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Abstract
Millions of people worldwide are exposed to harmful lev-
els of noise daily in their work and leisure environment. 
This makes noise-induced hearing loss (NIHL) a major 
occupational health risk globally. NIHL is the second 
most common form of acquired hearing loss after age-
related hearing loss and is itself a major contributing 
factor to presbycusis. Temporary threshold shifts, once 
thought to be relatively harmless and recoverable, are 
now known to cause permanent cochlear injury lead-
ing to permanent loss of hearing sensitivity. This article 
reviews the current understanding of the cellular and 
molecular pathophysiology of NIHL with latest findings 
from animal models. Therapeutic approaches to protect 
against or to mitigate NIHL are discussed based on their 
proposed action against these known mechanisms of 
cochlear injury. Successes in identifying genes that pre-
dispose individuals to NIHL by candidate gene associa-
tion studies are discussed with matched gene knockout 
animal models. This links to exciting developments in 
experimental gene therapy to replace and regenerate 
lost hair cells and post-noise otoprotective therapies 
currently being investigated in clinical trials. The aim is 
to provide new insights into current and projected fu-

ture strategies to manage NIHL; bench to bedside treat-
ment is foreseeable in the next 5 to 10 years.
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Core tip: Noise-induced hearing loss (NIHL) affects mil-
lions of people worldwide irrespective of age, sex, and 
race. Hearing aids and cochlear implants are currently 
the only available interventions. This review article 
summarizes the cellular and molecular mechanisms of 
NIHL to-date. Significant milestones in uncovering ge-
netic predisposition to NIHL in humans, experimental 
gene therapies and post-noise otoprotective strategies 
to reduce the impact of NIHL are reviewed.
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INTRODUCTION
Noise-induced hearing loss (NIHL) is a major health 
problem indiscriminately affecting people of  all ages, sex, 
or race worldwide[1]. A single traumatic exposure to loud 
sound, such as gun-shot or fireworks, or prolonged or 
repeated exposure to excessive sound over the accept-
able daily exposure (85 dBA for 8 h, a guideline set by the 
National Institute for Occupational Safety and Health), 
cause sensorineural damage to the cochlea. This damage 
leads to either immediate hearing loss (impulse noise) or 
chronic progressive NIHL. Besides traditional hazardous 
exposure to occupational noise in industrial (construction, 
mining, forestry, aircraft, agricultural) and military set-
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tings, recreational exposure is equally accountable, since 
many leisure activity venues (clubs, discos, gyms, sport 
arenas) exceed recommended sound levels. Further, the 
Action on Hearing Loss (United Kingdom) has issued 
a serious warning that approximately two-thirds of  18- 
to 30-year olds are exposed to dangerously high-intensity 
sounds (> 85 dB) which can cause hearing damage, 
through personal listening devices[2]. NIHL causes social 
isolation, impaired communication with family and co-
workers, lost productivity, decreased self-esteem, depres-
sion and cognitive decline. With an aging population and 
the global expectation to delay retirement age, the com-
pounding socioeconomic impact of  NIHL and age-relat-
ed hearing loss (ARHL) is set to become even more sig-
nificant. Despite this, hearing aids and cochlear implants 
are the only currently available management strategies for 
NIHL. It is therefore crucial to develop pharmacological 
and molecular therapies for NIHL that can ameliorate 
or repair injury to the cochlea and reduce the impact of  
hearing loss. This paper reviews the current knowledge 
of  the cellular and molecular mechanisms of  NIHL as 
well as genetic predisposition to NIHL in humans and 
matched animal models. Significant research milestones 
and treatment avenues including gene therapies and post-
noise otoprotective strategies achieved in recent years are 
discussed. 

Mechanisms of noise induced cochlear injury
Sound detection by the cochlea is made possible by its 
sensorineural cellular elements, namely sensory hair cells 
and supporting cells. Outer hair cells (OHC) are elec-
tromotile and contract upon depolarization (reverse-
transduction). These cells mechanically enhance the 
vibration of  a narrow region of  the basilar membrane to 
improve detection sensitivity (approximately 40-60 dB)[3] 
and frequency selectivity of  the organ of  Corti through 
cochlear amplification. The mechanical vibration is then 
transduced by inner hair cells (IHC), the classical sensory 
receptor cells, into auditory neurotransmission. This trans-
duction is achieved through electrochemical coupling to 
its postsynaptic auditory afferent neurons, the spiral gan-
glion neurons (SGN). The structural organization of  the 
cochlea is maintained by supporting cells lining the sen-
sory epithelium and lateral wall tissues, the stria vascularis 
and spiral ligament. The supporting cells are also critical 
in maintaining endolymph ion homeostasis and cochlea 
blood supply. 

