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Abstract
This paper describes types and characteristics of zirco-
nia materials in relation to their applications in dentist-
ry. The zirconia material typically used today by most 
manufacturers is a tetragonal polycrystalline zirconia, 
partially stabilized with yttrium oxide. The mechanical 
properties of zirconia have been extensively investi-
gated in the scientific literature and zirconia clearly 
measures up to any other equivalent manufactured ma-
terial. The biocompatibility of zirconia has also been ex-
tensively evaluated and no local or systemic adverse re-
actions or cytotoxic effects have been found in relation 
to it. However, ceramic bonding, ageing, light transmis-
sion and manufacturing processes are all factors that 
need to be further evaluated in order to guide the suc-
cessful use of zirconia as a prosthetic restorative mate-
rial. Milling zirconia to full-contour might be an alterna-
tive to traditionally veneered restorations. A potential 
adhesion mechanism appears to be the combination of 
air abrasion with aluminum oxide particles (silanated 
or not), followed by sintering with materials containing 
special reactive monomers. Changes in zirconia proper-
ties before and after the sintering process have also 
been investigated. It was found that after sintering, 
surface roughness was greater, and micro hardness 
was slightly reduced; however, accurate precision of fit 

was not affected by the sintering process. Currently, 
zirconia restorations are manufactured by either soft or 
hard-milling processes, with the manufacturer of each 
claiming advantages over the other. Chipping of the 
veneering porcelain is reported as a common problem 
and has been labeled as its main clinical setback. As 
zirconia has demonstrated good mechanical and bio-
logical performance, future technology is attempting to 
improve esthetics and minimize veneer fracture, aiming 
to create confidence in the dental community towards 
this all-ceramic system. Milling zirconia to full-contour 
might be an alternative to traditionally veneered resto-
rations. Finally, implications are drawn for manufactur-
ing, machining, and widespread use of these materials.

© 2013 Baishideng. All rights reserved.
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Core tip: Although all zirconia is chemically similar, the 
ultimate product can vary from manufacturer to manu-
facturer, with materials of varying density, uniformity 
homogeneity and crystalline transformation. This can 
be due to varying grain sizes of the powdered material 
ultimately affecting strength, with variations producing 
porosity. One type of restoration will not fit every clini-
cal condition but today we have a range of options in 
zirconia ceramics, including monolithic full-contour type 
and conventional veneered type zirconia.
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INTRODUCTION
Zirconium (Zr) is a metal with the atomic number 40. 
It was first discovered in 1789 by the chemist Martin 
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Klaproth[1-3]. The material has a density of  6.49 g/cm³, a 
melting point of  1852 ℃ and a boiling point of  3580 ℃. 
It has a hexagonal crystal structure and is grayish in color. 
Zr does not occur in nature in a pure state. It can be 
found in conjunction with silicate oxide with the mineral 
name Zircon (ZrO2 × SiO2) or as a free oxide (ZrO2) 
with the mineral name Baddeleyite[4]. These minerals 
cannot be used as primary materials in dentistry because 
of  impurities of  various metal elements that affect color 
and because of  natural radionuclides like urania and tho-
ria, which make them radioactive[5]. Complex and time-
consuming processes that result in an effective separation 
of  these elements are necessary in order to produce pure 
zirconia powders. After purification the material pro-
duced can be used as a ceramic biomaterial[4,6,7]. 

ZrO2 is a polymorphic material and occurs in three 
forms: monoclinic, tetragonal and cubic. The monoclinic 
phase is stable at room temperatures up to 1170 ℃, the 
tetragonal at temperatures of  1170-2370 ℃ and the cubic 
at over 2370 ℃[8,9]. However, noticeable changes in vol-
ume are associated with these transformations: during the 
monoclinic to tetragonal transformation a 5% decrease 
in volume occurs when zirconium oxide is heated; con-
versely, a 3%-4% increase in volume is observed during 
the cooling process[4,10] (Figure 1).

STABILIZED ZIRCONIA
Several different oxides are added to zirconia to stabilize 
the tetragonal and/or cubic phases. Magnesia (MgO), Yt-
tria (Y2O3), Calcia (CaO), and Ceria (CeO), amongst oth-
ers, allow the generation of  multiphase materials known 
as Partially Stabilized Zirconia (PSZ), whose microstruc-
ture at room temperature generally consists of  cubic zir-
conia as the major phase, with monoclinic and tetragonal 
zirconia precipitates as the minor phase[4,11,12].

