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Abstract
Asthma is an allergic disease, characterized as a 
recurrent airflow limitation, airway hyperreactivity, and 

chronic inflammation, involving a variety of cells and 
cytokines. Reactive oxygen species have been proven 
to play an important role in asthma. The pathogenesis 
of oxidative stress in asthma involves an imbalance 
between oxidant and antioxidant systems that is caused 
by environment pollutants or endogenous reactive 
oxygen species from inflammation cells. There is growing 
evidence that antioxidant treatments that include 
vitamins and food supplements have been shown to 
ameliorate this oxidative stress while improving the 
symptoms and decreasing the severity of asthma. In this 
review, we summarize recent studies that are related 
to the mechanisms and biomarkers of oxidative stress, 
antioxidant treatments in asthma.
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Core tip: Oxidative stress plays an important role in the 
pathogenesis of asthma. The imbalance of oxidative 
and anti-oxidative system is caused by exogenous and 
endogenous reactive oxygen species. Some elevated 
substances could be served as oxidative or antioxidative 
biomarkers. Different kinds of treatments showed 
antioxidative role, including diet, vitamins and food 
supplements; natural extracts; magnetic field and laser, 
etc . However, no antioxidants were applied in first-
line therapy of asthma now. More works are needed, 
especially clinical trial, to clarify the clinical value of 
antioxidant therapy. 
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Asthma is a chronic inflammatory lung disease that is 
induced by cellular mechanisms that result in airway 
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hyper-reactivity and airflow limitation[1]. Patients with 
asthma suffer from a variety of symptoms, including 
dyspnea, recurrent coughing, chest tightness, shortness 
of breath and sporadic, frequent wheezing[2]. Previous 
studies have indicated that oxidative stress plays an 
important role in the development of asthma[3]. Reactive 
oxygen species (ROS) present in asthmatic airways 
are derived from many sources, including exposure to 
environmental peroxidants, infiltration of inflammatory 
cells in the airway, metabolic disorders, and decreased 
levels of cellular antioxidants. Airway oxidative stress 
also has been associated with declining disease status, 
poor lung function, and epigenetic changes[4].

Antioxidative treatment, such as food supplements[5,6] 
and vitamins[7], is a potential therapy for asthma, but 
has not been denoted as a first-line method because 
current results are not consistent with clinical data. In 
this review, we have summarized the recent literature 
related to oxidative stress characteristics and antioxi-
dants treatments in asthma.

OXIDATIVE STRESS RESPONSE IN 
ASTHMA
Sources of ROS and asthma
Exposure to exogenous ROS and asthma: Airway 
epithelial cells are in close contact with the external 
environment in humans. When asthmatic patients are 
exposed to exogenous ROS-such as environmental 
tobacco smoke[8], airborne pollution[9], home dust 
mites[10] or sulfar mustard[11]-in the air, which may 
trigger symptoms of asthma.

  Outdoor air pollution is definitely associated with 
the incidence of asthma[12]. As primary air pollutants, 
exposure to O3 or NO2 can cause inflammation and 
repair, as indicated by secretion of chemokines and 
cytokines[13,14]. O3 exposure may increase the NK-1R 
gene expression and then induce subsequent acute 
oxidant stress[15]. Inhalation of Cl2 results in oxida-
tive lung injury by ROS and low-molecular-weight 
hyaluronan, which then activates the RhoA and Ca2+ 
channels of airway smooth muscle cells, resulting in 
airway hyper-responsiveness (AHR)[16]. Particulate 
matter (PM), a major component of air pollution, 
includes diesel soot, welding fumes, carbon black, coal 
or oil fly ash. Diesel exhaust inhalation may increase 
airway responsiveness[17], decrease total cysteine 
levels, increase cystine and s-glutathionylated cysteine 
in bronchoalveolar lavage fluid (BALF)[18], increase 
nitrite and decrease pH in exhaled breath condensate 
(EBC)[19,20]. Further studies have demonstrated that an 
assay of oxidative potential was more closely associated 
with lung function than PM2.5 mass by measuring 
dithiothreitol levels[21]. Cigarette smoking is also a high 
risk factor for asthma. Passive smoking could impair 
histone deacytylase-2 function via PI3K signaling 
activation, which reduces histone deacetylase-2 pro-
tein expression[8]. Cigarette exposure can induce the 

expression of glutathione peroxidase-1-protein tyrosine 
phosphatase-1B-protein phosphatase-2A, which may 
induce the destruction of lung tissue[22].