The classical features of  NIHL at the cellular level 
include damaged hair cell stereocilia, hair cell loss, swell-
ing of  afferent dendrites and SGN in Rosenthal’s canal. 
The organ of  Corti is compressed as result of  damages 
to the supporting pillar cells, strial shrinkage, and loss of  
fibrocytes in the spiral limbus and spiral ligament. The 
cellular architecture of  the high-frequency encoding basal 
region of  the organ of  Corti is more vulnerable to noise 
injury compared to the low-frequency apical region. This 
is consistent with the “half-octave shift” phenomenon[4,5] 
whereby the largest noise-induced threshold shifts are 

observed at the frequency approximately one-half  oc-
tave above the stimulus frequency. This is especially true 
with pure tone and higher-level noise exposure, since the 
OHC are more prone to noise induced damage affect-
ing their cochlear amplifier function. This sensorineural 
tissue damage is irreversible in the mammalian cochlea 
since the hair cells, which provide trophic support to the 
SGN, cannot regenerate. Figure 1 shows the cochlear cell 
types affected in NIHL.

Research using animal models of  NIHL suggests two 
routes of  cochlear damage following noise exposure. 
The first is that intense noise causes direct mechanical 
disruption of  the hair cell stereocilia and direct damage 
to supporting and sensory cells leading to hair cell loss[6,7]. 
The other route is metabolic damage through various bio-
chemical pathways that converge and cumulatively trigger 
hair cell death through either apoptosis or necrosis[8,9].

Current theories of  metabolic damage focus on oxida-
tive stress, which includes excessive generation of  reactive 
oxygen species (ROS) and reactive nitrogen species (RNS) 
in the cochlea triggered by exposure to loud sound, fol-
lowed by caspase-mediated cell death by apoptosis[8,10-12]. 
ROS have been detected in cochlear tissue immediately 
after noise exposure[13] and seen to persist for 7-10 d after, 
spreading from the basal end of  the organ of  Corti to 
the apical turn; the RNS product peroxynitrite (ONOO-), 
generated by the combination of  nitric oxide (NO) and 
superoxide has also been found[14]. This prolonged oxida-
tive stress is proposed to induce the delayed and contin-
ued cochlear injury. This time might, therefore, provide 
a “window of  opportunity” for post-noise otoprotective 
interventions to ameliorate or repair injury to the co-
chlea and reduce the impact of  hearing loss. Apoptosis-
inducing factor and EndoG are also released by mito-
chondria into the cytosol of  cochlear cells following noise 
exposure[15]. Translocation of  these pro-apoptotic factors 
into the nucleus triggers apoptosis. Activation of  the 
c-Jun N-terminal kinase/mitogen-activated protein kinase 
(JNK/MAPK) signaling pathway is also implicated in 
OHC apoptosis in response to oxidative stress[16]. 

Free radicals (ROS and RNS) can cause damage by 
reacting with DNA, proteins, cytosolic molecules, cell sur-
face receptors, and breaking down membrane lipids. ROS 
produced by the mitochondria induce lipid peroxidation 
in the cochlea through the formation of  malondialdehyde 
and 4-hydroxynonenal byproducts[14]. This overloads the 
cochlear antioxidant enzyme system, including superoxide 
dismutase, catalase (CAT), glutathione peroxidase and 
glutathione reductase, and depletes glutathione, the en-
dogenous antioxidant. Figure 2 provides an overview of  
oxidative stress pathways and the production of  free radi-
cals. In addition to apoptosis, ROS generation also leads 
to inflammation, and production of  the pro-inflammatory 
cytokines interleukin-6 (IL-6)[17] and tumor necrosis fac-
tor α[18]. The presence of  vasoactive lipid peroxidation 
products such as isoprostanes potentially also lead to the 
reduced cochlear blood flow associated with excessive 
noise[19-21]. Noise-induced ischemia and subsequent re-per-
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fusion further potentiate the generation of  ROS. A recent 
study has implicated the NO synthase/cGMP-dependent 
protein kinase (Prkg-1) signaling pathway, normally in-
volved in vasodilation, in NIHL[22]. Treatment with the 
phosphodiesterase type 5 inhibitor vardenafil (Levitra) 
almost completely prevented NIHL in the rat model.