PSZ materials have been tested for their potential 
use as ceramic biomaterials. Mg-PSZ is one of  the most 
commonly used zirconia-based engineering ceramics[13]. 
Residual porosity in the mass of  the material, a rather 
coarse grain size (30-40 μm), and difficulties in obtain-
ing Mg-PSZ precursors free of  impurities, are all factors 
that have discouraged the interest of  ceramic manufac-
turers in the development of  Mg-PSZ for biomedical 
applications[4]. It has been reported that reinforcement 
by phase transformation toughening is less pronounced 
in Mg-PSZ than in Y-TZP (Yttrium-Tetragonal Zirconia 
Polycrystals), a finding that is discussed below[13]. Ceria 
(Ce)-doped zirconia ceramics have been very rarely con-
sidered, although they exhibit superior toughness (up to 
20 MPa) and show no signs of  ageing[14].

TRANSFORMATION/TOUGHENING 
MECHANISM
In the presence of  a small amount of  stabilizing oxides, 
and at room temperature, it is possible to obtain PSZ 
ceramics in the tetragonal phase only, known as Tetrago-

nal Zirconia Polycrystals (TZP). The finely dispersed 
tetragonal ZrO2 grains within the cubic matrix, provided 
that they are small enough, can be maintained in a meta-
stable state that is able to transform into the monoclinic 
phase[11]. Tetragonal-to-monoclinic phase transformation 
in zirconia can be induced by stress, temperature and 
surface treatments[15,16]. Low temperature ageing via phase 
transformation of  zirconia hip joint heads in normal at-
mospheric conditions has been reported after 10 years of  
incubation[10]. After the ageing of  yttrium-stabilized zirco-
nium dioxide in body fluid or water, some tetragonal-to-
monoclinic phase transformation on the surface of  zir-
conium dioxide has also been reported[17,18]. Even though 
some phase transition does occur, reports indicate that 
the effect on the material’s mechanical properties is negli-
gible[4,10].

Y-TZP (YTTRIUM-TETRAGONAL ZIRCO-
NIA POLYCRYSTAL)
The addition of  approximately 2%-3% of  mol yttria 
(Y2O3) as a stabilizing agent in zirconia allows the sinter-
ing of  fully tetragonal fine-grained zirconia ceramic ma-
terials made of  100% small metastable tetragonal grains 
and known as Y-TZP[11]. 

MECHANICAL PROPERTIES AND AGEING 
OF ZIRCONIA
Zirconia has mechanical properties similar to those of  
stainless steel. Its resistance to traction can be as high as 
900-1200 MPa and its compression resistance is about 
2000 MPa[4]. Cyclical load stresses are also tolerated well 
by this material. Applying an intermittent force of  28 kN 
to zirconia substrates, Cales and Stefani found that some 
50 billion cycles were necessary to break the samples, but 
with a force in excess of  90 kN structural failure of  the 
samples occurred after just 15 cycles[19]. Surface treat-
ments can also modify the physical properties of  zirconia. 
One property of  zirconia that has not been well studied 
is the phenomenon of  low-temperature degradation or 
“ageing”. Water and nonaqueous solvents can induce 
the formation of  zirconiahydroxides along a crack. This 
process accelerates expansion of  the fracture and can 
result in reduced strength, toughness, and density, leading 
to failure of  the restoration[14,20-22]. Surface grinding can 
also reduce strength[23,24]. Kosmac et al[15] confirmed this 
observation and reported reduced mean strength and re-
liability of  zirconium oxide after grinding.

