and a Fellow of the American Congress of Obstetrics & Gynecology. He is double-board certified in Obstetrics & Gynecology and Female Pelvic Medicine & Reconstructive Surgery. Through his current position as the lead of urogynecologist at Ascension Detroit (Michigan), he serves as clinical lead and is actively involved in research as the principal investigator on numerous projects. His career dedication to teaching and mentoring the next generation of clinicians in his field was recognized by the annual teaching award from the American College of Obstetrics & Gynecology. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Obstetrics and Gynecology (WJOG, World J Obstet Gynecol) is to provide scholars and readers from various fields of obstetrics and gynecology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJOG mainly publishes articles reporting research results and findings obtained in the field of obstetrics and gynecology and covering a wide range of topics including the diagnosis and treatment of infertility, family planning (including contraception and pregnancy termination), sexual medicine, pediatric and adolescent gynecology, menopausal gynecology, reproductive endocrinology and infertility, and female pelvic medicine and reconstructive surgery.

INDEXING/ABSTRACTING

World Journal of Obstetrics and Gynecology is now indexed in China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (CSTJ), and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yun-Xiaojian Wu; Production Department Director: Xiang Li; Editorial Office Director: Ya-Juan Ma.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS				
World Journal of Obstetrics and Gynecology	https://www.wjgnet.com/bpg/gerinfo/204				
ISSN	GUIDELINES FOR ETHICS DOCUMENTS				
ISSN 2218-6220 (online)	https://www.wjgnet.com/bpg/GerInfo/287				
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH				
June 10, 2012	https://www.wjgnet.com/bpg/gerinfo/240				
FREQUENCY	PUBLICATION ETHICS				
Continuous Publication	https://www.wjgnet.com/bpg/GerInfo/288				
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT				
Simone Ferrero	https://www.wjgnet.com/bpg/gerinfo/208				
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE				
https://www.wjgnet.com/2218-6220/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242				
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS				
December 6, 2020	https://www.wjgnet.com/bpg/GerInfo/239				
COPYRIGHT	ONLINE SUBMISSION				
© 2020 Baishideng Publishing Group Inc	https://www.f6publishing.com				
© 2020 Baishidang Publishing Group Inc. All rights reserved. 7(M1 Kall Cantor Barlinger, Suite 160, Placeanton, CA 04566, USA				

E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

WJDG

World Journal of **Obstetrics and** Gynecology

Submit a Manuscript: https://www.f6publishing.com

World J Obstet Gynecol 2020 December 6; 9(1): 1-10

DOI: 10.5317/wjog.v9.i1.1

ISSN 2218-6220 (online)

MINIREVIEWS

Myasthenia gravis and pregnancy

Goun Je, Mehdi Ghasemi

ORCID number: Goun Je 0000-0002-1861-6714: Mehdi Ghasemi 0000-0002-1384-9826.

Author contributions: Je G and Ghasemi M made contribution to the conception and design of the review paper's content and literature review; Je G wrote the initial draft of the paper; Ghasemi M and Je G critically reviewed, edited and finalized the paper for submission.

Conflict-of-interest statement: The authors declare no conflict of interest related to this work.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: htt p://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Specialty type: Obstetrics and Gynecology

Goun Je, Mehdi Ghasemi, Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, United States

Corresponding author: Mehdi Ghasemi, MD, Assistant Professor, Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Room S5-770, Worcester, MA 01665, United States. m82.ghasemi@gmail.com

Abstract

Myasthenia gravis (MG) is an autoimmune disorder of neuromuscular junction that has higher incidence in younger women than men, which could be related to differences in sex hormones physiology and immune system functioning between males and females. MG can first present during pregnancy and variably affect pregnancy, labor, and postpartum period. In this paper, we had an updated overview on our understanding about MG presentation and its effect on pregnancy and vice versa, therapeutic options for MG pregnant women, management of pregnancy or labor complications in MG patients, and finally fetal and neonatal considerations in MG pregnant women. A multidisciplinary approach, involving obstetricians/gynecologists, neurologists, and anesthesiologists, plays a pivotal role in improving the clinical outcomes in both MG mothers and their infants during pregnancy, delivery and postpartum.

Key Words: Pregnancy; Myasthenia gravis; Delivery; Postpartum; Transient neonatal myasthenia gravis; Pyridostigmine

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Myasthenia gravis (MG) is an autoimmune disorder of the neuromuscular junction that overall has higher incidence in women than men. This disease can variably affect pregnancy; and specific considerations need to be taken by a multidisciplinary team (including obstetricians/gynecologists, neurologists, and anesthesiologists) in pregnant women during their pregnancy, delivery, and postpartum period. We herein discuss about our understanding about MG presentation and its effect on pregnancy and vice versa, safe therapeutic approaches for MG as well as pregnancy/Labor complications, and finally specific fetal and neonatal considerations in MG pregnant women.

Citation: Je G, Ghasemi M. Myasthenia gravis and pregnancy. World J Obstet Gynecol 2020;

WJOG | https://www.wjgnet.com

Country/Territory of origin: United States

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): B Grade C (Good): 0 Grade D (Fair): 0 Grade E (Poor): 0

Received: May 22, 2020 Peer-review started: May 22, 2020 First decision: October 6, 2020 Revised: November 9, 2020 Accepted: November 17, 2020 Article in press: November 17, 2020 Published online: December 6, 2020