Excessive noise also leads to an increase in free Ca2+ 
in cochlear hair cells immediately post-noise[23]. This in-
crease can be caused by Ca2+ entry through ion channels, 
such as L-type Ca2+ channels and P2X2 ATP receptor 
subunit, and lead to further release of  Ca2+ from intracel-
lular stores[24]. Elevated Ca2+ levels in the cochlea may 
link to ROS production as well as triggering apoptotic 
and necrotic cell death pathways independent of  ROS 
formation[24]. In knock-out mice lacking expression of  
the canonical transient receptor potential channel subtype 
3 (TRPC3 channel), a non-selective cation-permeable 
receptor expressed in sensorineural cochlear tissue[25,26], 
cochlear hair cells displayed approximately 40% reduc-
tion in Ca2+ re-entry following intracellular calcium 
depletion. The TRPC knockout mice have hyperacusis 
at frequencies tonotopically encoded by mid-apical basi-
lar membrane, a region highly reliant on OHC cochlear 
amplification[27]. The consequence of  disrupted calcium 
homeostasis on noise susceptibility is also demonstrated 
in plasma membrane Ca2+-ATPase isoform 2 (Pmca2 or 
Atp2b2) mutant mice. The C-terminally truncated PM-
CA2a is the only isoform detected in the stereocilia of  
hair cells[28]. Pmca2 null mice are deaf  while their hetero-
zygous littermates have significant hearing loss[29]. People 
carrying a homozygous mutation in cadherin 23 (CDH23) 
and a heterozygous, hypofunctional variant in PMCA2 
have exaggerated hearing loss compared to those having 
CDH23 mutation alone[30].

An established mechanism of  NIHL damage is the 
excess release of  the excitatory neurotransmitter gluta-
mate at the IHC afferent synapse. Glutamate excitotoxic-
ity resulting from excessive glutamate release following 
noise overstimulation leads to an influx of  cations such 
as Ca2+ across the post-synaptic membrane. The osmotic 
imbalance results in swelling of  the postsynaptic affer-
ent dendrites. Secondary to this cellular degeneration is 
calcium-dependent caspase-mediated apoptosis by intrin-
sic (mitochondria-mediated) pathway[31-33]. This may lead 
to degeneration of  type 1 SGN weeks and months after a 
noise exposure[34]. The inhibitory neurotransmitter γ-amino 
butyric acid (GABA) is also associated with the regula-
tion of  auditory function[35]. Mice lacking the GABAB1  
receptor subunit have elevated hearing thresholds but in-
creased resistance to permanent acoustic injury[35].

A theory much revisited recently is the role of  intrin-
sic feedback pathways providing endogenous cochlear 
tissue protection against noise damage. Purinergic signal-
ing through ATP activation of  the ATP-gated ion chan-
nel P2X2 receptor subunit within the cochlea is known 
to modulate cochlear function through regulating ion 
homeostasis[36-38]. In a recent study, Housley et al[39] have 
shown that ATP is released into the cochlear partition 

upon sound exposure, activating P2X2 receptors, which 
reduce the sensitivity of  the hair cells through K+ shunt-
ing. This purinergic regulation of  hearing sensitivity was 
revealed by the absence of  noise-induced temporary 
threshold shift (TTS) in P2X2 receptor knockout mice. 
P2X2 receptor knockout mice also showed higher thresh-
old shifts in response to moderate noise exposure and 
more substantial permanent loss of  hearing sensitivity 
compared to their wild-type littermates, supporting the 
protective role of  P2X2 receptor signaling pathway in 
NIHL[40]. 

Noise causes psychological stress. The hypothalamic-
pituitary-adrenal (HPA) axis can be activated by noise 
stress and directly modulate the sensitivity of  the audi-
tory system[41-43]. Glucocorticoid receptors are expressed 
in human and rodent cochlea[44-46]. Systemic glucocorti-
coids or steroid hormones are widely used to treat sud-
den hearing loss with variable success[47-49]. For example, 
dexamethasone decrease the auditory thresholds in mice 
subjected to a moderate acoustic trauma, while the pre-
treatment with glucocorticoid receptor antagonists ex-
acerbates threshold shifts[50]. The corticotropin-releasing 
factor (CRF) involved in the activation of  the HPA axis 
also modulates hearing sensitivity. CRF receptor-1 knock-
out mice showed elevated auditory thresholds, while CRF 
receptor-2 knockout mice exhibits lower auditory thresh-
olds than wild type mice, but increased susceptibility to 
acoustic trauma[51,52]. Figure 3 summarizes the mecha-
nisms of  NIHL discussed. 