Indoor pollution cannot be ignored. Dermatopha-
goides species produce O2

- by converting the dehydro-
genase form of XOR to the oxidase form[10], which may 
be associated with increased levels of DNA repair pro-
teins and apoptosis[23]. Hexabromocyclododecane and 
phthalates are indoor pollutants that may enhance inflam-
matory cytokines expression[24,25]. Urinary 2-phenan-
threne, 1-pyrene and Di- (2-ethylhexyl) phthalate have 
been found to be associated with asthma diagnoses[26,27]. 
Observations in cleaning workers have revealed de-
creases in non-reversible lung function and a total 
increase in IgE levels[28]. These chemicals and acrolein 
induce the production of ROS and malodialdehyde while 
decreasing glutathione (GSH) levels[24,25,27,29].

Endogenous ROS and asthma: Endogenous ROS is 
associated with enzymes produced by inflammatory 
or epithelial cells, which is induced by inflammation 
during the immune response to pathogens or allergenic 
substances. The main source of intracellular ROS is 
from mitochondrial respiration, produced primarily by 
nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase, as well as the xanthine/xanthine oxidase 
system. O2

- is produced by these enzymes in activated 
cells, such as eosinophils or macrophages, and O2

- also 
can generate ONOO- from either NO or by transfer onto 
H2O2 via superoxide dismutase (SOD). H2O2 may cause 
the generation of the more oxidative OH- by the Fenton 
reaction when Fe2+ is present[30]. Macrophages produce 
ROS via other enzymes, such as heme peroxidase, 
myeloperoxidase (MPO) or eosinophilic peroxidase 
(EPO). Hypochlorous acid and hypobromous acid can be 
generated by these enzyme-mediated chain reaction in 
the presence of Cl- or Br-, which are more oxidative and 
toxic[31].

The formation of hypohalite and hypobromite results 
in increasing NO levels, which is produced by epithe-
lial inducible nitric oxide synthase (iNOS). Reactive 
nitrogen species (RNS) then may quickly be formed in 
the presence of ROS[32]. High levels of protein nitration, 
such as bromotyrosine adducts, have been observed 
in inflammatory airways and are associated with low 
control of asthma[33].

The role of oxidative stress and defense mechanisms in 
asthma
Increases in ROS levels are strongly related to the 
severity of asthma in patients[34]. There are higher 
amounts of ROS and RNS in asthmatic patients, which 
leads to airway inflammation[35]. ROS/RNS activate 
nuclear factor-κB (NF-κB), mitogen-activated protein 
kinase (MAPK), activator protein-1, and other transcrip-
tion factors, which result in lung inflammation[35-39]. 
These redox-sensitive transcription factors promote 
the expression of many proinflammatory cytokines-
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such as interleukin (IL)-6, IL-8, and tumor necrosis 
factor alpha (TNF-α) - which then induce activation of 
inflammatory cells in the airways[40,41], further leading 
to lung tissue damage and destruction[22]. CysLTrl(-/-) 
mice had abnormal antioxidant response and increased 
susceptibility to oxidative damage[42]. Deficiency in 
mannose-binding lectin could notably diminish pulmonary 
inflammation after exposure to O3

[43].
Nuclear factor erythroid 2-related factor 2 (Nrf2) is 

an NF-E2-related factor of exogenous toxins and oxida-
tive stresses that plays an important role in oxidative 
stress defense mechanisms[44]. As a vital factor in the 
antioxidant pathway, Nrf2 activates antioxidant enzymes 
that catalyze ROS into non-toxic substances and that 
are water soluble, which is conducive to balancing the 
oxidative and antioxidative system in the body[45]. Nrf2-
deficient mice had elevated levels of oxidative stress, 
inflammation, mucus, and AHR, which resulted in a 
higher incidence of asthma[40].