Zirconia is characterized by high flexural strength 
and fracture toughness as a result of  a physical property 
known as transformation toughening[4,25,26]. The incidence 
of  framework fracture was directly related to the design 
of  the FPD, where inlay retained FPDs (IRFPD) showed 
the highest failure rate[27,28]. The most common complica-
tion observed in zirconia-based restorations was fracture 
of  the veneering porcelain, manifesting clinically as chip-
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ping fractures of  the veneering ceramic with or without 
exposing the underlying Y-TZP framework[27]. Several fac-
tors that may affect the rate of  veneering fractures have 
been investigated. A loss of  veneering material may result 
from an alteration of  the crystal structure of  the zirconia 
surface during airborne-particle abrasion of  the frame-
work before the veneering process. This may result in a 
change of  the temperature expansion coefficients[15,25]. 
Other factors include the different surface treatments of  
the frameworks and the bond strength between the ve-
neering ceramics and zirconia frameworks[29,30].

Sintering a CAD/CAM-milled lithium disilicate layer-
ing veneer cap onto the zirconia coping has significantly 
increased the mechanical strength of  crown restora-
tions and represents a cost effective way of  fabricating 
all-ceramic restorations[31]. Milling of  new generation 
full-contour zirconia might be an alternative approach 
to overcome chipping fractures of  veneered zirconia 
restorations. Fabricating mono-block restorations from 
pure zirconia could increase the mechanical stability and 
expand the range of  indications[32]. However, no clinical 
data is available yet.

BIOCOMPATIBILITY OF ZIRCONIA
The biocompatibility of  zirconia has been extensively 
evaluated[4,21,33]. In vitro and in vivo studies have confirmed 
the high biocompatibility of  Y-TZP with the use of  very 
pure zirconia powders that have been purged of  their 
radioactive content[34-39]. No local (cellular) or systemic 
adverse reactions to the material were reported[4,11,35,40,41]. 
Recent studies have demonstrated that fewer bacteria ac-
cumulate around Y-TZP than titanium[42-44]. This could 
possibly be explained by different protein adsorption 
properties[45]. In terms of  periodontal health, none of  the 
studies reported any difference or noted any changes in 
the biological health of  the soft and hard tissues around 
the zirconia-based restorations. Although some data 
quantified and explored differences in the biocompatibil-
ity of  zirconia, no instances of  gingival inflammation or 
periodontitis could be shown[46]. These findings have led 
to the suggestion that zirconium oxide may be a suitable 
material for manufacturing implant abutments with a low 
bacterial colonization potential[44].  

Zirconia as implant abutment material was first intro-
duced in 1996[47]. A randomized controlled clinical trial 
comparing zirconia and titanium abutments supported by 
40 single implants was published[48]. After being in func-

tion for three years, 18 zirconia and 10 titanium abut-
ments were followed-up. Both abutment materials exhib-
ited survival rates of  100%, as well as similar biological 
and esthetic outcomes. In an animal study, it was shown 
that the collagen fiber orientation was similar around zir-
conia and titanium implant necks. For both materials, the 
fibers run parallel-oblique and parallel to the implant sur-
face[49]. In a clinical study, a similar degree of  plaque accu-
mulation was found at zirconia and titanium abutments at 
three years. In the same study, when zirconia abutments 
are used as restoration support, there were no significant 
differences in bone levels between zirconia and titanium 
abutments after 3-year follow-up[48].  

ESTHETIC PROPERTIES AND LIGHT 
TRANSMISSION OF ZIRCONIA
All ceramic materials more satisfactorily address the de-
mand for esthetic restorations than metal ceramic resto-
rations with opaque cores[50,51]. However, the translucency 
of  the most durable zirconia-based ceramic crowns is 
reported to be less than that of  lithium disilicate glass ce-
ramics, for which excellent esthetic results are document-
ed[52-56]. In-Ceram Zirconia (VITA Zahnfabrik, Bad Säck-
ingen, Germany), an aluminum oxide-based ceramic with 
35% zirconium dioxide, has a relatively low translucency, 
equal to that of  metal ceramic crowns when evaluated 
using the contrast ratio method[55]. This could be an ob-
stacle to achieving an esthetically acceptable restoration. 
Among nonzirconia core materials, an optimal esthetic 
result has been reported with Procera AllCeram (Nobel 
Biocare AB, Göteborg, Sweden), which is a 99.9% alumi-
num oxide densely sintered ceramic[57], and IPS Empress 
(Ivoclar Vivadent AG, Schaan, Liechtenstein) lithium 
disilicate glass ceramic[58]. The latter evolved in 2005 to 
IPS e.max Press (Ivoclar Vivadent AG), with improved 
translucency and mechanical properties[59,60]. Alumina and 
glass ceramic have, respectively, fair to high relative trans-
lucency; nevertheless, their mechanical properties are 
lower than ZrO2 ceramics[55,61].