Genetic predisposition to NIHL
NIHL is a complex condition caused by the interaction 
of  genetic and environmental factors. Therefore, individ-
ual vulnerability to NIHL is highly variable. Understand-
ing the genetic makeup of  people susceptible to NIHL 
will assist in early interventions and may lead to personal-
ized therapies. Knockout mouse studies have implicated 
deficits in genes involved in antioxidative pathways or 
the structure of  the cochlea to increase susceptibility to 
acoustic overstimulation. These include genes encoding 
proteins of  the hair cell (Cdh23[53], Pmca2[29]), oxidative 
stress (Sod1[54]; Gpx1[55]), stress-activated heat shock fac-
tor (Hsf1[56,57]) and potassium recycling[58,59]. In contrast, 
until recently little was known about the genetic factors 
that influence NIHL in humans. The advance in high-
throughput DNA sequencing technologies, or next-gen-
eration sequencing (reviewed in Metzker[60]) has greatly 
accelerated understanding of  human NIHL genetic pre-
disposition. Genes shown to be associated with oxidative 
stress and cochlear function in mice are obvious candi-
date genes for human studies.

Some original linkage studies on oxidative stress genes 
apparently showed a link between NIHL and mutations 
in these genes. Glutathione S-transferase Mu 1 and theta 
1 (GSTM1 and GSTT1) deletion polymorphisms were 
found in 58 noise-exposed workers[61] and deletion poly-
morphisms of  antioxidant genes paraoxonase 1, paraox-
onase 2 and superoxide dismutase 2 (SOD2) were seen in 
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94 noise-exposed male workers[62]. However, these studies 
need to be interpreted with caution due to sample size 
and conflicting results from repeated studies with larger 
populations[63] (Swedish workers, 103 susceptible to noise 
and 114 resistant to noise). Association with the CAT 
gene was revisited by Konings et al[64] in two large inde-
pendent populations (Swedish and Polish). In their study, 
additional single nucleotide polymorphisms (SNPs) were 
investigated to cover most of  the common genetic vari-
ants. Interactions between noise exposure and genotypes 
and their effect on NIHL were also analyzed. Konings’ 
study confirmed that two SNPs in CAT have associations 
with NIHL susceptibility, but only when noise exposure 
levels are taken into account. Konings et al[65] extended 
their study in the two populations and analyzed 644 SNPs 
in 53 candidate genes. Positive associations were shown 
for protocadherin 15 (PCDH15) and myosin 14 (MYH14). 
These are of  great importance to hearing function since 
cadherins 23 and PCDH15 form hair cell tip links to 
convey force to mechanotransduction (MET) channels in 
sensory hair cells[66] and patients with MYH14 mutations 
are affected by autosomal dominant hearing impairment 
(DFNA4)[67].

Hair cell stereocilia are bathed in endolymph with 
high K+ content, which provides the driving force for 
mechanosensory transduction. K+ enters the hair cells 
through MET channels, exits through basolateral K+ 
channels, and is recycled back to the endolymph through 
the outer sulcus cells, Reissner’s membrane, spiral liga-
ment and spiral limbus[68]. Mutations in genes involved 
in K+ recycling, including GJB2, GJB3, GJB6, KCNE1, 
KCNQ1, and KCNQ4 cause both syndromic and non-
syndromic hearing loss (detailed in the Hereditary Hear-
ing loss Homepage http://hereditaryhearingloss.org). 
Indeed, three SNPs in KCNE1 have been shown to have 
significant associations with NIHL[69] and the D85N 
polymorphism variant, when expressed in cell culture 
model, showed faster channel opening and larger K+ 
entry current. The same KCNE1 SNPs and one KCNQ4 
SNP was confirmed to associate with NIHL in a later 
study[70].

TTS
In their seminal papers, Kujawa et al[71] have demonstrated 
that early-life exposure to noise exacerbates ARHL and 
that SGN are initially unharmed but dramatically degener-
ate 2 years after exposure to noise levels that cause TTS[34]. 
Their studies provided insight into the synergy between 
NIHL and ARHL, and also reinforced the importance 
of  TTS in the development of  progressive NIHL. A re-
cent study of  a rare heterozygous allele, P2X2 c.178G>T 
(p.V60L), presented in the DFNA41 type of  progressive 
sensorineural hearing loss, in two unrelated large Chi-
nese families has demonstrated neatly how environment 
and genetic predisposition interplay leading to NIHL[40]. 
DFNA41 family members heterozygous for the mutated 
ATP-gated P2X2 receptor (P2X2) exhibited elevated 
hearing thresholds in their 20 s. Mutation carriers with 