Biomarkers of oxidative stress in asthma: As 
mentioned previously, O2

- and NO are mainly produced 
by NADPH oxidase and iNOS, respectively, while O2

- is 
dismutated to form H2O2. These oxidative species are all 
found at high levels in the EBC of asthmatic patients[46]. 
Some parameters that are indirect measurements of 
ROS-including carbonys, nitrotyrosine, isoprostanes, 
and 8-hydroxydeoxyguanosine-can provide important 
information regarding the overall oxidant load. Oxida-
tive stress lipid peroxides are end products formed 
during ROS-mediated attacks on cell membranes, and 
these include pentane, ethane, isoprostanes, MDA, 
and thiobarbituric acid reactive substances (TBARS). 
8-isoprostanes are novel biomarkers that can be used 
to evaluate oxidative stress, and are significantly 
elevated in the sputum, EBC, plasma, and lung tissues 
of asthma objects[47-50]. However, concentration of 
8-isoprostanes in EBC did not increase after bronchial 
provocation or were not altered between asthmatic and 
healthy patients[51,52]. Asthmatic patients had increased 
levels of MDA in their plasma, EBC, and sputum[53-58]. 
Higher blood levels of TBARS were found in asthmatic 
children[59]. DNA can be attacked by ROS, and 8-oxo-
deoxyguanosine is a biomarker for DNA damage. 
NADPH oxidase-4 is overexpressed in asthmatic patients 
and the level of 8-oxo-deoxyguanosine was more highly 
elevated in patients with neutrophilic asthma than those 
with non-neutrophilic asthma[60]. Amino acid oxidation of 
the protein backbone occurred by ROS via a MPO/EPO 
catalyzed reaction with halide ions or nitrite on tyrosine, 
causing nitrotyrosine, bromotyroxine, chlorotyrosine, 
and carbonyl modifications. For example, 3-nitrotyrosine 
was found to have a negative correlation with per-
centage predicted forced expiratory volume in one 
second (FEV1 % pred)[54], and levels of 3-nitrotyrosine 
in maternal blood and cord blood were notably elevated 
in allergic asthma[61]. Total oxidant status (TOS) was 
used as a direct parameters to evaluate whole body 
oxidative status, and this was significantly higher in 

asthma patients[62].

Oxidative stress and airway inflammation in 
asthma: Oxidative stress has been implicated in the 
pathogenesis of asthma. Endogenous H2O2 may increase 
the activity of matrix metalloproteinase-9, an important 
inflammation biomarker. In asthmatic patients, matrix 
metalloproteinase-9 activity and 8-isoprostane levels 
were significantly increased under acute exacerbation 
and were decreased in remission, but were still higher 
than in healthy controls relative to the plasma levels 
of total matrix metalloproteinase-9[48]. TNF-α levels 
were increased in the plasma and lung tissues of both 
ovalbumin (OVA)-sensitized guinea pigs and obese 
mice[63,64]. TNF-α may induce mitochondria to generate 
endogenous ROS[65]. Th2-cytokine response (like IL-4 
or IL-5) was observed to be higher in asthma exacer-
bations, whereas O3 could notably induce IL-6, IL-8 
expression[13,66]. After H2O2 inhalation, Th17-related pro-
inflammatory markers were upregulated in both liver 
and vasculature, and this result suggested that ROS 
inhalation may cause systemic inflammation[67].