Light transmission through Y-TZP varies as a func-
tion of: (1) the composition and thickness of  the zirconia 
framework; and (2) the physical characteristics and degree 
of  glazing of  the veneering porcelain[62].

Based on this, the use of  zirconia ceramics with dif-
ferent chemical compositions may be significant for clini-
cians. Additionally, measuring the degree of  conversion 
of  different resin luting agents beneath zirconia ceramic 
materials may produce better clinical outcomes[63]. Future 
studies should be expanded to include new generation 
full-contour zirconia[64]. Full-contour zirconia milling 
blanks are created through a unique patent-pending pro-
cess. In one process the zirconium oxide powders are 
milled to further reduce the particle size of  zirconium 
oxide, and mixed with a suitable binder to increase the 
compaction and density of  the green state (compacted 
powders) and eliminate the closed porosity. The manu-
facturers claim that, unlike conventional high-pressure 
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Figure 1  Temperature-related phase transformation of zirconia.



milling blank manufacture, this processing gives full-
contour zirconia improved light transmission, providing a 
lower, more natural shade value[65].  

TYPES OF ZIRCONIA FOR 
MANUFACTURING PROCEDURE
Three main types of  zirconia are available for use in 
clinical dentistry[66]. Although they are chemically identi-
cal, they have slightly different physical properties (e.g., 
porosity, density, purity, strength), which may or may not 
be clinically relevant. Zirconia raw material (as previously 
mentioned) is not a natural product, but is chemically 
processed from minerals. With cold isostatic pressing, the 
powders are shaped into ceramic pre-forms. Cold iso-
static pressing is the most accepted procedural technique 
for shaping Y-TZP and produces stable, chalk-like non-
sintered green-stage objects with a very high primary 
density. The green objects are further stabilized and 
condensed up to about 95% of  the theoretical density by 
means of  sintering without pressure in the oxidized at-
mosphere of  a special furnace, forming pre-sintered-type 
oxide-ceramic blanks[11,67]. Additional compression can be 
achieved with Hot Isostatic Postcompaction (HIP) per-
formed at 1000 bar and 50 ℃ below the sintering tem-
perature[67]. This procedure removes residual porosity and 
produces dense, fully-sintered-type oxide-ceramic blanks. 
Carrying out HIP on Y-TZP results in a gray-black ma-
terial that usually requires subsequent heat treatment to 
oxidize and restore whiteness[68]. 

Zirconia ceramics are used in dentistry as materials 
for frameworks, generally fabricated by means of  mill-
ing the zirconia block using a CAD/CAM machine sys-
tem[69-74]. Blocks can be milled either at the green stage, 
the pre-sintered stage or the completely sintered stage. 
Green-stage zirconia blocks can be milled using dry 
carbide burs, pre-sintered zirconia blocks can be milled 
using carbide burs under cooling liquid, and milling of  
completely sintered zirconia blocks requires the use of  

diamonds under cooling liquid[75]. The three available 
types of  zirconia products are shown in Table 1 together 
with the milling/grinding technology used in each case.

Frameworks made from green and pre-sintered zirco-
nia are milled in an enlarged form to compensate for the 
shrinkage that occurs during sintering, usually 20%-25% 
for a partially-sintered framework[76]. The milling process 
is faster and the wear and tear on hardware is less than 
when milling from a fully-sintered blank. The framework 
is subsequently post-sintered in special furnaces (at about 
1500 ℃) to reach the fully-sintered stage. The color of  
the zirconia can be individualized with the addition of  
oxides to the green-stage framework[68].   