history of  occupational noise exposure as young adults 
have increased threshold shifts of  10-20 dB in the 2- 
8 kHz range compared to carriers with no previous noise 
exposure. On par with their human counterparts, p2rx2-
null mice showed aggravated high-frequency hearing loss 
following continuous exposures to moderate noise from 
birth (8-16 kHz at 75 dB SPL). Patch-clamping and the 
use of  fluorescent probes for membrane permeability 
analysis of  transfected cells expressing P2X2 p.V60L 
showed abolished P2X2 receptor ion channel activity, sug-
gesting impaired channel function in the mutant allele 
carriers. P2X2 receptors are expressed in the sensory hair 
cells and supporting cells of  the organ of  Corti and the 
afferent SGN[38,72]. Sustained noise exposure causes up-
regulation of  the p2rx2 transcripts and P2X2 protein[73,74]. 
Noise induced ATP release into the endolymphatic 
compartment (the scala media) activates P2X2 receptors, 
producing a cation shunt across the cochlear partition 
that reduces the driving force for both inner and OHC-
mediated sound transduction[38,75,76]. The collective find-
ings suggest the cochlear P2X2 receptor/ATP-gated ion 
channel signaling pathway confers protection from NIHL 
and the absence or mutation of  P2X2 receptor increases 
susceptibility to NIHL and presbyacusis. 

THERAPEUTIC STRATEGIES
Gene therapy for NIHL
Given the vital need for therapeutic options for NIHL 
and the known genetic influences on individual suscepti-
bility as discussed above, gene therapy is clearly an attrac-
tive prospect. The inner ear has an anatomical advantage 
for gene therapy; its relative isolation in the temporal 
bone encapsulated in the bony labyrinth minimizes un-
wanted effects of  the introduced gene into other tissues. 
Also, as a fluid-filled organ, transfection reagent can ac-
cess all functionally important cells. Several different gene 
therapy approaches, including those focused on neuro-
trophic or antioxidant support and cellular regeneration, 
have been explored.

Neurotrophic factors and their receptors have crucial 
roles in the development and maintenance of  SGN, and 
so increasing their endogenous expression by gene therapy 
has been widely explored to treat NIHL[77]. Experimental 
viral vector delivery of  neurotrophic genes to the cochlea 
to induce endogenous expression of  the gene product, in-
cluding the secretion of  glial cell line-derived neurotrophic 
factor, hepatocyte growth factor, and brain-derived neuro-
trophic factor (BDNF)[78], has shown promise in preserving 
SGN following ototoxic and noise-induced cochlear dam-
age (reviewed in Hildebrand et al[79]). Alternative routes of  
BDNF gene delivery include the use of  cochlear implants 
to deliver fibroblasts transduced with BDNF gene cassette 
giving rise to BDNF secretion[80]. In addition, the grafting 
of  transfected BDNF-secreting NIH3T cells to the pos-
terior semicircular canals of  the adult mouse inner ear has 
been found to elevate BDNF production[81]. 

Given the importance of  antioxidant enzymes in 
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curbing noise-induced free radical damage[82], gene ther-
apy to over-express antioxidant enzymes in the cochlea 
may provide improved efficacy over systemic antioxidant 

delivery. Antioxidant gene therapy has been tested in co-
chlear injury induced by ototoxic drugs. Kawamoto et al[83] 
have shown a protective effect of  adenovirus-mediated 
delivery of  CAT and the SOD1 and SOD2 superoxide 
dismutase genes against aminoglycoside-induced cochlear 
injury in a guinea pig model. 

Gene silencing through antisense oligonucleotides, 
microRNA and siRNA has been explored for otopro-
tection against cisplatin-induced hearing loss. Round 
window membrane delivery of  siRNA against the tran-
sient receptor potential vanilloid 1 and transtympanic 
injection of  siRNA against the NADPH oxidase NOX3 
have shown to offer protection against cisplatin ototoxic-
ity[84,85].

