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Abstract
The renin-angiotensin system (RAS) regulates blood 
pressure (BP) homeostasis, systemic fluid volume and 
electrolyte balance. The RAS cascade includes over 
twenty peptidases, close to twenty angiotensin peptides 
and at least six receptors. Out of these, angiotensin 
Ⅱ, angiotensin converting enzyme 1 and angiotensin 
Ⅱ type 1 receptor (AngⅡ-ACE1-AT1R) together with 
angiotensin (1-7), angiotensin converting enzyme 2 and 
Mas receptor (Ang(1-7)-ACE2-MasR) are regarded as 
the main components of RAS. In addition to circulating 
RAS, local RA-system exists in various organs. Local 
RA-systems are regarded as tissue-specific regulatory 
systems accounting for local effects and long term 
changes in different organs. Many of the central 
components such as the two main axes of RAS: Ang
Ⅱ-ACE1-AT1R and Ang(1-7)-ACE2-MasR, have been 
identified in the human eye. Furthermore, it has been 
shown that systemic antihypertensive RAS- inhibiting 
medications lower intraocular pressure (IOP). These 
findings suggest the crucial role of RAS not only in 
the regulation of BP but also in the regulation of IOP, 
and RAS potentially plays a role in the development of 
glaucoma and antiglaucomatous drugs.

Key words: Angiotensin converting enzyme 1; Angiotensin 
converting enzyme 2; Angiotensin converting enzyme-
inhibitors; Angiotensin Ⅱ; Angiotensin (1-9); Angiotensin 
(1-7); Glaucoma; Intraocular pressure; Renin-angiotensin 
system 

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Many of the central components of renin-

Ocular renin-angiotensin system with special reference in 
the anterior part of the eye

Mervi Holappa, Heikki Vapaatalo, Anu Vaajanen

Mervi Holappa, BioMediTech, University of Tampere, 33520 
Tampere, Finland

Heikki Vapaatalo, Institute of Biomedicine, Pharmacology, 
University of Helsinki, 00014 Helsinki, Finland

Anu Vaajanen, Department of Ophthalmology, Tampere 
University Hospital, 33521 Tampere, Finland

Anu Vaajanen, SILK, Department of Ophthalmology, School of 
Medicine, University of Tampere, 33521 Tampere, Finland

Author contributions: Holappa M collected the literature, 
prepared the tables and wrote the preliminary version; Vapaatalo 
H revised the text; and Vaajanen A revised the text and submitted 
the article.

Supported by Päivikki and Sakari Sohlberg Foundation; the 
Eye Foundation; the Glaucoma Research Foundation Lux; the 
Competitive Research Funding of Tampere University Hospital, 
No. 9S072; and the Foundation for Clinical Chemistry Research. 

Conflict-of-interest statement: No competing interests.

Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative 
Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this 
work non-commercially, and license their derivative works on 
different terms, provided the original work is properly cited and 
the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

Correspondence to: Anu Vaajanen, MD, PhD, Department 
of Ophthalmology, Tampere University Hospital, P.O. Box 2000, 
33521 Tampere, Finland. anu.vaajanen@fimnet.fi
Telephone: +358-3-31164852 
Fax: +358-3-31164365

Received: January 28, 2015
Peer-review started: January 29, 2015
First decision: March 6, 2015
Revised: June 4, 2015
Accepted: June 15, 2015

REVIEW

110 August 12, 2015|Volume 5|Issue 3|WJO|www.wjgnet.com

World Journal of 
Ophthalmology W J O

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.5318/wjo.v5.i3.110

World J Ophthalmol  2015 February 12; 5(3): 110-124
ISSN 2218-6239 (online)

© 2015 Baishideng Publishing Group Inc. All rights reserved.



angiotensin system (RAS) have been identified in 
different structures of the human eye. Recent findings 
suggest that local RAS accounts for long term changes 
in ocular tissue level. Antihypertensive drugs which 
inhibit RAS (Angiotensin converting enzyme or AT-
receptor blockade) reduce intraocular pressure 
suggesting their possibility as anti-glaucomatous drugs 
in the future. Here we describe the local intraocular RAS 
especially in the anterior part of eye. 
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INTRODUCTION
Glaucoma is after cataract the second leading cause 
of vision loss worldwide. In 2020, 79.6 million people 
are estimated to be diagnosed with glaucoma. The 
majority of these patients are estimated to have open 
angle glaucoma[1]. Glaucoma is a neurodegenerative 
disorder that leads to the loss of the axons of the optic 
nerve and to the death of retinal ganglion cells by non-
apoptotic and apoptotic mechanisms all of which in the 
end cause visual field defects and irreversible vision 
loss[2-6]. Together with age and family history, increased 
intraocular pressure (IOP) is one of the known major risk 
factors for glaucoma[2,6,7]. In subjects with increased IOP, 
ocular hypotensive medication prevents or delays surgery 
of glaucoma[8]. A 30% reduction in IOP reduces disease 
progress 10%-35% in glaucoma patients[9,10]. Even 
though risk factors and possible outcomes of glaucoma 
are known, the exact mechanism behind development of 
glaucoma is still poorly known. Interestingly, imbalances 
in the local ocular renin-angiotensin system (RAS) 
cascade have been associated to glaucoma[3].

In addition to the circulating RAS that controls blood 
pressure (BP) homeostasis, electrolyte balance and 
systemic fluid volume, tissue-specific RAS, accounting 
for local effects and long-term changes in tissue level, 
have been described. Local RA-systems have been 
demonstrated in different organs studied[11,12], including 
the human eye[2,12-14]. Systemic antihypertensive 
drugs which inhibit RAS can reduce IOP. Certain ACE 
inhibitors[15] and AT1 receptor blockers[16] have been 
shown to reduce IOP in both non-glaucomatous and 
glaucomatous patients. In animal studies angiotensin 
converting enzyme (ACE) inhibitors[17,18], AT1 receptor 
blockers[19,20], and renin inhibitors[21] have been reported 
to lower IOP. These findings imply that RAS is not only 
important in the regulation of BP but that it is possibly 
also involved in the regulation of IOP[5,22]. However, the 
question of how RAS is involved in the regulation of IOP 
remains to be answered. 