P-Reviewer: Han GR S-Editor: Zhang L L-Editor: A P-Editor: Li X

INTRODUCTION

Myasthenia gravis (MG) is one of the most common autoimmune neuromuscular junction disorders with a prevalence of about 200 per one million worldwide^[1]. The characteristic clinical feature of MG is a fluctuating and fatigable skeletal muscle weakness. The most common initial presentation is ocular weakness with asymmetric ptosis and binocular diplopia, and less commonly early or isolated oropharyngeal or limb weakness^[2]. The underlying pathophysiology is mostly related to production of autoantibodies against the acetylcholine receptors (AChRs) or other related protein complexes on the postsynaptic muscle membrane such as muscle specific tyrosine kinase (MuSK) and low-density lipoprotein receptor-related protein 4^[1]. Additionally, pathologic thymic involvement including thymoma is present in 10%-20% of MG cases, particularly those with anti-AChR autoantibodies^[2]. Women younger than 40 years old are more frequently affected than men with the same age range, with a female/male ratio of 3:1 for AChR MG and 9:1 for MuSK MG^[3]. MG status during pregnancy is overall considered as unpredictable. Little is known about the underlying pathophysiology and etiology of unpredictable complications during pregnancy and the post-partum period, though some evidence suggests a role for sex hormones^[4,5]. In this review, we discuss clinical presentation of MG during pregnancy, its effect on pregnant women and their children, pre-pregnancy planning in MG women, therapeutic options during pregnancy and breastfeeding, as well as considerations that need to be taken when managing pregnancy or delivery complications in MG patients.

HORMONAL EFFECTS ON MG

Sex hormones, especially estrogen but also progesterone as well as testosterone, are known to affect immune system^[6]. MG which is one of the autoimmune diseases commonly affects women than men, especially childbearing age, indicating a role for sex hormones on MG.

Several previous studies have demonstrated that sex hormones have effects on modulating disease severity of MG^[4,7], particularly during the menstrual period and pregnancy. MG symptoms are frequently exacerbated before and during the menstrual period^[8] but opposite cases were also reported^[9]. In addition, exacerbation of MG symptoms can occur during pregnancy^[10,11]. Even though available studies indicate that sex hormones can influence immune system and modulate disease severity of MG, further studies are needed to confirm the underlying mechanisms.

MG AND PREGNANCY

MG symptoms can be first developed during the pregnancy or postpartum period^[12,13]. In rare cases, myasthenic crisis can be the first symptoms to seek medical attention during pregnancy^[14].

Appropriate diagnosis and treatment are important to avoid further exacerbation especially during pregnancy. Anti-AChR, -MuSK or - low-density lipoprotein receptor-related protein 4 antibodies can be tested to confirm the diagnosis of MG during pregnancy. If the results of these tests are negative, electrodiagnostic studies including repetitive nerve stimulation or single-fiber electromyography can be used as safe diagnostic tools during pregnancy. Chest computerized tomography (CT) to look for thymoma can be delayed until after the delivery to avoid unnecessary radiation exposure since there will be no expected benefit from thymectomy during pregnancy^[15] and the incidence of thymoma in young MG patients under age 30 s is low^[16,17]. If thymoma is strongly suspected, mediastinal magnetic resonance imaging will be preferred than chest CT.

MG by itself does not have much influence on pregnancy including duration of pregnancy, risk of miscarriage or birth weight^[18,19]. The course of MG disease during pregnancy is overall unpredictable. Exacerbation of MG symptoms can occur in about

one third of pregnant women, especially in the first trimester and also postpartum period but the long-term course of MG is not worsened by pregnancy^[10,11]. In addition, disease course of MG during pregnancy cannot be predicted by disease severity at the time of pregnancy and also previous course of pregnancy on MG^[10]. For these reasons, pregnant women with MG should be seen by their obstetricians and neurologists relatively frequently throughout their pregnancy. They also need to be instructed to monitor fetal body movements carefully and get immediate medical advice if they feel reduced fetal movements. Pregnancy can change total blood volume, gastrointestinal absorption as well as renal clearance. Therefore, further medication dose adjustment may be needed during pregnancy. An overview of previous studies of MG in pregnancy are summarized in Table 1.

PRE-PREGNANCY COUNSELLING IN MG WOMEN

Women with MG who are in childbearing age should be encouraged to discuss their plan for pregnancy with their neurologists in advance. Optimizing the treatment before and during pregnancy is the key for the safe pregnancy and a multidisciplinary team approach consisting of the patient, her partner and family, a neurologist as well as an obstetrician is required in this condition^[15,20]. If the patient is recently diagnosed with MG, delaying her pregnancy at least one to two years may be recommended to estimate her disease severity and optimize the individual therapy.

The treatment of MG includes medications for symptomatic relief such as cholinesterase inhibitors and immunosuppressants such as steroids, azathioprine, cyclosporine, mycophenolate, cyclophosphamide, methotrexate as well as intravenous immunoglobulins (IVIG) and plasmapheresis. Some of the medications can be continued safely during pregnancy and breastfeeding. Among those, oral pyridostigmine is considered as the first-line treatment^[12,19]; however, intravenous cholinesterase inhibitors should not be used during pregnancy since they can induce uterine contractions^[15]. Patients with insufficient control of MG symptoms with pyridostigmine require immunosuppressants. Among immunomodulatory medications, steroids are the treatment of choice in pregnancy as their adverse effects to myasthenic mother or fetus are minimal except for slightly increased risk of cleft palate, infection, weight gain, gestational diabetes and preterm delivery^[21-23]. Immunosuppressants other than steroids are mostly avoided during pregnancy, but azathioprine and cyclosporine can be used as steroid-sparing agents if required. Even though a number of studies have reported increased risk of intrauterine growth retardation, prematurity and low birth weight, there is no association between fetal malformations and azathioprine or cyclosporine exposure during pregnancy^[24,25]. Mycophenolate, cyclophosphamide and methotrexate are considered as teratogens and they are contraindicated during pregnancy^[26-28]. There is limited data on rituximab and eculizumab use in pregnancy. Rituximab can decrease B-cell and CD19+-cell counts in newborns transiently^[29] and increase the risk of prematurity as well as low birth weight^[30], but the recent report has shown healthy baby deliveries from myasthenic mothers who were on rituximab^[31]. Eculizumab was approved by food and drug administration for treatment of MG recently, thus its effect on pregnant women with MG is still elusive. Notably, there are several previous studies which have shown safe use of eculizumab in pregnant patients with paroxysmal nocturnal hemoglobinuria or atypical hemolytic uremic syndrome^[32-34]. Table 2 summaries current treatment options in MG during pregnancy.