A recent advance in gene therapy is to regenerate hair 
cells in the adult organ of  Corti. A potential strategy is 
to stimulate supporting cells of  the organ of  Corti to 
transdifferentiate into hair cells by the forced expression 
of  the transcription factor Atoh1 (also known as Math 
1). Izumikawa et al[86] showed that transfer of  adenoviral 
vectors expressing Atoh1 resulted in the formation of  
“hair cell like” cells in the guinea pig organ of  Corti 5 
wk post-inoculation in ototoxic drug deafened cochleae. 
However, there are caveats in the study such as the num-
ber of  new hair cells was not clear and that these cells 
could not be traced back to their precursors, making it 
difficult to delineate from hair cells that had recovered 
from the trauma. Further, although transdifferentiation 
of  supporting cells to hair cells is possible, such has only 
been demonstrated in prenatal and neonatal prepara-
tions where both cell types are still developing[87-89]. Other 
studies have shown inhibition of  Notch signaling to in-
crease hair cell differentiation from stem cells in the otic 
placode. This mechanism is also dependent on Atoh1 
activation, since silencing the transcription factor in the 
γ-secretase inhibitor-treated stem cells prevented the in-
duction of  hair cell fate[90]. A recent study has shown that 
post-noise application of  a potent γ-secretase inhibitor 
to inhibit Notch signaling upregulates Atoh1, and leads 
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Figure 1  Cochlear cell types susceptible to noise-induced hearing loss. Fluorescence micrographs of mouse cochlea tissues by confocal scanning microscopy. 
Transverse cochlear section was immunolabelled to show spiral ganglion neurones and neuritis (with anti-neurofilament-F200 antibody, green), actin filament of the 
sensory hair cell stereocilia (Phalloidin stain, orange), and cell nuclei (DAPI, blue). In cochlea exposed to noise stress, the integrity of inner and outer hair cell (IHC 
and OHC) stereocilia is affected, loss of the hair cells and nerve fiber (NF), damage to supporting pillar cells (pc) and Deiters cells (dc), swelling of spiral ganglion 
neuron (sgn) nerve fiber (intraganglionic spiral bundle, igsb) in the Rosenthal’s canal as well as loss of fibrocytes in lateral wall stria vascularis (sv) and spiral ligament 
(sl) can be detected. 
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to transdifferentiation of  supporting cells into functional 
hair cells and improved ABR thresholds[91].

Perhaps even more innovative is the intensive research 
into cell-based therapy through transplantation of  cells 
into the inner ear (reviewed by Hildebrand et al[79] and Shi 
et al[92]). Efforts include the generation of  neurons from 
pluripotent embryonic stem cells and bone marrow-de-
rived stem cells to replace or supplement auditory neurons 
in afferent innervation compromised by NIHL. Targeted 
delivery of  the progenitor cells to the sensory epithelium 
and long-term survival and differentiation of  stem cells 
into sensorineural cochlear tissue thus holds promise to 
ameliorate NIHL. 

Otoprotective agents for the prevention and mitigation 
of NIHL 
Several drugs and dietary supplements are currently in 
preclinical development against NIHL. The chemical 
structures of  these otoprotective compounds are shown 
in Figure 4. Drug interventions in clinical trials, as de-
picted in the clinical database http://www.clinicaltrials.
gov maintained by the National Library of  Medicine at 
the National Institutes of  Health, are included where ap-
propriate.

Otoprotective agents against glutamate excitotoxicity, 
apoptosis and intracellular calcium overload
Compounds that can prevent NIHL by inhibiting gluta-
mate excitotoxicity and apoptosis include glutamate recep-
tor (N-methyl-D-spartate) antagonists[93] and JNK/MAPK 
inhibitors[16,94]. The JNK group of  cytoplasmic MAPKs 

mediate oxidative stress-induced apoptosis and are activat-
ed by environmental stress, pro-inflammatory cytokines, 
and excitotoxicity[95]. CEP-1347 (KT7515) is a mixed 
lineage kinase (upstream regulators of  MAPK kinases) 
inhibitor, which shows promising protection from hair 
cell death induced by neomycin and noise[96]. Studies using 
a specific inhibitor of  JNK, D-JNK1-I peptide, have also 
demonstrated protection against NIHL and aminoglyco-
side-induced hair cell loss when delivered directly into the 
scala tympani or locally to the round window membrane 
of  the cochlea within 24 h of  noise exposure[16,94]. Devel-
oped under the name of  AM-111 (Xigen/Auris Medical), 
a Phase 2b clinical trial has recently been completed (No-
vember, 2012) in three European countries and has shown 
promise for the treatment of  acute sensorineural hearing 
loss (ClinicalTrials.gov Identifier: NCT00802425). 