In this review we describe the tissue RAS cascade 

and concentrate on the anterior part of the eye. A survey 
of PubMed using the following keywords was performed 
to collect the literature on eye, IOP (38214, number of 
reports), RAS (26697), tissue RAS (4870), angiotensin 
(110705), angiotensin I (7879), angiotensin Ⅱ (55855), 
angiotensin converting enzyme (45777), angiotensin 
(1-9) (28), angiotensin (1-7) (1043), Mas receptor 
(305), angiotensin receptor (16021), eye disease (4830), 
glaucoma (55288), diabetic retinopathy (DR) (25958), 
retinopathy of prematurity (ROP) (5710) and age-related 
macular degeneration (10875). Combining the used 
keywords allowed to narrow down the literature to 185 
references which were used in this review. They were 
selected based on the abstracts.

RAS: CIRCULATING RAS AND TISSUE 
RAS
History
The very first clue of the existence of RAS was found 
in 1898 when scientists Robert Tigerstedt and Per 
Bergman in Finland discovered that injecting renal 
homogenate from one rabbit to another causes an 
acute elevation of BP indicating that kidney secretes a 
vasopressor substance, named renin[23,24]. Due to the 
discovery of this hormone, RAS was first thought to be 
a hormone system through which the kidney influences 
systemic cardiovascular regulation[25]. Over 40 years 
later more RAS effectors were found. In 1940, groups 
working under Braun-Menéndez and Page reported that 
previously identified renin catalyzes the formation of 
pressor peptide, first named angiotonin or hypertensin, 
from a plasma protein substrate angiotensinogen[22,26,27]. 
Later angiotonin was renamed angiotensin[22].

In the early 1970s major components of the circul-
ating RAS were found and its important role as a BP and 
fluid balance regulator was understood[23]. In addition, 
first antihypertensive medications were developed in 
the 1970s. First of these drugs was captopril, an ACE 
inhibitor that was designed to prevent the formation 
of vasoconstrictive peptide Angiotensin (Ang)Ⅱ[22,23]. 
In 1988, AngⅡ receptor type 1 blockers (ARBs) were 
invented which main goal was to prevent the direct 
effects of AngⅡ mediated through angiotensin Ⅱ 
type 1 receptor (AT1R)[12]. During past years many 
new peptides and a new angiotensin reseptor type 
(Mas receptor, MasR) have been identified. MasR is an 
important member of the RAS, and its actions are mainly 
opposite to those of AT1R. Mas-receptors play a role in 
cell proliferation and antifibrosis as well as vasodilatation 
and local fluid volume homeostasis. In fact, the potentials 
of MasR ligands, like Ang (1-7) and ACE2 in degrading 
vasoconstrictive Ang Ⅱ to vasodilatory peptides are 
regarded as a present focus of cardiovascular drug 
development[28-30].

Circulating RAS
When RAS was first described, it was seen as a linear cas
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cade consisting of only one substrate (angiotensinogen), 
two proteases (renin and ACE1), two peptides (AngI and 
AngⅡ) and one receptor (AT1R). Today, RAS is known 
to consist of several enzyme pathways and to include 
over twenty peptidases, close to twenty angiotensin 
peptides and at least six receptors[31,32]. Thus, the 
classical linear cascade has evolved to a cascade with 
multiple mediators, multifunctional enzymes and multiple 
different receptors mediating the effects of angiotensin 
peptides[33-35]. The complexity of the RAS cascade known 
today is seen in Figure 1.

Central peptides of RAS
Angiotensinogen (AGT) is a 255 amino acids long 
α-glycoprotein that is synthesized in and released from 
liver. Renin catalyzes the reaction in which angioten-
sinogen is converted into AngI[22,36,37]. Mainly synthetized 
in the liver, angiotensinogen is also formed in heart, 
vessels, kidney and adipose tissue[38]. The synthesis of 
α-glycoprotein angiotensinogen is stimulated e.g. by 
inflammation, insulin and estrogens[36]. 

Angiotensin Ⅰ (AngⅠ), a weak active prohormone, 
also known as angiotensin (1-10), is a decapeptide 
generated from angiotensinogen by an enzyme renin[39]. 
AngⅠ, a weak vasoconstrictor is further cleaved to 
an octapeptide AngⅡ by ACE1 removing two amino 
acid residues (His-Leu) from the carboxy terminal of 
AngI[39,40]. AngⅡ can also be generated by enzymes 
other than ACE1 such as chymase and cathepsin G. 

Angiotensin Ⅱ (AngⅡ), also known as Ang(1-8), 
first isolated in 1940 and characterized as a potent 
vasoconstrictor that elevates BP[26,27]. Then, RAS was 
regarded as an endocrine system in which circulating 
AngⅡ regulates electrolyte balance, vascular tone, 
thirst, water intake, aldosterone synthesis, sympathetic 
activity, sodium handling in the kidney, and antidiuretic 
vasopressin release from the posterior part of hypop-
hysis[37]. In circulating RAS, renin formed in the kidney 
is the rate-limiting factor for AngⅡ formation whereas in 
vascular tissue ACE1 and chymase are the main actors in 
AngⅡ generation[41].