Thymectomy can improve clinical outcomes and reduce use of immunosuppressants in MG patients^[15]. While it is recommended for patients especially who have thymic hyperplasia or thymoma, it should be delayed until after delivery if patients are pregnant since expected benefits from thymectomy during pregnancy is very low^[15,35].

MANAGEMENT OF COMPLICATIONS DURING PREGNANCY IN MG PATIENTS

It is important to monitor and treat exacerbation of MG or myasthenic crisis during pregnancy. Hypoventilation related to elevation of diaphragm, infections, fatigue and stress are major causes of exacerbation of MG during pregnancy. IVIG or plasmapheresis along with supportive care may be used safely in pregnancy and they

Table 1 Summary of previous studies of myasthenia gravis in pregnancy

Ref.	Number of pregnancies/patients	Treatment	MG during pregnancy	Mode of birth	TNMG	MG after birth	Other findings
Plauché ^[60] , 1991	322/255	NA	41.0% exacerbation, 31.7% no change, 28.6 % remission	5.6% C-sec before 1963; 15.4% forceps, 13.5% C- sec after 1963	14.9%	29.8% exacerbation, 4 % death	Large literature review
Batocchi <i>et al</i> ^[10] , 1999	64/47	42 underwent thymectomy before conception 36% on no treatment, 47% on pyridostigmine alone, 17% on multi- treatments (pyridostigmine, steroids, azathioprine, IVIG or plasmapheresis)	17% relapsed (no treatment); 19% relapsed, 42% unchanged, 39% improved (on treatment)	30% C-sec (most for obstetric reasons)	9%	28% worse	No correlation between TNMG and maternal disease severity
Djelmis <i>et al</i> ^[11] , 2002	69/65	23.2% on no treatment, 43.5% on pyridostigmine alone, 33.3 % on pyridostigmine and steroids 9 received plasmapheresis	14.5% exacerbation, 22.3% unchanged, 24.6% improved	8.7% vacuum extraction, 17.4 % C-sec	30.0%	15.9% exacerbation	Inverse association between incidence of TNMG and maternal disease duration
Hoff <i>et al</i> ^[42] , 2003	127/79	45 underwent thymectomy (16 before the first conception), No record before 1999; 54.5% on pyridostigmine alone since 1999	NA	17.3% C-sec, 8.7% forceps/vacuum extraction	3.9%	NA	Three times higher risk of preterm rupture of amniotic membranes in MG
Hoff <i>et al</i> ^[62] , 2004	49/37	6 underwent thymectomy before conception	29.7% remission	14.6% C-sec, 8.2% forceps/vacuum	NA	NA	6.1% neonatal mortality. No correlation between TNMG and maternal disease severity
Hoff <i>et al</i> ^[12] , 2007	135/73	50% on treatment at the time of conception (99% on pyridostigmine, 1% on steroids), then 45% continued throughout pregnancy, 3 received plasmapheresis	10% relapsed	19% protracted labor	19%	NA	A half risk of TNMG if mother had thymectomy
Wen <i>et al</i> ^[43] , 2009	163/163	NA	NA	44.8% C-sec	NA	NA	No significant difference in the risk of preterm, low birth weight, small for gestational age and C-sec between women with and without MG
Almeida <i>et al</i> ^[14] , 2010	17/17 (2 abortion)	23.5% on no treatment, 5.9% on pyridostigmine alone, 5.9% on steroids alone, 5.9% on IVIG alone, 47% on multi-treatments (pyridostigmine, steroids or IVIG)	23.5 % relapsed, 47.1% unchanged	47% C-sec (most for obstetric reasons)	NA	17.6% MG crisis	C-sec only carried out if there are obstetric reasons on women with controlled MG
Ducci <i>et a</i> [^[44] , 2017	35/21 (4 abortion)	5 underwent thymectomy before conception, 8.6% on no treatment, 91.4% on treatment (22.9% on pyridostigmine alone, 68.6% on multi-treatments) at the time of first trimester, then most of them continued throughout pregnancy	50% relapsed, 20% unchanged, 30% improved	66.7% C-sec, 6.7% forceps/vacuum	12.9 %	NA	Severity and duration of MG, repetitive nerve stimulation and treatment influence MG and pregnancy
Gamez <i>et al</i> ^[63] , 2017	5/5	100% on monthly IVIG (switched to IVIG prior to pregnancy)	100% unchanged	60% C-sec	0 %	100% unchanged	IVIG monotherapy during pregnancy in MG women could be a good option but bigger study is required
Santos <i>et al</i> ^[64] , 2018	27/13 (All MuSK MG, 4/4 for pregnancy after MG onset)	77.8% on no treatment (74.1% who was pregnant before MG onset), 7.4% on pyridostigmine and steroids, 7.4% on multi-treatments including pyridostigmine and steroids with azathioprine or IVIG	3.7 % relapsed	22.2% C-sec	3.7%	0% relapse	Pregnancy does not precipitate MuSK MG

MG: Myasthenia gravis; IVIG: Intravenous immunoglobulins; MuSK: Muscle specific tyrosine kinase; TNMG: Transient neonatal myasthenia gravis.

are generally well-tolerated^[36,37].