Direct manipulation of  intracellular Ca2+ levels phar-
macologically is not practical, but an alternative route to 
minimize calcium-mediated apoptosis by blocking down-
stream cell death pathways has been attempted. Calpain is 
a family of  calcium-dependent cysteine proteases ubiqui-
tously expressed in mammalian cells. Calpain immunola-
beling in the cochlea is upregulated upon noise exposure, 
particularly in the synaptic region of  the OHCs and the 
nerve fibers projecting to the organ of  Corti[97]. Cochlear 
perfusion with leupeptin, a potent calpain inhibitor, prior 
to noise exposure reduces noise-induced hair cell loss[97]. 
Another drug target is calcineurin, a serine-threonine 
phosphatase activated by calcium-dependent calpain acti-
vation. Increased calcineurin immunoreactivity was found 
at the cuticular plate of  hair cells immediately after noise 
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exposure[98]. Local delivery of  calcineurin inhibitors cy-
closporine A and FK506 to the cochlear perilymph using 
an osmotic mini-pump prior to and after noise exposure 
reduced noise-induced OHC death and hearing loss[98,99]. 

Otoprotective agents against noise-induced oxidative 
and metabolic stress
Ameliorating oxidative stress and buffering mitochondrial 

overproduction of  free radicals is becoming an attractive 
avenue for the treatment of  NIHL[8,100]. The potential for 
these therapies is highlighted by mutant mouse models. 
Mice with homozygous deletion of  Cu/Zn superoxide 
dismutase 1 (sod1 knockout)[54,101], the endogenous antioxi-
dant enzyme that catalyzes the conversion of  superoxide 
into oxygen and hydrogen peroxide, or homozygous de-
letion of  glutathione peroxidase 1 (Gpx1 knockout; the 

Figure 4  Chemical structures of otoprotective compounds in development or in clinical trials.
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enzyme reducing hydrogen peroxide to water)[55], have in-
creased noise vulnerability and noise-induced hair cell loss. 

All the agents aforementioned require intra-cochlear 
or round window administration to be effective, and 
most of  them are used prophylactically. The surgical ad-
ministration route is obviously less attractive compared 
to oral intake against periodic noise exposure. Therefore, 
orally administered antioxidant supplements with low risk 
of  side effects constitute the majority of  otoprotective 
therapies in preclinical development[8,82,102-104]. N-acetyl-
cysteine (NAC), Ebselen, D-methionine, and ACE Mg 
(AuraQuell, a combination of  β-carotene, vitamins C and 
E plus magnesium) are amongst the most studied dietary 
antioxidant supplements approaching different phases 
of  clinical trials for noise injury protection. NAC is a 
substrate for the antioxidant glutathione synthesis, acti-
vated upon de-acetylation to L-cysteine by the liver and 
local tissues. It is Food and Drug Administration (FDA)-
approved for respiratory disease and for reversing acute 
hepatoxicity following acetaminophen overdose. NAC 
has previously been administered either intraperitoneally, 
or locally through the round window membrane to pre-
vent acute acoustic trauma[105-107]. A recent double-blind 
study conducted on male employee of  a steel manufac-
turing company has found oral NAC administration to be 
prophylactic to TTS, particularly in subjects with suscep-
tibility to NIHL due to their deletion polymorphism for 
glutathione S-transferases (GSTM1 null, GSTT1 null, and 
GSTP1 Ile(105)/Ile(105))[108].

D-methionine is currently funded by the United 
States Department of  Defense and approved by the 
FDA for Phase 3 clinical trial for treatment of  perma-
nent threshold shift (PTS) (Clinicaltrials.gov Identifier: 
NCT01345474). The amino acid D-methionine can be 
converted to cysteine through the intermediate homo-
cysteine. Racemic methionine (D- and L-isoforms) is 
FDA-approved to acidify urine and is well tolerated when 
administered at doses ranging from 500 to 1000 mg/d. 
Like NAC, D-methionine can be administered orally, by 
systemic injection, or by direct application to the round 
window[109-112]. Ebselen is a mimic of  glutathione per-
oxidase and has strong activity against the peroxynitrite 
anion (ONOO-)[113]. Ebselen was protective against PTS 
and TTS when tested in guinea pigs and rats[114-116]. Eb-
selen in oral capsule (200-600 mg) is also approaching 
Phase 2 clinical trials for TTS (Clinicaltrials.gov Identifier: 
NCT01444846; Sound Pharmaceuticals). 