AngⅡ exerts its main actions via two types of 
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Figure 1  The renin-angiotensin system. The two main pathways of RAS: Ang II-ACE1-AT1R (blue lines) and Ang(1-7)-ACE2-MasR (red lines) are highlighted 
with colours. ACE(1): Angiotensin-converting enzyme (1); ACE2: Angiotensin-converting enzyme related carboxypeptidase; Ang I, II, III, IV: Angiotensin I, II, III, IV; 
Ang(1-10): Angiotensin (1-10); Ang(1-8): Angiotensin (1-8); Ang(2-8): Angiotensin (2-8); Ang(3-8): Angiotensin (3-8); Ang(1-9): Angiotensin (1-9); Ang(1-7): Angiotensin 
(1-7); Ang(1-5): Angiotensin (1-5); Ang(1-4): Angiotensin (1-4); Ang(2-7): Angiotensin (2-7); Ang(3-7): Angiotensin (3-7); Ang(3-4): Angiotensin (3-4); Ang(1-12): 
Angiotensin (1-12); Ang(5-8): Angiotensin (5-8); Ang(5-7): Angiotensin (5-7); Ang(2-10): Angiotensin (2-10); Ang A: Angiotensin A; AT1R: Angiotensin II type 1 receptor; 
AT2R: Angiotensin II type 2 receptor; AT4R: Angiotensin II type 4 receptor; AP: Aminopeptidase (-A, -N, -M, -B); B1/B2: Bradykinin receptors; CAGE: Chymostatin-
sensitive AngII generating enzyme; CP: Carboxypeptidase; EP: Endopeptidase; Mas receptor: Ang(1-7) receptor type; Nep: Neprilysin; PEP: Prolyl endopeptidase; 
PCP: Prolylcarboxypeptidase; tPA: Tissue-type plasminogen activator. The picture is updated from Vaajanen et al[160].
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bypassing the synthesis of AngⅡ[37,56]. Furthermore, 
Ang(1-7) interacts with the kallikrein-kinin system, and 
can be converted into Ang(1-5) or into Ang (3-7)[22]. 
Ang(1-7) levels are elevated by ACE inhibitors that 
increase AngI concentration and on the other hand 
prevent Ang(1-7) degradation[37].

Ang(1-7) was thought to be devoid of biological 
functions[37]. Nowadays Ang(1-7) is seen as a protector 
peptide that counterbalances many functions of Ang
Ⅱ by binding to MasR which mediates vasodilating and 
antiproliferative functions of Ang(1-7)[23,36,55,57]. Although 
MasR is the main receptor of Ang(1-7), some of the 
functions may still originate via AT1R and AT2R[54,55,57,58]. 
In addition to the inhibition of AngⅡ-induced vasocon-
striction by Ang(1-7), its antiarrhythmogenic, antithrom-
bogenic and growth-inhibitory properties suggest that 
Ang(1-7) acts as a physiological counterregulator within 
the RAS, and that Ang(1-7) could be a potential target 
for drug development[33-35]. In fact, Ang(1-7) has been 
associated to pathophysiology of several diseases such as. 
hypertension[59-63], chronic renal diseases[61] and diabetic 
nephropathy[64,65]. 

In addition to previously described peptides, RAS 
cascade includes short peptides which functions and roles 
in this circulating and tissue-specific regulatory system 
are still poorly known. 

Key enzymes of RAS
Renin, ACE1 and ACE2 are seen as three key enzymes 
of the RAS. Renin, a specific enzyme having only one 
known substrate, is an aspartyl protease that cleaves its 
substrate angiotensinogen to form AngⅠ. Renin cleaves 
the peptide bond between Leu10 and Val11 at the 
amino terminus of angiotensinogen. Renin is synthesized 
as a 406 amino acid residues long inactive prorenin 
in the juxtaglomerular apparatus of the kidney[22,36,37]. 
Upon demand synthesized prorenin is cleaved and 
activated by proconvertase or cathepsin B to generate 
340 amino acid residues long catalytically active form of 
renin. Renin can also be synthesized in organs such as 
brain, heart, testis, pituitary and adrenal glands, arterial 
smooth muscle and eye[36]. Classically, renin is secreted 
by juxtaglomerular cells in response to three different 
stimuli: (1) decreased arterial BP; (2) decreased 
sodium levels in the macula densa ultrafiltrate; and (3) 
increased sympathetic nervous system activity[40,66,67]. 
Activation of prorenin can be either proteolytic or non-
proteolytic. The proteolytic way is irreversible while the 
latter one is reversible[36]. 

ACE1 belongs to the M2 family of metallopeptidases 
containing zinc in its active site. ACE1 is a monomeric 
glycoprotein that has two different isoforms: somatic 
ACE1 (sACE1, 150-180 kDa) and germinal ACE1 (gACE1, 
90-110 kDa)[36]. The somatic ACE1 is found in various 
epithelial and endothelial cells[68] whereas germinal ACE1 
in germinal cells in the testis[36]. ACE1 is a type I integral 
membrane protein that consists of hydrophilic C-terminal 
cytoplasmic domain, hydrophobic transmembrane 

receptors, AT1R and AT2R[36,42]. AngⅡ can be generated 
from AngⅠ by three different categories of enzymes: 
ACE1, a metallo dipeptidyl carboxypeptidase, secondly 
aprotinin-sensitive serine proteases, such as trypsin, 
tonin, kallikrein and cathepsin G and thirdly a group of 
chymostatin-sensitive serine proteases, such as human 
chymase[43]. AngⅡ, a potent vasoconstrictor stimulates 
the release of vasopressin and aldosterone and thus 
participates sodium and water retention all of which act in 
concert to raise BP[37]. ACE inhibitors as antihypertensive 
medication block the conversion of AngⅠ to AngⅡ by 
ACE1, thus antagonizing the harmful effects of AngⅡ on 
AT1R[36].

Angiotensin Ⅲ (AngⅢ), also known as Ang(2-8), is 
generated from AngⅡ or from angiotensin (2-10) by 
aminopeptidase A and ACE1[22,23,36,37]. This heptapeptide 
was found in 1970s and it exerts its actions via AT1 and 
AT2 receptors. AngⅢ has higher affinity to AT2 receptors 
than to AT1 receptors[44]. AngⅢ induced vasoconstriction 
and release of aldosterone are close to those of AngⅡ. 
AngⅢ has 40% of the vasoconstriction activity of AngⅡ
[22,23,37]. In some actions on AT1R the role of AngⅢ is at 
least equally important as that of AngⅡ[23,37].