Preeclampsia, eclampsia and HELLP syndrome (hemolysis, elevated liver enzymes, low platelet counts) are potentially life-threatening complications of pregnancy which require prompt therapy urgently. MG does not have any effect on these pregnancy complications; however, there are some important considerations in management of these complications in MG women. Certain medications (β -blockers and calcium channel blockers) should be avoided for blood pressure control since they have the potential to exacerbate MG symptoms or crisis. Methyldopa or hydralazine are considered as drugs of choice^[38]. For seizure prophylaxis, magnesium sulfate should be avoided since it can block acetylcholine release and interfere neuromuscular transmission^[15,39]. Barbiturates or phenytoin can be considered as alternative therapy instead of magnesium^[15]. If β -blockers, calcium channel blockers or magnesium sulfate are needed, close monitoring is essential for the patient care. For HELLP syndrome, heparin, aspirin, plasmapheresis or IVIG can be used in addition to proper blood pressure management and seizure prophylaxis^[40,41].

CONSIDERATIONS DURING LABOR AND BIRTH

Maternal MG has an increased risk for birth complications, most commonly preterm rupture of membranes, even though MG by itself does not increase the risk for pregnancy complications including spontaneous abortion or premature birth^[42,44]. Vaginal delivery should be always encouraged in women with MG and cesarean delivery should only be performed for standard obstetric indications^[15]. MG does not affect the first stage of labor since the uterus which is composed of smooth muscle is not affected by the disease due to lack of the postsynaptic AChRs. However, the second stage of labor may get affected since the striated muscle is involved during expulsive efforts and it can result in maternal fatigue. Forceps or vacuum extraction may be required to ease this stage of labor^[11,39] and an increased cesarean delivery rate was also reported due to maternal fatigue during the labor^[42]. Parenteral cholinesterase inhibitors can be used to strengthen muscles during labor and stress dose of intravenous hydrocortisone (100 mg) is recommended to patients who are on chronic oral steroids (at dose larger than the equivalent of 7.5 mg/d prednisone) during the intrapartum period^[20,43,44].

Epidural analgesia is the most preferable method during labor and regional anesthesia is recommended for cesarean delivery^[14,45]. General anesthesia and neuromuscular blocking agents should be avoided if possible. Sedatives and opioids should be avoided as well since they can possibly induce respiratory depression. If they are unavoidable, patients should be monitored carefully with a peripheral nerve

Table 2 Treatment options in myasthenia gravis during pregnancy

Medication	FDA category	Effects on pregnancy	Breastfeeding				
Treatment of choice							
Pyridostigmine	В	None reported	No limitation (Excreted in breast milk)				
Steroid	С	Cleft lip or palate (rare), low birth weight	No limitation (Excreted in breast milk)				
Treatment of choice for steroid-sparing agents if indicated							
Azathioprine	D	Intrauterine growth retardation, prematurity, low birth weight, hematological toxicities (lymphopenia, pancytopenia) in newborn	Limited but can be considered (Excreted in breast milk)				
Cyclosporine	С	Intrauterine growth retardation, prematurity, low birth weight	Limited but can be considered (Excreted in breast milk)				
Contraindicated							
Mycophenolate	D	Congenital anomalies	Contraindicated				
Cyclophosphamide	D	Congenital anomalies	Contraindicated				
Methotrexate	Х	Fetal death, congenital anomalies	Contraindicated				
Insufficient data							
Rituximab	С	Transient B- and CD19+-cell depletion in newborns, prematurity, low birth weight	Limited data (minimally detected in breast milk)				
Eculizumab	С	Limited data (prematurity)	Limited data (not detected in breast milk)				
Treatment of choice for exacerbation of MG or myasthenic crisis							
IVIG	С	None reported	No limitation				
Plasmapheresis	N/A	Small for gestational age	No limitation				

FDA: Food and Drug Administration; MG: Myasthenia gravis; IVIG: Intravenous immunoglobulins.

stimulator^[20].

FETAL AND NEONATAL CONSIDERATIONS

Maternal AChR antibodies can be transferred to the fetus, which can cause transient neonatal myasthenia gravis (TNMG) in about 20% of infants who are born to myasthenic mothers[46]. Symptoms are noticeable with general muscle weakness, poor sucking, weak cry, swallowing difficulty, lethargy and breathing difficulty. In most cases, these symptoms present within few hours to three days after birth. Therefore, all infants from myasthenic mothers should be monitored closely, especially in the first few days^[47]. Most infants with TNMG have myasthenic mothers with active disease; however, some mothers may be in remission or may not have any evidence of MG. In addition, there is no clear correlation between maternal disease severity as well as maternal antibody titers and existence of TNMG^[48,49].

TNMG should be suspected in the symptomatic infants born to mothers with history of MG. Diagnosis can be made with elevated levels of anti-AChR or anti-MuSK antibodies, decremental response in repetitive nerve stimulation or clinical improvement after administration of cholinesterase inhibitors in symptomatic infants. Neostigmine is the most commonly used cholinesterase inhibitors as a diagnostic bedside test^[49]. Treatment usually depends on severity of TNMG. For mild symptoms, supportive care with small amount of feeding or nasogastric feeding, ventilatory support and/or cholinesterase inhibitors are sufficient. For more severe cases, IVIG or plasmapheresis needs to be considered^[20,49]. Overall, TNMG has good prognosis if it is early identified and properly treated. Symptoms usually resolve in the first two months but can last as long as 4 mo^[50].