ROS are related to airway inflammation in asthma. 
Cell signals are activated by DNA repair-mediated oxida-
tion, which results in gene expression from epithelial 
and submucosal tissues, leading to smooth muscle 
contractions of the airway[68]. Lim et al[69] discovered 
that pulmonary eosinophilia, AHR, mucus hyper-
secretion and iNOS were significantly elevated in OVA-
induced asthma mice. This phenomenon could be 
suppressed using SRS27, an NF-κB inhibitor. H2O2 may 
reduce epithelial resistance, induce epithelial damage 
and decrease epithelial responsiveness and suppress 
the anti-inflammation role of corticosteroids[70]. Changes 
in the ultramicrostructure and reduction of mitochon-
drial respiratory membrane protein complex protein 
in airway epithelial cells are associated with the recruit-
ment of inflammatory cells caused by an oxidizing 
environment. Allergens may exacerbate eosinophil 
infiltration in airway epithelial cells, cause mitochondrial 
dysfunction and affect the balance between Th1 and 
Th2 cell immune response[71]. Aquarporin-3(-/-) mice 
were reduced in airway inflammation after decreasing 
chemokine (C-C motif) ligand (CCL)24 and CCL22 levels 
via reduced levels of cellular H2O2

[72].

Biomarkers of antioxidation in asthma: With 
respect to TOS, total antioxidant status (TAS) or total 
antioxidant capacity (TAC) are used to assess overall 
non-enzymatic antioxidant potential. Some studies 
have demonstrated that TAS or TAC was notably higher 
in asthma than in healthy controls[55,62], although 
several studies have reported conflicting results. Fatani 
et al[53] observed that TAC levels were significantly 
decreased in emergency asthmatic patients in contrast 
to outpatient. In asthmatic children, TAC was found to 
be lower in recurrent wheezing children than healthy 
children, and the numbers of wheezing episodes in the 
last 6 mo were negatively correlated with serum TAC, 
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appeared in asthma patients[79,90,91].

ANTIOXIDATIVE TREATMENTS IN 
ASTHMA
Based on the oxidative stress reaction and defense 
mechanism, the following antioxidant therapies may be 
effective in asthma.

Diet, vitamins and food supplements
Foods and nutrients could be utilized to protect airways 
and lung tissue from oxidative damage through a variety 
of mechanisms. Vitamin E, a fat-soluble vitamin, is a 
major defense against ROS, which is the primary source 
of oxidant-induced membrane damage in the human 
body. Vitamin C, a water soluble vitamin, is responsible 
for maintaining the antioxidant capacity in the aqueous 
phase, while also contributing to the membrane-bound 
oxidative regeneration of vitamin E. Similarly, vitamin 
A and vitamin A carotenoids-such as α-carotene, β-caro-
tene, β-cryptoxanthin, lutein/zeaxanthin, and lycopene-
have antioxidant properties. Selenium is incorporated 
into the antioxidant enzyme GPx, which reduces the 
organic peroxide H2O2, thereby preventing peroxidation 
of cell membrane lipids and subsequent instability. Zinc 
is present in all cells and is an essential trace element 
in thousands of catalytic proteins and transcription fa-
ctors, and this metal can be used as an antioxidant. 
All of these vitamins and nutrients can be found in 
fruits, vegetables, seeds, seafood, seed oils, nuts and 
beef[92,93]. Asthmatic adults with low-antioxidant diets 
have lower FEV1 scores, lower percentage predicted 
forced vital capacity, higher plasma C-reactive protein 
and more frequent exacerbation than those on a high-
antioxidant diet[94], whereas supplementation notably 
improved both symptoms and lung function in exercise-
induced asthma[95]. Vitamin A, vitamin E, and Se were 
found significantly lower in asthma than in controls, 
and vitamin E was negatively impacted by FeNO and 
MDA. FeNO level was significantly decreased during 
a study involving nutraceutical supplements[5,54]. The 
vitamin E isoform γ-Tocotrienol increased the level of 
Nrf2 by blocking NF-κB, and inhibited oxidative damage 
by promoting endogenous antioxidant production in 
the lung[96]. More important, γ-Tocotrienol improved 
acetylcholine- or methacholine-induced AHR, while also 
reducing lipopolysaccharides (LPS)-induced neutrophil 
infiltration[96-98]. In contrast, food supplements did not 
upregulate glutathione or oxidized glutathione and were 
irrelevant to the incidence of asthma[99,100].