Angiotensin Ⅳ (AngⅣ), is generated from AngⅡ 
by aminopeptidase N or from AngⅢ by several other 
aminopeptidases N, M and B[22,37]. This hexapeptide 
[Ang(3-8)] exerts its actions via angiotensin Ⅱ type 
4 receptor (AT4R) found in kidney, lung, brain and 
heart[23,45,46]. However, AngⅣ can also induce its effects 
such as renal vasodilatation, hypertrophy and regulation 
of cell growth in endothelial cells, cardiac fibroblasts 
and vascular smooth muscle cells by interacting with 
AT1R[47]. Furthermore, AngⅣ is thought to have an 
important regulatory role in cardiovascular damage, 
cognition and renal metabolism and it might be involved 
in the vascular inflammatory response[22,37].

Angiotensin (1-9) [Ang(1-9)] is formed by cleaving 
one amino acid residue from the carboxyl terminus of 
AngI by ACE2[48] and is metabolized by ACE1 and NEP to 
generate Ang(1-7)[49]. Ang(1-9) can also be generated 
from AngⅠ through the activity of carboxypeptidase 
A or cathepsin A[50,51]. The formation of Ang(1-9) is 
dependent on ACE2 activity[49,52]. The biological function 
of Ang(1-9) is to increase nitric oxide formation and 
release of arachidonic acid, enhance bradykinin activity[50] 
and possibly be involved in the inhibition of platelet 
function[53]. Ang(1-9) may decrease BP and thus protect 
the heart and blood vessels and reduce hypertension[54]. 
Ang(1-9) could mediate its actions via the AT2 
receptors[54,55].

Angiotensin (1-7) [Ang(1-7)] was originally believed 
to be an inactive component of RAS. In 1988 this hepta-
peptide was shown to have actions opposing those of Ang
Ⅱ[37]. Ang(1-7) is generated from AngⅡ by ACE2 or by 
other known peptidases such as prolylendopeptidase and 
prolyl-carboxipeptidase[23,37,42,56]. Ang(1-7) can also be 
synthesized directly from AngI by prolylendopeptidase 
and from Ang(1-9) or from prohormone Ang(1-12) 
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domain and a heavily glycosylated N-terminal ectodo-
main[36]. It is distributed in many tissues and is also found 
in biological fluids, e.g., in plasma and cerebrospinal 
fluid[69-71].

ACE1 has an activated water molecule complexed 
to Zn2+ in its active sites[72]. In addition, ACE1 activity 
depends on the presence of chloride that enhances the 
binding of different substrates[73]. As an exopeptidase 
ACE1 cleaves dipeptides from the free C-terminus of 
AngⅠ and of the hypotensive peptide bradykinin[36,40]. 
ACE1 can also generate AngⅢ and Ang(1-7) and 
then further degrade Ang(1-7) to inactive Ang(1-5). 
Moreover, ACE1 acts in kallikrain-kinin system cleaving 
bradykinin to inactive compounds[36,40,57]. Because ACE1 
participates in regulation of BP and in development of 
cardiovascular diseases, it is one major target for pharm-
acotherapy[36]. 

ACE2, the first known human homologue to ACE1 (42% 
sequence identity), was cloned in 2000[36,42,48,68,74]. ACE2 was 
first shown to convert AngI to Ang(19)[48]. Later, ACE2 was 
found to hydrolyze AngⅡ into Ang(1-7) with much higher 
efficiency (approximately 400-fold) than the hydrolysis 
of AngI to Ang(1-9)[36,42,49,57,75]. ACE2 is a 805 amino 
acid residues long (120 kDa) type Ⅰ transmembrane 
glycoprotein that has been found in organs such as 
kidney, heart, lungs, liver and brain. ACE2 has a conser-
ved zinc metallopeptidase consensus sequence His-Glu-
X-X-His, in wich X stands for any amino acid (HEXXH) 
in its active site and its activity is regulated by chloride 
ions[36]. Contrary to ACE1, primarily dipeptidylcarboxy-
peptidase, ACE2 functions as a monocarboxypeptidase 
cleaving a single amino acid residue (Phe) from AngⅡ 
to generate Ang(1-7). Thus, it negatively regulates the 
activated RAS and ACE1 activity by degrading AngⅡ and 
increasing Ang(1-7) formation[36,74]. ACE2 is not blocked 
by conventional ACE inhibitors[58].

ACE2 together with Ang(1-7) and MasR have 
become the focus of recent research regarding RAS[42,58]. 
ACE2 is seen as the key player maintaining the balance 
between the two main pathways of RAS: ACE1-Ang
Ⅱ-AT1R and ACE2-Ang(1-7)-MasR[36]. Chronic and long 
lasting imbalance of these two enzymatic pathways 
may lead to pathophysiology of the renal, pulmonary, 
cardiovascular and central nervous system[76].

In addition to previously mentioned enzymes, there 
are several different peptidases and proteases that act 
on longer angiotensin peptides thus cleaving them into 
shorter peptides. For example, AngⅡ can be generated 
from AngⅠ by four different enzymes: ACE1, CAGE, 
chymase and cathepsin G[43]. Alternative enzymes acting 
on different angiotensin peptides are shown in Figure 1.

Alternative pathways for angiotensin II biosynthesis
A number of studies have shown alternative pathways 
for AngⅡ generation[77-79] being important in physiologi-
cal and pathophysiological conditions[41,80]. AngⅡ-forming 
enzymes can be divided into three categories: metallo-

dipeptidyl carboxypeptidase known as ACE1, aprotinin-
sensitive serine proteases such as tonin[81], cathepsin 
G[82], kallikrein[83], trypsin[84] and chymostatin-sensitive 
serine proteases such as human chymase[85,86] (Figure 
1).

Main receptors of RAS
Human (pro)renin receptor [(P)RR] is a 350 amino acid 
residues long single transmembrane-domain protein 
containing unglycosylated N-terminal domain responsible 
for renin and prorenin binding and the short cytoplasmic 
tail that is involved in the intracellular signalling[36,87]. 
Compared to the binding of free renin, the binding of 
renin to (P)RR is 3 to 5fold more catalytically efficient, 
thus cleaving AGT to AngI more effectively[36,37]. 