There is rare but more severe manifestation reported in infants born to myasthenic mothers including arthrogryposis multiplex congenita^[51]. Arthrogryposis multiplex

congenita can be a potentially fatal condition resulting from decreased limb movements, for which pregnant women with MG should be advised and encouraged to monitor their fetal movements and get fetal scan at 13 and 20 wk of pregnancy^[20,51].

BREASTFEEDING

Breastfeeding after delivery is not a contraindication in women with MG, if their disease is well-controlled^[20]. On the other hand, breastfeeding should not be considered if their disease is poorly-controlled since increased fatigue associated with nursing may increase the likelihood of disease exacerbation. Breastfeeding does not increase the risk of myasthenic symptoms in newborns, even though maternal IgG are known to present in breast milk^[52].

In terms of therapy, there are few relatively safe therapies during breastfeeding including cholinesterase inhibitors, steroids and IVIGs^[15,20,52]. Although cholinesterase inhibitors are detected in the breast milk, they are considered safe since their levels are relatively low in the breast milk unless patients require high doses^[53]. Azathioprine and cyclosporine are acceptable during breastfeeding^[54,55], whereas mycophenolate, cyclophosphamide or methotrexate should be avoided since they are excreted in breast milk and affect the newborns^[56,57]. There are very few studies available for the effects of monoclonal antibodies including rituximab and eculizumab on breastfeeding, which have shown very minimal effects without any significant harm^[58,59].

CONCLUSION

MG may first manifest during pregnancy and can variably affect pregnancy and labor period in an unpredictable manner. Overall, worsening of MG symptoms (i.e., MG crisis) occurs more commonly in the first trimester or in the first month postpartum. Even, effects of pregnancy on MG may vary in subsequent pregnancies in a patient with MG^[60-64]. Therefore, close monitoring of MG women during their childbearing age is crucial. On the other hand, given the unpredictability of MG course during pregnancy, we would recommend that the MG patients to be frequently evaluated during and before pregnancy because this can help physicians to timely and appropriately modify the MG therapy based on alterations in the disease severity. It is also noteworthy that the treatment options for MG are limited in pregnant or breastfeeding women compared to other MG patient population. Based on our clinical experience and previous studies, a considerable number of MG patients can safely benefit from oral pyridostigmine alone or in combination with steroid therapy (e.g., oral prednisone) during pregnancy. However, if more aggressive immunosuppressive therapy is needed (e.g., due to intolerance or insufficient response to pyridostigmine or steroid therapy), azathioprine and cyclosporine can be considered as steroid-sparing medications. Knowing the side effect profile of immunosuppressive medications in pregnant women and their fetus is essential, as some of these medications such as mycophenolate, cyclophosphamide and methotrexate are contraindicated in these patients due to teratogenicity. Overall, we preferably discontinue immunosuppressants 4 to 6 mo before conceiving. Additionally, IVIG, plasmapheresis, and corticosteroids are usually preserved for myasthenic crisis when more immediate therapy is needed to stabilize patients' symptoms during pregnancy or postpartum. An individualized and multidisciplinary approach involving neurologists, obstetricians, and anesthesiologists is an important consideration when monitoring these patients during pregnancy, delivery and postpartum, as this can improve the clinical outcomes in both MG mothers and their infants.

REFERENCES

- Gilhus NE. Myasthenia Gravis. N Engl J Med 2017; 376: e25 [PMID: 28355508 DOI: 1 10.1056/NEJMc1701027
- Koneczny I, Herbst R. Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular 2 Architecture. Cells 2019; 8 [PMID: 31269763 DOI: 10.3390/cells8070671]
- 3 Koneczny IM-MP, de Baets M. Myasthenia gravis. In: Ratcliffe MJH. Encyclopedia of Immunobiology. UK: Oxford, 2016: 168-179
- Leker RR, Karni A, Brenner T, Weidenfeld J, Abramsky O. Effects of sex hormones on experimental

autoimmune myasthenia gravis. Eur J Neurol 2000; 7: 203-206 [PMID: 10809942 DOI: 10.1046/j.1468-1331.2000.00042.x