Vitamin D is from dietary intake or synthesized in 
the skin during exposure to UVB. Severe asthma pati-
ents that were deficient in vitamin D had lower FEV1 
values compared to patients with sufficient vitamin D 
during exacerbation. The absence of vitamin D3 could 
enhance ROS and DNA damage via TNF-α release and 
NF-κB expression. Vitamin D3 supplementation was 
able to reverse this phenomenon[7]. Treatment with 

hair Zn, and Se levels[73]. Yoon et al[74] observed that 
serum TAC levels were positively correlated to forced 
expiratory volume in 1 second (FEV1) at baseline. 
After adjusting for related factors, the results were 
not significantly different after a sufficient observation 
duration.

Enzymatic antioxidants-such as SODs, catalase, 
and GPxs-may reduce ROS and hydroperoxides to less 
harmful and water-soluble products. SOD activities were 
decreased in asthmatic patients, while CuZnSOD activity 
was also found to be significantly lower in asthma patients 
when compared to healthy controls[55,75,76]. Serum level 
and activity of GPx was remarkably lower in asthmatic 
individuals[77,78]. Paraoxonase 1 (PON1) is an esterase 
enzyme that displays antioxidant characteristics. The 
PON1 activity in the asthmatic patients was significantly 
lower compared to healthy controls. Interestingly, PON1 
presented an area under roc curve of 0.679 for the 
identification of uncontrolled asthma[62,79].

Non-enzymatic antioxidants include glutathione 
proteins, sulfhydryls, and vitamin C. There were remark-
ably lower levels of total thiols, protein sulfhydryls, 
ascorbic acid and NO in asthma patients[53,55,75,77]. As a 
novel inflammation-associated biomarker, clusterin is 
a sensitive cellular biosensor of oxidative stress. Hong 
et al[80] discovered that CCL20 secretion was negatively 
associated with clusterin expression in EBC, while 
clusterin also reduced intracellular ROS levels. Expression 
of clusterin in the sputum of asthmatic children was 
higher than in healthy children, and clusterin was more 
elevated in eosinophil-dominant sputum than in non-
eosinophilic sputum. Furthermore, clusterin levels were 
associated with asthma severity, but these levels were 
lower when asthma was exacerbated[81,82]. 

Genetic association and oxidative stress in asthma
Gene polymorphisms can be involved in the oxidative 
stress response. Glutathione S-transferase (GST) is a 
key enzyme that acts in the initial step of binding in 
glutathione-catalyzed reactions, which occurs primarily 
in the cytosol. GST genes control π-class GST activity. 
Further work has revealed that the genotype of Ile105Val 
and the allele frequency of Val105 in GSTP1 were higher 
than in healthy controls, and these features are linked 
to the severity of airway dysfunction and airway hyper-
reactivity[83,84]. The risk of asthma diagnosis is increased 
when GSTP1 with an AA genotype is accompanied by 
supplementation with low intake of vitamin A[85]. Mice 
that were null for GSTT1 had an associated increased 
amount of recurrent wheezing and risk of asthma[86,87]. 
Lower threshold concentrations of allergen could produce 
bronchoconstriction in GSTM1 wild-type asthma but 
GSTM1 wild-type asthma was not associated with risk of 
asthma[87,88]. GSTA1 (C/T) and GSTO2 genes were found 
to be related to allergies and risk factors for asthma[89]. 
The RR genotype of PON1 gene gave a higher risk 
of asthma, whereas the TT genotype of the catalase 
gene and T allele of resistance-1 gene more frequently 
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vitamin D3 reduced OVA-induced airway inflammation, 
immunoglobulin E overexpression, expression of 
α-smooth muscle actin, collagen deposition, and goblet 
cell hyperplasia, but does enhance activation of the Nrf2/
HO-1 pathway[101].

Cockroach extract-immunized mice significantly 
increased AHR. Combined supplementation with choline 
chloride, vitamin C, and selenium could potentially 
reduce AHR, inflammation and oxidative stress by 
inducing IL-10 expression via FOXP3(+) signaling[102]. 
A comparison between organic selenium (Pro-Se) 
and inorganic selenium has implicated that Pro-Se 
might significantly elevate serum SE levels and restore 
endogenous antioxidant enzyme levels. Furthermore, 
Pro-Se does not accumulate in liver and kidney and, 
thus, has lower toxicity[103]. Resolvin-D1 inhibited H2O2 
and IL-8 both in mRNA and protein level in 16 human 
bronchial epithelial cells stimulated by cigarette smoke 
extract through degradation and NF-κB activation[104].