Four heptahelical G-protein-coupled receptors of 
RAS: AT1R, AT2R, AT4R and MasR, mediate the effects 
of angiotensins causing vasodilatation and vasoconstri-
ction[55,88]. AT1 and AT2 receptors are mainly respon-
sible for mediating the effects of AngⅡ, whereas AT4 
receptor is target of AngⅣ generated by degradation of 
AngⅡ[23,37]. A break-down product of Ang(1-7), namely 
Ang(3-7), can also bind to AT4R. AT4 receptors are 
located in the brain, lungs, heart, kidneys and liver and 
they are related to cognitive functions and proliferative 
effects[43,45,46]. 

Although AT1 and AT2 subtypes bind Ang Ⅱ in a 
similar manner, they differ in tissuespecific expression 
and genomic structure (only about 30% sequence 
homology) as well as in localization and regulation. 
AT1 receptors can be activated by Ang Ⅱ but other 
peptides, such as Ang Ⅲ, Ang Ⅳ and Ang(1-7), can also 
stimulate AT1R but with lower binding affinity[43]. AT1 
and AT2 receptors mediate opposite effects of Ang Ⅱ, 
the former having negative cardiovascular effects, such 
as vasoconstriction and aldosterone release, and the 
latter having positive cardiovascular effects[12]. Whereas 
the role and function of AT1R is quite well established, 
the function of AT2R is not as clearly defined[55]. AT2 
receptors, which are activated by Ang Ⅱ and also by 
Ang(1-7), may exert the antiproliferative, proapoptotic, 
vasodilatory and antihypertensive effects[43,89]. AT2 
receptors are known to be involved in differentiation, 
regulation of growth and regeneration of neuronal tissue, 
and they are also known to play an important role in 
prenatal development. AT2 receptors can also inhibit 
AT1R signaling by directly binding into it. Thus they are 
considered to be cardiovascular protective receptors[12].

MasR was first discovered in year 1986 by Young et 
al[90] as proto-oncogene. Two years later high MasR levels 
were reported in the rat central nervous system by the 
same research group[91]. Later Kitaoka et al[92] described 
MasR expression in the eyes of rhesus macaque. It 
was early found in the mouse kidney and described as 
a factor involved in tumorigenesis[93]. Subsequently it 
is also found in other organs such as in heart, vessels, 
testis, kidney and brain[94] and very recently in the 

114WJO|www.wjgnet.com August 12, 2015|Volume 5|Issue 3|

Holappa M et al . Local RAS in the eye



human eye[95]. MasR is a G protein coupled receptor that 
has seven transmembrane domains[93]. This receptor 
acts antagonistically to the AT1R, mediating number of 
positive cardiovascular effects, such as vasodilation and 
antiproliferative effects, of its ligand Ang(1-7)[43]. MasR is 
part of the counterregulatory arm of RAS (ACE2-Ang(1-
7)-MasR) thus balancing the effects of ACE1-AngⅡ-AT1R 
pathway[34,35]. 

Tissue RAS
In addition to circulatory RAS, various organs have their 
own local RA-systems accounting for long-term changes 
and local effects including proliferation, growth and 
protein synthesis at tissue level[12,23,41]. The first clues of 
the existence of local RA-systems came in 1971 when 
Ganten et al[96] demonstrated that RAS components could 
be produced locally in organs and tissues. This proves that 
RAS is not only a circulating hormonal system, as thought 
earlier, but also a tissue-specific regulatory system[23]. 
Heart, liver, brain, kidney, lungs, intestine and even the 
human eye have their own local RA-systems[2,12,37].

Local RAS includes all components necessary for 
independent production of different components of 
RAS, such as Ang Ⅱ, angiotensinogen, ACE1, AT1R 
and AT2R[2,12,37]. Thus, RAS is not only an endocrine 
and circulating, but also a local paracrine and intracrine 
system regulating more functions than was previously 
thought[12,41]. Even though many of the local RA-systems 
operate independently from the circulatory RAS, in heart 
and kidney, tissue-RAS operates in close interaction 
with the systemic RAS thus complementing each other’s 
functions[37]. Based on the origin of Ang Ⅱ, local RAS 
can be divided into extrinsic and intrinsic system, the 
former getting its Ang Ⅱ from the circulation and the 
latter obtaining its Ang Ⅱ through local biosynthesis[18]. 

LOCAL OCULAR RAS
RAS expression 
Local RAS has also been identified in the human eye. 
Researchers have localized all of the central components 
of RAS, including its receptors, to the structures of the 
eye in variety of species[2,5]. Moreover, all components 
of the two main axes of RAS: Ang Ⅱ-ACE1-AT1R and 
Ang(17)ACE2MasR have been identified in the ocular 
structures of different species. When human eye is 
considered, the components of the two main axes are 
found in retinal structures and in non-retinal structures 
of the human eye[2,95,97]. Our research group has very 
recently succeeded to determine Ang (1-7) and ACE2 in 
the human aqueous humor[97]. Tables 1 and 2 summarize 
the localization of RAS peptides and enzymes in non-
retinal ocular structures of the human eye. Tables 3 and 
4 summarize the localization of RAS receptors in non-
retinal ocular structures of the human eye. Although, 
essential components of RAS haven been identified in the 
human eye, the importance and functions of intraocular 
RAS are still unknown. However, intraocular RAS has 

been the focus of growing interest in recent years due 
to its possible role in the regulation of IOP through its 
effects on aqueous humor formation and drainage[5,12]. 
Furthermore, intraocular RAS activity has been linked to 
the development of glaucoma through its effect on IOP[2].

Concerning intraocular local RAS, there has been 
debate whether intraocular angiotensins originate from 
local production or from the blood compartment[14]. 
It has been shown that neither Ang Ⅰ, Ang Ⅱ nor 
angiotensinogen are able to pass the blood-brain barrier 
which is similar to blood-retina barrier in the eye[14,119,120]. 