- 5 Cao L, Liu W, Zhu Z. Clinical characteristics and relationship between myasthenia gravis and premature ovarian failure: report of two cases. J Int Med Res 2019; 47: 3992-3997 [PMID: 31342860] DOI: 10.1177/0300060519863525]
- Oertelt-Prigione S. The influence of sex and gender on the immune response. Autoimmun Rev 2012; 6 11: A479-A485 [PMID: 22155201 DOI: 10.1016/j.autrev.2011.11.022]
- Li Y, Xiao B, Xiao L, Zhang N, Yang H. Myasthenia gravis accompanied by premature ovarian 7 failure and aggravation by estrogen. Intern Med 2010; 49: 611-613 [PMID: 20228602 DOI: 10.2169/internalmedicine.49.2737
- 8 Leker RR, Karni A, Abramsky O. Exacerbation of myasthenia gravis during the menstrual period. J Neurol Sci 1998; 156: 107-111 [PMID: 9559997 DOI: 10.1016/s0022-510x(98)00031-8]
- Vijayan N, Vijayan VK, Dreyfus PM. Acetylcholinesterase activity and menstrual remissions in myasthenia gravis. J Neurol Neurosurg Psychiatry 1977; 40: 1060-1065 [PMID: 599353 DOI: 10.1136/jnnp.40.11.1060]
- 10 Batocchi AP, Majolini L, Evoli A, Lino MM, Minisci C, Tonali P. Course and treatment of myasthenia gravis during pregnancy. Neurology 1999; 52: 447-452 [PMID: 10025772 DOI: 10.1212/wnl.52.3.447]
- 11 Djelmis J, Sostarko M, Mayer D, Ivanisevic M. Myasthenia gravis in pregnancy: report on 69 cases. *Eur J Obstet Gynecol Reprod Biol* 2002; **104**: 21-25 [PMID: 12128277 DOI: 10.1016/s0301-2115(02)00051-9
- 12 Hoff JM, Daltveit AK, Gilhus NE. Myasthenia gravis in pregnancy and birth: identifying risk factors, optimising care. Eur J Neurol 2007; 14: 38-43 [PMID: 17222111 DOI: 10.1111/j.1468-1331.2006.01538.x]
- 13 Boldingh MI, Maniaol AH, Brunborg C, Weedon-Fekjær H, Verschuuren JJ, Tallaksen CM. Increased risk for clinical onset of myasthenia gravis during the postpartum period. Neurology 2016; 87: 2139-2145 [PMID: 27770065 DOI: 10.1212/WNL.00000000003339]
- 14 Almeida C, Coutinho E, Moreira D, Santos E, Aguiar J. Myasthenia gravis and pregnancy: anaesthetic management -- a series of cases. Eur J Anaesthesiol 2010; 27: 985-990 [PMID: 20733499 DOI: 10.1097/EJA.0b013e32833e263f]
- Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I, Kuntz N, Massey JM, Melms A, 15 Murai H, Nicolle M, Palace J, Richman DP, Verschuuren J, Narayanaswami P. International consensus guidance for management of myasthenia gravis: Executive summary. Neurology 2016; 87: 419-425 [PMID: 27358333 DOI: 10.1212/WNL.00000000002790]
- 16 Massey JM, De Jesus-Acosta C. Pregnancy and myasthenia gravis. Continuum (Minneap Minn) 2014; 20: 115-127 [PMID: 24492814 DOI: 10.1212/01.CON.0000443840.33310.bd]
- 17 Westerberg E, Punga AR. Epidemiology of Myasthenia Gravis in Sweden 2006-2016. Brain Behav 2020: e01819 [PMID: 32869520 DOI: 10.1002/brb3.1819]
- 18 Ohlraun S, Hoffmann S, Klehmet J, Kohler S, Grittner U, Schneider A, Heuschmann PU, Meisel A. Impact of myasthenia gravis on family planning: How do women with myasthenia gravis decide and why? Muscle Nerve 2015; 52: 371-379 [PMID: 25557017 DOI: 10.1002/mus.24556]
- Edmundson C, Salajegheh MK. Myasthenia gravis and pregnancy. In: O'Neal MA. Neurology and 19 Psychiatry of Women: A Guide to Gender-based Issues in Evaluation, Diagnosis, and Treatment. Cham, Switzerland: Springer, 2019: 177-182
- 20 Norwood F, Dhanjal M, Hill M, James N, Jungbluth H, Kyle P, O'Sullivan G, Palace J, Robb S, Williamson C, Hilton-Jones D, Nelson-Piercy C. Myasthenia in pregnancy: best practice guidelines from a U.K. multispecialty working group. J Neurol Neurosurg Psychiatry 2014; 85: 538-543 [PMID: 23757420 DOI: 10.1136/jnnp-2013-305572]
- 21 Gur C, Diav-Citrin O, Shechtman S, Arnon J, Ornoy A. Pregnancy outcome after first trimester exposure to corticosteroids: a prospective controlled study. Reprod Toxicol 2004; 18: 93-101 [PMID: 15013068 DOI: 10.1016/j.reprotox.2003.10.007]
- 22 Carmichael SL, Shaw GM, Ma C, Werler MM, Rasmussen SA, Lammer EJ. Maternal corticosteroid use and orofacial clefts. AmJ Obstet Gynecol 2007; 197: 585. e581-e587 [DOI: 10.1016/j.ajog.2007.05.046]
- Kaplan JL, Gunther-Harrington CT, Sutton JS, Stern JA. Multiple midline defects identified in a 23 litter of golden retrievers following gestational administration of prednisone and doxycycline: a case series. BMC Vet Res 2018; 14: 86 [PMID: 29530019 DOI: 10.1186/s12917-018-1419-y]
- Götestam Skorpen C, Hoeltzenbein M, Tincani A, Fischer-Betz R, Elefant E, Chambers C, da Silva 24 J, Nelson-Piercy C, Cetin I, Costedoat-Chalumeau N, Dolhain R, Förger F, Khamashta M, Ruiz-Irastorza G, Zink A, Vencovsky J, Cutolo M, Caeyers N, Zumbühl C, Østensen M. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann Rheum Dis 2016; 75: 795-810 [PMID: 26888948 DOI: 10.1136/annrheumdis-2015-208840]
- 25 Belizna C, Meroni PL, Shoenfeld Y, Devreese K, Alijotas-Reig J, Esteve-Valverde E, Chighizola C,

Pregnolato F, Cohen H, Fassot C, Mattera PM, Peretti P, Levy A, Bernard L, Saiet M, Lagarce L, Briet M, Rivière M, Pellier I, Gascoin G, Rakotonjanahary J, Borghi MO, Stojanovich L, Djokovic A, Stanisavljevic N, Bromley R, Elefant-Amoura E, Bahi Buisson N, Pindi Sala T, Kelchtermans H, Makatsariya A, Bidsatze V, Khizroeva J, Latino JO, Udry S, Henrion D, Loufrani L, Guihot AL, Muchardt C, Hasan M, Ungeheuer MN, Voswinkel J, Damian L, Pabinger I, Gebhart J, Lopez Pedrera R, Cohen Tervaert JW, Tincani A, Andreoli L. In utero exposure to Azathioprine in autoimmune disease. Where do we stand? Autoimmun Rev 2020; 19: 102525 [PMID: 32240856 DOI: 10.1016/j.autrev.2020.102525]