Thiol antioxidants
In antioxidant therapy, thiol antioxidants are popular 
supplements to cause glutathione conversion. N-acetyl 
cysteine (NAC) is the most commonly used thiol pre-
cursor. Challenge with OVA increases airway inflamma-
tion and vascular inflammation, while treatment with 
NAC significantly inhibits ROS and lipid peroxides[105]. 
NAC supplementation reduces baseline airway res-
ponsiveness when irritated by diesel exhaust inhalation 
and also reduces use of bronchodilators[17]. In mice 
BALF, NAC application remarkably decreases inflam-
matory cytokines (IL-13, IL-5), neutrophil and eosinophil 
numbers[106].

Natural extracts
Natural extracts contain antioxidant compounds derived 
from plants, such as benzoic acid, cinnamic acid, cou-
marin, gallnut tannic acid, and flavonoids. Sakuranetin 
is a flavonoid and treatment with sakuranetin can 
attenuate AHR, while decreasing 8-isoprostane, Th2 pro-
inflammatory cytokines, IgE, and vascular endothelial 
growth factor levels, as well as remodeling airways by 
inhibiting NF-κB activation[107,108]. Astragalin, another 
flavonoid, suppresses eosinaphilia infiltration stimulated 
by LPS and H2O2 via the Toll-like receptor 4-PKCβ-NADPH 
signaling pathway[109].

Resveratrol is a polyphenolic compound that is 
mainly found in peanuts, grapes (red wine), Polygonum 
cuspidatum, mulberry, and other plants and is a strong 
natural biological polyphenol. OVA-challenged obese 
mice had more eosinophil infiltration in lung tissue 
than in lean mice, and resveratrol decreases p47phox 
expression and ROS production, increases SOD levels 
and reverses elevated TNF-α and iNOS in the lung 
tissues[63]. Resveratrol treatment in allergic mice de-
creases oxidative stress and significantly restores mito-
chondrial function. In asthma, resveratrol probably down-
regulates the phosphoinositide 3-kinase-protein kinase 

B pathway by upregulating inositol polyphosphate 4 
phosphatase[110].

Morin, an active ingredient obtained from Moracease 
plants, which attenuates the extensive trafficking of 
inflammatory cells into BALF in OVA-challenged mice, 
inhibiting the inflammation infiltration into lung tissue. 
Morin abolished intracellular ROS and MAPK[111]. Ethyl 
acetate fraction from Sonchus asper extract, Boerhavia 
procumbens in toluene diisocyanate and Esculentoside 
A inhibited oxidative stress pathways, reducing anti-
inflammatory response and improving lung injury[112]. 
Ethyl acetate fraction and Esculentoside A treatment 
significantly upregulated Nrf-2 expression, increased 
SOD activity and intracellular glutathione levels[113,114]. 
Oral treatment with Capsicum annuum L. methanolic 
extract remarkably decreased the pathophysiological 
signs of allergic airway disease, reducing ROS levels of 
BALF in mice and inhibiting Th-2 cytokines via attenu-
ated NF-κB activation[115].

In addition to maintaining the balance between 
oxidative and antioxidative systems in lung tissues and 
airways, these substances also suppress mucous gland 
hypertrophy, goblet cell hyperplasia, collagen deposition 
and airway remodeling, including the extracts of 
Sinomenine, Morin, Tinospora cordifolia and Gleditsia 
sinesis[111,116-118].

LPS is commonly found in the environment, causing 
and potentially exacerbating airway inflammation, 
which leads to an increase in IgE levels, Th2-cytokines 
response, histamine release, and EPO and MPO activa-
tion. Intranasal curcumin could significantly improve 
asthma exacerbation induced by LPS[66]. Carissa opaca 
fruit extracts can restore the activities of antioxidant 
enzymes and GSH, while the amount of TBARS and DNA 
fragmentation also decreased[119]. Such phenomenon 
was partly observed when using tomato juice treat-
ment[120].