Circulating angiotensins cannot reach the vitreous 
fluid when blood-retina barrier is intact[14]. However, if 
disrupted their entering the eye through blood-retina 
barrier becomes possible[99]. In porcine ocular tissues 
Ang Ⅰ and Ang Ⅱ levels are 5 to 100-fold over those 
found from admixture with blood or diffusion from 
blood[14]. In rabbit and pig ACE1 activity has been shown 
to be higher in ocular tissues than in plasma[121,122]. The 
local intraocular RAS is estimated to have a role in the 
regulation of IOP affecting the formation of aqueous 
humor and the drainage. It has been shown that 
systemic antihypertensive RAS-inhibiting medications 
lower IOP. Certain ACE inhibitors[15] and AT1 receptor 
blockers[16] have proved to lower IOP in both non-
glaucomatous and glaucomatous patients. In animal 
studies, ACE inhibitors[17,18], AT1 receptor blockers[19,20] 
and renin inhibitors[21] have been reported to reduce 
IOP. It has also been suggested that Ang Ⅱ can increase 
aqueous humor secretion via AT1 receptor[118]. 

Aqueous humour dynamics and IOP
Aqueous humor formation: Intraocular pressure (IOP) 
can be described as a net sum of homeostatic balance 
between aqueous humor formation and outflow[123,124]. 
In the healthy human eye, the flow of aqueous humor 
against the resistance generates an IOP of about 15 
mmHg[125]. Maintaining the optimal physiological IOP is 
fundamental to keep the optical and refractive properties 
of the eye, including the right shape of the eye[124,126]. 
The circulating fluid nourishes unvascularized eye 
structures such as the cornea and the lens. The normal 
aqueous humor formation rate is 2.5-2.8 μL/min and 
the entire volume is replaced every 100 min[5]. This is 
reduced during sleep, with ageing, and in some systemic 
diseases like diabetes[127]. Currently IOP is the main risk 
factor for glaucoma that is amenable to treatment[128]. 

The ciliary body epithelial is responsible for the 
production of aqueous humor[123] which is secreted 
mainly by active ionic transport across the epithelium 
against a concentration gradient[129]. Active secretion 
requires energy, produced in hydrolysis of adenosine 
triphosphate (ATP) by Na+/K+ ATPase. Active transport 
of Na+ into the posterior chamber by the non-pigmented 
ciliary epithelial cells induces also water movement 
from the stromal pool into the posterior chamber. Active 
transport of Cl- and HCO3

- occurs to a lesser extent[130]. In 
addition to the active secretion two other physiological 
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processes exist in the fluid formation: diffusion from the 
blood compartment and ultrafiltration. They are passive 
and require no cellular activity[131]. The whole ciliary 
body system and its aqueous humor formation should 
be regarded as a multifunctional and interactive process. 
Aqueous humor is a mixture of organic solutes, electro-
lytes, growth factors, cytokines and proteins[132-136]. After 
the production it is secreted into the posterior chamber 
from where it flows between the lens and iris into the 
anterior chamber[132,137,138]. 

Aqueous humor outflow: Via anterior chamber and 
through the trabecular meshwork and the canal of 
Schlemm, aqueous humor escapes the eye into the 
venous blood system[123]. It can leave the eye through 
three different main routes: the trabecular, the uveos-
cleral or the uveolymphatic pathways[128]. Trabecular 
outflow is the main route of drainage accounting for 

90% of all aqueous humor outflow, and it is pressure
dependent[5,128,139]. The fluid outflow through the 
trabecular meshwork is affected by adhesions of 
trabecular meshwork cells and by the state of the actin 
cytoskeleton[140]. 

Outflow, where aqueous humor drains through 
the ciliary muscle and exits through the supraciliary 
space and across the anterior or posterior sclera into 
choroidal vessels, is called the uveoscleral outflow[141] 
which is independent of IOP and particularly impacted 
by age[139]. A third outflow route is suggested to exist: 
channels in the stroma of the ciliary body and interstitial 
spaces between ciliary muscle bundles. It may function 
as a backup outflow system[142]. The relevance of 
this pathway remains to be determined. The other 
alternative, minor outflow pathways are via iris vessels, 
corneal endothelium, or anterior vitreous body[143]. 

Pharmacological treatment of glaucoma reduces IOP 
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Table 1  Renin-angiotensin system components in tears, lacrimal gland, bulbar conjunctiva, cornea, trabecular meshwork, aqueous 
humor and iris

RAS Tears Bulbar Cornea Trabecular Aqueous humor Iris

component lacrimal gland conjunctiva meshwork
Prorenin White et al[98] White et al[98] Danser et al[99] White et al[98]

Renin White et al[98] White et al[98] White et al[98]

AGT White et al[98] White et al[98] Chowdhury et al[100] White et al[98]

ACE1 Vita et al[101] Savaskan et al[13] Savaskan et al[13] Savaskan et al[13] Vita et al[101] Ferrari-Dileo et al[106]

Sharma et al[102] Weinreb et al[104]

Immonen et al[103] White et al[98] White et al[98] Aydin et al[105] White et al[98]

Holappa et al[97]

ACE2 Holappa et al[97]

Ang I Danser et al[14] Danser et al[14] 
Osusky et al[107]

Ang II Savaskan et al[13] Savaskan et al[13] Osusky et al[107] Danser et al[14] Danser et al[14]

Savaskan et al[13] Osusky et al[107] Senanayake et al[108]

Ang(1–7) Vaajanen et al[95] Holappa et al[97]

Table modified and updated from the table published by Giese et Speth, 2014. ACE1, -2: Angiotensin converting enzyme 1, -2; AGT: Angiotensinogen; AngⅠ, 
-Ⅱ: Angiotensin Ⅰ, -Ⅱ; Ang(1–7): Angiotensin (1–7); RAS: Renin-angiotensin system.