- 26 Cozzani E, Cioni M, Gariazzo L, Burlando M, Parodi A. The management of autoimmune diseases in preconception, pregnancy and lactation. G Ital Dermatol Venereol 2019; 154: 299-304 [PMID: 30375218 DOI: 10.23736/S0392-0488.18.06212-0]
- 27 Thai TN, Sarayani A, Wang X, Albogami Y, Rasmussen SA, Winterstein AG. Risk of pregnancy loss in patients exposed to mycophenolate compared to azathioprine: A retrospective cohort study. Pharmacoepidemiol Drug Saf 2020; 29: 716-724 [PMID: 32347619 DOI: 10.1002/pds.5017]
- 28 Hammad I, Porter TF. An Update on Biologic Agents During Pregnancy. Clin Perinatol 2020; 47: 733-742 [PMID: 33153658 DOI: 10.1016/j.clp.2020.08.003]
- Voulgaris E, Pentheroudakis G, Pavlidis N. Cancer and pregnancy: a comprehensive review. Surg 29 Oncol 2011; 20: e175-e185 [PMID: 21733678 DOI: 10.1016/j.suronc.2011.06.002]
- 30 Østensen M. The use of biologics in pregnant patients with rheumatic disease. Expert Rev Clin Pharmacol 2017; 10: 661-669 [PMID: 28326845 DOI: 10.1080/17512433.2017.1305268]
- Stieglbauer K, Pichler R, Topakian R. 10-year-outcomes after rituximab for myasthenia gravis: 31 Efficacy, safety, costs of inhospital care, and impact on childbearing potential. J Neurol Sci 2017; 375: 241-244 [PMID: 28320139 DOI: 10.1016/j.jns.2017.02.009]
- Vekemans MC, Lambert C, Ferrant A, Saussoy P, Havelange V, Debiève F, Van Den Neste E, 32 Michaux L. Management of pregnancy in paroxysmal nocturnal hemoglobinuria on long-term eculizumab. Blood Coagul Fibrinolysis 2015; 26: 464-466 [PMID: 25688464 DOI: 10.1097/MBC.00000000000248
- 33 Servais A, Devillard N, Frémeaux-Bacchi V, Hummel A, Salomon L, Contin-Bordes C, Gomer H, Legendre C, Delmas Y. Atypical haemolytic uraemic syndrome and pregnancy: outcome with ongoing eculizumab. Nephrol Dial Transplant 2016; 31: 2122-2130 [PMID: 27587606 DOI: 10.1093/ndt/gfw314]
- 34 Gately R, San A, Kurtkoti J, Parnham A. Life-threatening pregnancy-associated atypical haemolytic uraemic syndrome and its response to eculizumab. Nephrology (Carlton) 2017; 22 Suppl 1: 32-35 [PMID: 28176475 DOI: 10.1111/nep.12938]
- Sanders DB, Wolfe GI, Narayanaswami P; MGFA Task Force on MG Treatment Guidance. 35 Developing treatment guidelines for myasthenia gravis. Ann N Y Acad Sci 2018; 1412: 95-101 [PMID: 29381223 DOI: 10.1111/nyas.13537]
- Jakó M, Surányi A, Janáky M, Klivényi P, Kaizer L, Vécsei L, Bártfai G, Németh G. Postnatal 36 outcome and placental blood flow after plasmapheresis during pregnancy. J Matern Fetal Neonatal Med 2017; 30: 2755-2758 [PMID: 27924673 DOI: 10.1080/14767058.2016.1262344]
- 37 Gilhus NE. Myasthenia Gravis Can Have Consequences for Pregnancy and the Developing Child. Front Neurol 2020; 11: 554 [PMID: 32595594 DOI: 10.3389/fneur.2020.00554]
- Ozcan J, Balson IF, Dennis AT. New diagnosis myasthenia gravis and preeclampsia in late 38 pregnancy. BMJ Case Rep 2015; 2015 [PMID: 25721832 DOI: 10.1136/bcr-2014-208323]
- 39 Ferrero S, Pretta S, Nicoletti A, Petrera P, Ragni N. Myasthenia gravis: management issues during pregnancy. Eur J Obstet Gynecol Reprod Biol 2005; 121: 129-138 [PMID: 16054951 DOI: 10.1016/j.ejogrb.2005.01.002]
- 40 French DM, Bridges EP, Hoskins MC, Andrews CM, Nelson CH. Myasthenic Crisis In Pregnancy. Clin Pract Cases Emerg Med 2017; 1: 291-294 [PMID: 29849328 DOI: 10.5811/cpcem.2017.5.33404]
- 41 Di Spiezio Sardo A, Taylor A, Pellicano M, Romano L, Acunzo G, Bifulco G, Cerrota G, Nappi C. Myasthenia and HELLP syndrome. Eur J Obstet Gynecol Reprod Biol 2004; 116: 108-111 [PMID: 15294379 DOI: 10.1016/j.ejogrb.2003.12.027]
- 42 Hoff JM, Daltveit AK, Gilhus NE. Myasthenia gravis: consequences for pregnancy, delivery, and the newborn. Neurology 2003; 61: 1362-1366 [PMID: 14638956 DOI: 10.1212/01.wnl.0000082725.21444.ec]
- 43 Wen JC, Liu TC, Chen YH, Chen SF, Lin HC, Tsai WC. No increased risk of adverse pregnancy outcomes for women with myasthenia gravis: a nationwide population-based study. Eur J Neurol 2009; 16: 889-894 [PMID: 19486132 DOI: 10.1111/j.1468-1331.2009.02689.x]
- 44 Ducci RD, Lorenzoni PJ, Kay CS, Werneck LC, Scola RH. Clinical follow-up of pregnancy in myasthenia gravis patients. Neuromuscul Disord 2017; 27: 352-357 [PMID: 28256306 DOI: 10.1016/j.nmd.2017.01.021]
- 45 Tsurane K, Tanabe S, Miyasaka N, Matsuda M, Takahara M, Ida T, Kohyama A. Management of labor and delivery in myasthenia gravis: A new protocol. J Obstet Gynaecol Res 2019; 45: 974-980