Creatine is another dietary supplement with potential 
for noise-injury prevention. Catalyzed by the enzyme 
creatine kinase, which is present in the mitochondria, 
brain and muscle tissue in different isoforms, creatine 
and phosphocreatine engage in phosphate buffering to 
provide rapid regeneration of  adenosine-5’-triphosphate 
(ATP) in tissue with high metabolic energy demand, in-
cluding cochlear hair cells and stria vascularis[117,118]. The 
creatine transporter controls cellular availability of  cre-
atine and mutations in its gene, SLC6A8, lead to creatine 
deficiency and X-linked syndromes showing mental re-

tardation, developmental delay, epilepsy, speech and lan-
guage delay, and bilateral sensorineural hearing loss[119-121]. 
Creatine kinase and the creatine transporter are both 
expressed in the sensory hair cells, SGN, supporting cells 
and in the lateral wall of  the organ of  Corti[117,122]. A high 
creatine diet has been found to reduce noise-induced 
TTS and PTS and hair cell loss in guinea pigs[123]. Clini-
cal trials of  creatine as a single drug or adjuvant against 
neurodegenerative diseases (Huntington’s, Parkinson’
s, Amyotrophic lateral sclerosis) and bipolar depression 
have also been carried out. These trials are based on evi-
dence that creatine can be neuroprotective by relieving 
oxidative stress, and that creatine can also inhibit apop-
totic neuronal death through its inhibitory action on the 
mitochondrial transition pore[124,125].

Otoprotective agents against inflammation and reduced 
blood flow
Mice exposed to noise and treated with the anti-IL-6 an-
tibody MR16-1 show improved ABR thresholds, reduced 
SGN loss and a reduction in the number of  activated co-
chlear macrophages[17]. Combined treatment with the ste-
roid prednisolone and the nootropic drug piracetam may 
rescue subjects from gun-shot noise damage[126]. In spite 
of  the lack of  a control group, results look promising. A 
larger number of  patients recovered when treatment was 
given within the first hour after the acute trauma com-
pared to those receiving treatment 1-16 h after, and only 
13% recovered when treatment was given after 24 h or 
more. 

AuraQuell, developed by OtoMedicine, is a combina-
tion of  antioxidant vitamins (β-carotene, and vitamins 
C and E) and the mineral magnesium. The magnesium 
acts in part as a vasodilator and in part as an antioxi-
dant. AuraQuell is currently in Phase 2-3 clinical trial 
for prevention of  NIHL (ClinicalTrials.gov Identifier: 
NCT00808470).

Compounds that provide hearing recovery after 
exposure to traumatic noise
Adenosine amine congener (ADAC), a selective A1 ad-
enosine receptor agonist, has been shown to mitigate 
noise-induced threshold shifts, reduce oxidative stress, 
and facilitate hair cell survival when applied 24 h post-ex-
posure to noise-exposed rats (8-12 kHz band noise for 2 
to 24 h at 110 dB SPL)[127]. ADAC provides neuroprotec-
tion in experimental animal models of  cerebral ischemia 
and Huntington’s disease[128-130]. Adenosine receptors are 
expressed in the cochlea in most cell types[131,132]. Prophy-
lactic administration of  the broadly selective A1 adenosine 
receptor agonist R-phenylisopropyladenosine through the 
round window membrane can also reduce noise-induced 
cochlear damage[133,134], and post-exposure administration 
of  the selective A1 adenosine receptor agonist CCPA pro-
vides partial recovery of  hearing loss[135]. Yet ADAC has 
advantages over other adenosine A1 receptor agonists, as 
it causes minimal peripheral side effects such as bradycar-
dia, hypotension and hypothermia, and it is able to cross 
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the blood-brain-barrier when applied systemically[136]. 
Other agents that have been shown to attenuate NIHL 
post exposure include D-methionine[109], ferulic acid[137], 
and a combination of  salicylate and trolox[138]. 

CONCLUSION
NIHL is a preventable condition. However, even tempo-
rary hearing loss can incur cochlear injury that eventuate 
to permanent damage and hearing loss. Noise manage-
ment and hearing loss prevention remain the principal 
strategies for reducing the burden of  NIHL on the so-
ciety and individuals. On the bright side, signifiant mile-
stones have been reached in understanding the underly-
ing cellular and molecular mechanisms of  NIHL. The 
elucidation of  oxidative stress as a major cause of  NIHL 
has opened up therapeutic avenues, which was previously 
limited to electrical interventions of  cochlear implants 
and hearing aids. Orally administered otoprotective com-
pounds with antioxidant actions to protect against NIHL 
and “hearing pill” for post-exposure rescue will likely be 
available within the next decade. Advance in decoding 
the genetic predisposition for NIHL will facilitate early 
screening and will aid the development of  personalized 
NIHL prevention and treatment strategies. Synergisti-
cally, advances in gene and stem cell therapy in animal 
models provide a promising path to remedy these genetic 
defects, and to regenerate sensory cells in the inner ear 
to restore hearing. These interventions would have been 
unthinkable until recently and these novel developments 
will likely change the face of  NIHL research in the 21st 
century and reduce the impact of  this sensory disability 
on global health.
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