Table 2  Renin-angiotensin system components in ciliary body, non-pigmented ciliary epithelium, lens, vitreous, optic nerve head 
and sclera

RAS component Ciliary body/non-pigmented ciliary epithelium Lens Vitreous Optic nerve head Sclera

Prorenin Sramek et al[109] White et al[98] Danser et al[99] White et al[98]

Danser et al[99] Wallow et al[110]

Wallow et al[110]

Berka et al[111]

Renin Berka et al[111] White et al[98] White et al[98]

AGT Sramek et al[112] Sramek et al[112]

ACE1 Igic et al[113] Savaskan et al[13] Ferrari-Dileo et al[106] Ferrari-Dileo et al[106] White et al[98]

Ferrari-Dileo et al[106] White et al[98] Nakanishi et al[114]

Sramek et al[112] Ishizaki et al[115]

Aydin et al[105]

ACE2
Ang I Danser et al[14]

Ang II Danser et al[14] Senanayake et al[108] Senanayake et al[108] Savaskan et al[13]

Savaskan et al[13]

Ang(1–7) Vaajanen et al[95] Vaajanen et al[95]

Table modified and updated from the table published by Giese et Speth, 2014. ACE1, -2: Angiotensin converting enzyme 1, -2; AGT: Angiotensinogen; AngⅠ, 
-Ⅱ: Angiotensin Ⅰ, -Ⅱ; Ang(1–7): Angiotensin (1–7); RAS: Renin-angiotensin system.
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by decreasing the rate of aqueous humor formation or 
by increasing the rate of aqueous humor outflow[144]. 

Glaucoma
It is well-known that defects in the RAS cascade are 
involved in several cardiovascular and renal diseases, 
including heart failure, hypertension, ventricular 
hypertrophy, cardiac remodelling, and chronic renal 
failure[145-147], but interestingly, imbalances in the RAS 
cascade are also involved in glaucoma[3], which is a 
neurodegenerative disorder that leads to the loss of 
the axons populating the optic nerve and to the death 
of retinal ganglion cells by non-apoptotic and apoptotic 
mechanisms[2,3,6]. Together with age and family history, 
increased IOP is one of the known major risk factors 
for glaucoma[2,6,7]. Diabetes, migraine/vasospasms and 
vascular dysfunction are also considered as risk factors 
for glaucoma development[5,6,128]. 

Ocular hypotensive medications, laser procedures 
and surgical means are currently the major therapeutic 
tools to treat glaucoma[2,6,22]. They all act by lowering IOP 
thus affecting the onset of the disease[5]. Interestingly, 
antihypertensive medications acting on RAS have been 
shown to lower also IOP, suggesting that compounds 
blocking RAS might be potential anti-glaucomatous drugs 
in the future[22]. ACE inhibitors can decrease AngⅡ levels 
in aqueous humor[107]. By reducing blood flow in the 
ciliary body ACE inhibitors could also decrease aqueous 
humour production[148]. Furthermore, by preventing 
the breakdown of bradykinin ACE inhibitors are able to 

promote synthesis of endogenous prostaglandins, which, 
as shown with marketed prostaglandin analogues, could 
increase the uveoscleral outflow thus lowering IOP[149,150]. 
Biosynthesis of certain matrix metalloproteinases is 
thought to be associated with increased uveoscleral 
outflow which leads to relaxation of the ciliary muscle 
and reduction and compaction of extracellular matrix 
components within the ciliary muscle, the sclera, the iris 
and within tissues of the uveoscleral outflow route, all 
of which might lower IOP by facilitating aqueous humor 
outflow[151]. ACE-inhibitors activate also the nitric oxide 
pathway by preventing bradykinin breakdown which 
increases endothelial nitric oxide formation and causes 
vasodilatation. Bradykinin stimulates the synthesis of 
prostaglandins and nitric oxide which also antagonize the 
vasoconstrictive effects of endothelin-1 and inhibit the 
overall production of endothelin-1 by endothelial cells. 
Endothelin 1 is a vasoconstrictive peptide that promotes 
contraction in the human ophthalmic artery and in the 
porcine ophthalmic and ciliary arteries[152-154]. 

Moreover, RAS activity has been described in 
cultured non-pigmented human ciliary epithelial cells 
which participate in aqueous humor formation and 
many of the central components of RAS have been 
identified in eye structures responsible for aqueous 
humor formation such as ciliary body[2,116,118]. AngⅡ can 
activate Ca2+ signalling system that increases potassium 
ion channel activity[155]. Together with cell volume loss, 
these effects suggest that AngⅡ acts as a operated 
secretagogue in the non-pigmented ciliary cells[118]. In 
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Table 3  Renin-angiotensin system receptors in tears, lacrimal gland, bulbar conjunctiva, cornea, trabecular meshwork, aqueous 
humor and iris

RAS component Tears lacrimal gland Bulbar conjunctiva Cornea Trabecular meshwork Aqueous humor Iris

(P)RR White et al[98] White et al[98] White et al[98]

AT, Lin et al[116]

unknown subtype
AT1R Senanayake et al[108]

AT2R Senanayake et al[108]

AT4R
MasR  Vaajanen et al[95] Vaajanen et al[95]

Table modified and updated from the table published by Giese et Speth, 2014. AT1, 2, 4: Angiotensin Ⅱ type 1, 2, 4 receptor; MasR: Mas receptor; (P)RR: 
(pro)renin receptor;  RAS: Renin-angiotensin system.

Table 4  Renin-angiotensin system receptors in ciliary body, non-pigmented ciliary epithelium, lens, vitreous, optic nerve head and 
sclera

RAS component Ciliary body/non-pigmented ciliary epithelium Lens Vitreous Optic nerve head Sclera 

(P)RR White et al[98] White et al[98]

AT, unknown subtype Lograno et al[117]

Lin et al[116]

AT1R Cullinane et al[118] Senanayake et al[108] Senanayake et al[108]

AT2R Senanayake et al[108]  Senanayake et al[108]

AT4R
MasR Vaajanen et al[95]

Table modified and updated from the table published by Giese et Speth, 2014. AT1, 2, 4: Angiotensin Ⅱ type 1, 2, 4 receptor; MasR: Mas receptor; (P)RR: 
(pro)renin receptor;  RAS: Renin-angiotensin system.
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addition, Ang Ⅱ activates Na+/H+ exchange which leads 
to an increase in cytoplasmic sodium concentration[129]. 
In ciliary and renal tubular epithelium sodium handling 
related mechanisms are common pathogenetic factors. 
This might explain the coexistence of glaucoma and 
systemic hypertension[156]. Other explanations have 
also been suggested for the relationship between 
hypertension and glaucoma development. Hypertension 
is shown to cause impairment in autoregulation of the 
posterior ciliary circulation[157] and suggested to induce 
microvascular damage thus worsening blood flow to the 
optic nerve[158]. Furthermore, antihypertensive therapy 
has been described to cause hypotensive episodes that 
can injure the optic nerve[159].