[PMID: 30806001 DOI: 10.1111/jog.13922]

- Papazian O. Transient neonatal myasthenia gravis. J Child Neurol 1992; 7: 135-141 [PMID: 46 1573230 DOI: 10.1177/088307389200700202]
- 47 Toyka KV, Goldb R. Treatment of masthenia gravis. Arch Neurol Psychiatr 2007; 158: 309-321
- 48 Elias SB, Butler I, Appel SH. Neonatal myasthenia gravis in the infant of a myasthenic mother in remission. Ann Neurol 1979; 6: 72-75 [PMID: 574370 DOI: 10.1002/ana.410060119]
- 49 Hassoun M, El Turjuman U, Chokr I, Fakhoury H. Myasthenia gravis in the neonate. NeoReviews 2010; 11: e200-e205 [DOI: 10.1542/neo.11-4-e200]
- Bartoccioni E, Evoli A, Casali C, Scoppetta C, Tonali P, Provenzano C. Neonatal myasthenia gravis: 50 clinical and immunological study of seven mothers and their newborn infants. J Neuroimmunol 1986; 12: 155-161 [PMID: 3734055 DOI: 10.1016/0165-5728(86)90028-7]
- 51 Midelfart Hoff J, Midelfart A. Maternal myasthenia gravis: a cause for arthrogryposis multiplex congenita. J Child Orthop 2015; 9: 433-435 [PMID: 26482518 DOI: 10.1007/s11832-015-0690-8]
- 52 Gilhus NE, Hong Y. Maternal myasthenia gravis represents a risk for the child through autoantibody transfer, immunosuppressive therapy and genetic influence. Eur J Neurol 2018; 25: 1402-1409 [PMID: 30133097 DOI: 10.1111/ene.13788]
- 53 American Academy of Pediatrics Committee on Drugs. Transfer of drugs and other chemicals into human milk. Pediatrics 2001; 108: 776-789 [PMID: 11533352 DOI: 10.1542/peds.108.3.776]
- 54 Sau A, Clarke S, Bass J, Kaiser A, Marinaki A, Nelson-Piercy C. Azathioprine and breastfeeding: is it safe? BJOG 2007; 114: 498-501 [PMID: 17261122 DOI: 10.1111/j.1471-0528.2006.01232.x]
- Osadchy A, Koren G. Cyclosporine and lactation: when the mother is willing to breastfeed. Ther 55 Drug Monit 2011; 33: 147-148 [PMID: 21240055 DOI: 10.1097/FTD.0b013e318208e3a4]
- Wiernik PH, Duncan JH. Cyclophosphamide in human milk. Lancet 1971; 1: 912 [PMID: 4102054 56 DOI: 10.1016/s0140-6736(71)92474-3]
- Birru Talabi M. Clowse MEB. Antirheumatic medications in pregnancy and breastfeeding. Curr 57 *Opin Rheumatol* 2020; **32**: 238-246 [PMID: 32205567 DOI: 10.1097/BOR.000000000000010]
- 58 Kelly RJ, Höchsmann B, Szer J, Kulasekararaj A, de Guibert S, Röth A, Weitz IC, Armstrong E, Risitano AM, Patriquin CJ, Terriou L, Muus P, Hill A, Turner MP, Schrezenmeier H, Peffault de Latour R. Eculizumab in Pregnant Patients with Paroxysmal Nocturnal Hemoglobinuria. N Engl J Med 2015; 373: 1032-1039 [PMID: 26352814 DOI: 10.1056/NEJMoa1502950]
- Krysko KM, LaHue SC, Anderson A, Rutatangwa A, Rowles W, Schubert RD, Marcus J, Riley CS, 59 Bevan C, Hale TW, Bove R. Minimal breast milk transfer of rituximab, a monoclonal antibody used in neurological conditions. Neurol Neuroimmunol Neuroinflamm 2020; 7: e637 [PMID: 31719115 DOI: 10.1212/NXI.00000000000637]
- 60 Plauché WC. Myasthenia gravis in mothers and their newborns. Clin Obstet Gynecol 1991; 34: 82-99 [PMID: 2025979]
- Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based 61 epidemiological studies in Myasthenia Gravis. BMC Neurol 2010; 10: 46 [PMID: 20565885 DOI: 10.1186/1471-2377-10-46
- Hoff JM, Daltveit AK, Gilhus NE. Asymptomatic myasthenia gravis influences pregnancy and birth. 62 Eur J Neurol 2004; 11: 559-562 [PMID: 15272902 DOI: 10.1111/j.1468-1331.2004.00900.x]
- Gamez J, Salvado M, Casellas M, Manrique S, Castillo F. Intravenous immunoglobulin as 63 monotherapy for myasthenia gravis during pregnancy. J Neurol Sci 2017; 383: 118-122 [PMID: 29246598 DOI: 10.1016/j.jns.2017.10.037]
- Santos E, Braga A, Gabriel D, Duarte S, Martins da Silva A, Matos I, Freijo M, Martins J, Silveira F, 64 Nadais G, Sousa F, Fraga C, Santos Silva R, Lopes C, Gonçalves G, Pinto C, Sousa Braga J, Leite MI. MuSK myasthenia gravis and pregnancy. Neuromuscul Disord 2018; 28: 150-153 [PMID: 29305138 DOI: 10.1016/j.nmd.2017.11.014]

WJOG | https://www.wjgnet.com

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