Antioxidant synthetics
Y-27632, a Rho-kinase inhibitor, is able to control airway 
inflammation, airway responsiveness, remodeling and 
oxidative stress. Y-27632 treatment in guinea pigs 
induced by allergens provoked decreased FeNO levels, 
while inflammation, extracellular matrix remodeling, and 
oxidative stress in the lung were also attenuated[121,122].

Nitric oxide synthases (NOS), H2S and arginases 
are thought to be involved in lung allergy disease. 
Treatment with 1400W (an iNOS-specific inhibitor), nor-
HOHA (an arginase inhibitor) or NaHS (a H2S donor 
sodium hydrosulfide) reduces the expression of arginase 
2, 8-isoprostane and NF-κB in distal lung tissue. These 
inhibitors also decreased eosinophil infiltration in lung 
tissues, subsequently improving tissue resistance and 
elastance[49,123].

Some compounds could act on ROS signaling path-
ways directly and indirectly to cause antioxidant effects. 
HYDAMTIQ is a new poly (ADP-ribose) polymerase 
inhibitor that prevents airway damage in asthma. Treat-
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ment with HYDAMTIQ reduces MDA, 8-hydroxy-2’-
deoxyguanosine, the amount of eosinophils and other 
leucocytes in lung tissue, while also reducing smooth 
muscle and globlet cell hyperplasia, whereas the mast 
cells of HYDAMTIQ-treated animals have reduced 
histamine release in vitro when exposed to OVA[124]. 
Phosphorylation of histone 3 at serine 10 is related to 
oxidant-associated inflammation. P38α MAPK and IκB 
kinase 2 signaling pathway may be affected by ROS, 
as the combined usage of p38α MAPK and IκB kinase 2 
inhibitors, reduced histone 3 at serine 10, inflammatory 
gene expression in monocytes and lung macrophages 
from asthmatic patients[36]. Angiotensin-I converting 
enzyme 2 (ACE2) is an enzyme that protects against 
asthma. An ACE2 activator, diminazene aceturate, 
prevents asthmatic lung that is induced by cytokine 
expression and elevated levels of ACE2 and IκB. Dimina-
zene aceturate could also decrease carbachol (as an 
oxidative parameter), attenuate oxidative stress, reverse 
airway remodeling and right ventricular hypertrophy[125]. 
Diallyl sulfide decreases infiltrated inflammatory cell 
counts and Th2 proinflammatory cytokines in BALF 
in OVA-induced mice via Nrf2 activation by regulating 
microRNA-144, -34a, and -34b/c[126].

Mice treated with S-adenosylmethionine, a potent 
methyl donor, had decreased amounts of Th-2 pro-
inflammatory cytokines and 4-hydroxy-2-nonenal in 
lung tissues, while airway inflammation and fibrosis is 
suppressed by in mice[127]. Pituitary adenylate cyclase-
activating polypeptide reverses vanadate-induced 
AHR, principally through bronchodilator activity and 
counteraction of proinflammatory and prooxidative 
effects[128].

Metals and new materials
Tiron treated mice could significantly attenuate OVA-
induced oxidative stress, by reducing pulmonary MDA 
and increasing GSH and SOD levels. Tiron could also 
minimize immunoreactivity of NF-κB in these mice, and 
down regulate levels of NOx, IL-13 and TGF-β1[129].

Nanoparticles are proved to be antioxidative objects. 
Gold nanoparticles treated mice, the levels of pro-
inflammatory cytokines and ROS were inhibited, mucus 
production, peribronchiolar fibrosis and AHR induced 
by allergens were also attenuated[130]. Vitamin D(VD)-
loaded nanoemulsions treatment could effectively 
decrease MPO activity, oxidative stress, C3 protein level 
and other proinflammatory cytokines than common 
forms of VD[131]. A new series of fully biodegradable 
Hydroxybenzyl alcohol-incorporated polyoxalate (HPOX) 
was noticed to its inhibition role to airway inflammation. 
HPOX nanoparticles reduced intracellular oxidative 
stress generation and suppression proinflammatory 
mediators by clearing hydrogen peroxide[132]. The 
microparticles of vanillyl alcohol-containing copolyoxalate 
could reduce oxidative stress, suppress the levels of 
pro-inflammatory cytokines (like TNF-α) and iNOS in 
the lung tissue of OVA challenged asthmatic mice[133].