In addition to possible role of RAS in the aqueous 
humor formation, RAS is suggested to act in aqueous 
humor outflow. AngⅡ is able to promote cell prolifer-
ation in bovine trabecular meshwork cells and increase 
synthesis of collagen in vitro. Moreover, intracamerally 
administered AngⅡ reduces uveoscleral outflow[160]. 

Paradoxically, natural and synthetic AngⅡ, when 
administered intravenously, lowered IOP in anaesthetized 
cats[161]. 

RAS AND OTHER EYE DISEASES
In addition to glaucoma, local intraocular RAS has been 
associated with other severe eye diseases that can lead 
to permanent vision loss, such as age-related macular 
degeneration (AMD), ROP and DR. Dysregulation of 
RAS cascade participate in the development of these 
severe eye diseases.

AMD 
In elderly people, AMD is one of the leading causes 
of visual impairment. Both dry and wet forms of the 
disease are associated with vision loss. Dry forms 
of the disease accounting for 90% of the cases lead 
to the significant decline of photoreceptors which 
ultimately causes central vision loss. On the contrary, 
wet form of AMD is characterized with pathological 
growth of cloroidal blood vessels that will eventually 
populate retina after breaking through the underlying 
Bruch’s membrane. In addition to old age, environmental 
factors, smoking, genetic susceptibility and systemic 
hypertension are regarded as risk factors for developing 
AMD. Interestingly dysregulation of the RAS cascade is 
suggested to play a role in the development of AMD[2,162,163].

Three key observations are held as evidence showing 
the possible involvement of RAS in the development of 
AMD. Firstly, systemic hypertension is a risk for the deve-
lopment of AMD. Secondly, dysregulation of RAS may 
have an impact on retinal pigment epithelium function 
and photoreceptor viability due to the observations that 
AngⅡ can modulate retinal pigment epithelium. Thirdly, 
AngⅡ is involved in retinal angiogenesis thus it might 
have a role in choroidal neovascularisation[2,162]. Animal 
studies have proven that administered AT1R antagonist 
(losartan)[164] and other AT1 receptor blockers[165] and 

(pro)renin receptor inhibitor[166] can reduce choroidal 
neovascularization thus having a positive effect on AMD.

ROP
ROP is a neovascular disease affecting premature 
newborns. ROP is associated with pathological retinal 
neovascularisation that causes complications such as 
tractional retinal detachment, macula dragging and 
vitreal haemorrhage, all of which can lead to vision 
loss[162]. The main risk factors for the disease are low 
birth weight and lower gestational age, both of which 
correlate with immaturity of retina at birth. In fact, in 
industrialized countries, approximately two-thirds of 
infants with birth weight less than 1.25 kg manifest 
some degree of retinopathy[167]. The cause of ROP is 
thought to be the retinal blood vessels expanding from 
the optic nerve which growth halts when a premature 
neonate is brought into a high oxygen environment. 
When the newborn is brought back to normal conditions, 
the inner vasculature in retina fails to regain normal 
vessel growth thus creating an avascular area and 
causing neovascularisation and epiretinal angiogenesis 
that can lead to vision loss[168].

Studies using animal models have suggested that 
RAS is involved in the development of ROP. Infants 
that are diagnosed with ROP have had elevated 
serum prorenin levels[169], ocular renin levels[170,171] 
and increased AT1R and AT2R expression[170]. Treating 
oxygen induced retinopathy in animal models with ACE 
inhibitors and AT1R antagonists during the normal air 
conditions reduces pathological angiogenesis on the 
surface of the retina[170,172-174]. On the contrary, the role 
of AT2R in retinal vascular pathology and the effects of 
the use of AT2R antagonists on retinal angiogenesis are 
still debatable[171,173,175,176]. 

Diabetic retinopathy
The development of progressive vascular pathology 
within the inner retina characterizes DR which is among 
of the leading causes of blindness worldwide[163,177]. 
Alterations in the blood-retinal barrier, ischemia, dilated 
capillaries associated with poor retinal perfusion, retinal 
microaneurysms, loss of pericytes leading to changes in 
vascular permeability and the release of growth factors 
which may induce neovascularisation are all implications 
of DR[178]. DR can occur as non-proliferative DR (NPDR), 
which corresponds to the early state of the disease, or 
as more advanced form of the disease: proliferative 
DR (PDR). In NPDR the breakdown of the blood-retinal 
barrier and weakened retinal blood vessels lead to the 
formation of microaneurysms that can leak fluid into 
retina causing swelling of the macula. In PDR blood 
vessels can grow into the vitreous and on the surface 
of the retina[177,179]. Blocking the RAS cascade seems to 
reduce the incidence and progression of DR suggesting 
that RAS may be implicated in the pathogenesis of the 
disease[180-182]. However, more research is required to 
understand the complex interplay between RAS cascade 
and DR.
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CONCLUSION
Systemic RAS regulates BP homeostasis, body fluid 
volume and electrolyte balance. An interesting new 
observation is intraocular, local RAS, especially existed in 
the eye structures which are involved in aqueous humor 
dynamics. Human and animal studies have both shown 
that antihypertensive drugs blocking RAS at any level 
can reduce IOP suggesting that these kind of compounds 
may be potential anti-glaucomatous drugs in the future. 
Furthermore, compounds elevating Ang(1-7) formation, 
activating Mas receptors and positively affecting ACE2 
activity offer new intriguing opportunities for ocular 
pharmacology in the future. Although IOP represents 
the major risk factor in glaucoma, reduction of IOP does 
not always prevent the progression of disease like in 
low-tension glaucoma, indicating that factors other than 
elevated IOP are involved in glaucoma progression. 
Apoptosis of retinal ganglion cells may be the main 
possible unsolved reason. ACE inhibitors[183], ARBs[184] 

and Mas-receptor ligands[185] have showed some 
potential neuroprotective effects, which will stimulate 
research activity in the future. 
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