Non-drug treatment
Living organisms exposed to a static magnetic field 
(SMF) may have affects on ROS levels. The ragweed 
pollen extract may induce allergic inflammation in 
mice after SMF-exposure; the TAC in mouse airways 
increased and allergic inflammation decreased; this 
reaction was time-dependent. Furthermore, SMF could 
stimulate cellular ROS-eliminating mechanisms[134]. 
Low-level laser therapy (LLLT) has been proven to be 
an anti-inflammatory therapy and after treatment with 
LLLT exposure the activity of histone deacetylase of 
U937 cells could be depressed by activating protein 
kinase A via inhibition of PI3K, which is not reversed 
by H2O2

[135]. This result suggests that LLLT could be a 
potential antioxidative therapy.

Antioxidant effects of current drugs in asthma
Corticosteroids are widely used to treat asthma via anti-
inflammatory effects and are recommended by the 
GINA guidelines[136], and this current asthma therapy has 
also been found to be effective in preventing oxidative 
stress. After treatment with inhaled corticosteroids, 
asthma scores were significantly improved, and Cys-LT 
and 8-isoprostane concentration in EBC were notably 
decreased in asthmatic children[137]. Inhaled corticosteroid 
treatment causes significantly lower expression of CYBB 
mRNA in the NADPH oxidase system[59]. Montelukast 
is a leukotriene receptor antagonist, and plasma total 
thiol was lower in asthmatic patients that were not given 
montelukast therapy in comparison to montelukast 
therapy patients and healthy controls[138], although other 
studies have demonstrated that montelukast therapy 
resulted in no significant improvement in TOS, TAS and 
DNA damage parameters[139]. Currently, the mechanism 
of montelukast antioxidative stress remains unclear. 
Treatment with procaterol, a long-acting β2 agonist, 
enhances human bronchial epithelial cell viability, 
while decreasing the percentage of apoptotic cells and 
reducing MDA and ROS in a dose-dependent manner[140].

Ambroxol is used to increase mucociliary clearance 
and regulate surfactant levels. Clinical studies have 
reported that ambroxol decreases the levels of protein 
carbonyls (an oxidative biomarker), increases the level 
of Th1 cytokines - such as IL-10, IFN-γ, and IL-12-from 
lung mononuclear cells and alveolar macrophages, but 
had no effect on Th2 cell cytokines[141]. 5-Aminosalicylic 
acid significantly inhibits the expression of Th2 cyto-
kines, while also decreasing MDA and MPO levels in 
BALF of mice[142].

Sitagliptin and Cinnarizine also reduce proinflam-
matory cytokine release and inflammatory infiltration, 
while also restoring GSH and SOD, thus playing a role 
in reducing airway inflammation and remodeling via 
antioxidative stress[143,144].

CONCLUSION
Asthma is one of atopic diseases which including 
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allergic rhinitis and atopic dermatitis. Low respiratory 
tract is affected in asthma while other atopic diseases 
involve other lesions. Airway oxidative stress is a 
complex condition with important physiological and 
pathophysiological implications in asthma. Imbalance 
of the oxidative and antioxidative systems is caused 
by exogenous and endogenous ROS. Some elevated 
substances can serve as oxidative or antioxidative 
biomarkers. Different kinds of treatments have demon-
strated antioxidative roles, including diet, vitamin and 
food supplements, natural extracts, magnetic fields and 
lasers treatments. However, some of these methods 
have been unsuccessful due to unforeseen side effects, 
thus no antioxidants have been applied as first-line 
therapy in asthma treatment. The choice of antioxidants 
must be made in regard to individual and environmental 
factors. More research is required, especially large and 
well-designed clinical trials, to clarify the clinical value of 
antioxidant therapy.
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