The question often arises as to which type of  zirconia 
is best to use. It appears that each has advantages and 
disadvantages. Fully-sintered HIP zirconia has a denser 
polycrystalline structure with less porosity than non-HIP 
material, and this should translate clinically into increased 
resistance to fracture[77]. On the other hand, some inves-
tigators have questioned whether the amount of  grinding 
needed during milling of  fully sintered zirconia and the 
heat that is generated, cause surface and structural defects 
that can have adverse clinical implications[78]. The marginal 
fit of  either type of  material, however, is associated with 
very acceptable clinical results. Margin fitting of  milled 
zirconia is as good as, if  not superior to the fit of  a res-
toration fabricated from a high noble alloy. Studies have 
measured the marginal gap of  CAD/CAM-milled zirco-
nia of  both varieties and found it to be 40 to 70 μm[79]. 
However, compared to the alternative method, milling of  
fully sintered zirconia blocks is a time consuming process 
that causes greater wear of  the diamond burs and is more 
expensive. Hence, from that point of  view, green-stage 
zirconia could be regarded as more advantageous[67].

BONDING TO ZIRCONIA
The longevity of  an indirect restoration is closely related 
to the integrity of  the cement at the margin[80]. Although 
the use of  zirconia ceramics for dental applications is 
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Table 1  Three types of zirconia products and their milling/grinding technology (Information provided by manufacturers)

Milling at green stage (non-sintered) Cercon base, Cercon (Degudent, Frankfurt, Germany) 
Lava Frame, Lava (3M ESPE, Seefeld, Germany) 
Hint-ELs Zirkon TPZ-G, DigiDent (Girrbach, Pforzheim, Germany) 
ZirkonZahn, Steger (Steger, Brunneck, Italy) 
Xavex G 100 Zirkon, Etkon (Etkon, Grafelfingen, Germany)

Grinding at pre-sintered stage In-Ceram YZ Cubes, Cerec InLab (Sirona, Bensheim, Germany)
ZS-Blanks, Everest (KaVo, Leutkirch, Germany) 
Hint-ELs Zirkon TZP-W, DigiDent (Girrbach, Pforzheim, Germany) 
DC-Shrink, Precident DCS (DCS, Allschwil,  Switzerland)
LAVA All-Ceramic System (3M ESPE, Seefeld, Germany)
Cercon Smart Ceramics (DeguDent, Hanau, Germany)
Procera Zirconia (Nobel Biocare, Göteborg, Sweden)

Grinding at completely sintered stage DC-Zirkon, Precident DCS (DCS, Allschwil, Switzerland) 
Z-Blanks, Everest (KaVo, Leutkirch, Germany) 
Zirkon TM, Pro 50, Cynovad (Cynovad, Montreal, Canada) 
Hint-ELs Zirkon TZP-HIP, DigiDent (Girrbach, Pforzheim, Germany)
HIP Zirkon, Etkon (Etkon, Grafelfingen, Germany)



ongoing, the best method to achieve a durable bond 
between the ceramic and the tooth structure is still un-
known[81]. The only consensus found in the literature is 
that hydrofluoric acid etching and common silane agents 
are not effective with zirconia ceramics[81-83].

Several studies have investigated the bond strength 
and the durability of  various bonding methods used to 
form high-strength zirconia ceramics. One technique 
commonly used to condition the ceramic surface is that 
of  air abrasion[77,84-86]. Air abrasion with aliminium ox-
ide particles is routinely performed to remove layers of  
contaminants, thus increasing micromechanical reten-
tion between the resin cement and the restoration[80,87,88]. 
These particles may or may not be silica-coated (with 
tribochemical treatment)[89-91].

Other techniques for the superficial treatment of  
zirconia ceramics which have been investigated are laser, 
plasma spraying and fusing glass pearls to the zirconia 
surface[92,93]. Higher laser power settings (400-600 mJ) 
cause excessive material deterioration, making them 
unsuitable as treatments for zirconia surfaces. Irradia-
tion with 200 mJ provides mild surface alterations, with 
features intermediate between the effects of  air abrasion 
and higher laser intensities[92]. Plasma spraying and glass 
pearl fusion treatments were found to improve the bond 
strength of  resin cements to the surface. However, they 
were not compared with conventional methods of  sur-
face treatments for Y-TZP ceramics, such as air abrasion 
and tribochemical coating[93].

In other studies several coating agents were used to 
enhance the formation of  chemical bonding with zirconia 
but only those agents that contain a phosphate monomer 
agent were effective in establishing a reliable bond with 
zirconia materials[84,94].

A recent study focusing on the long-term stability of  
zirconia resin bonding shows that it is directly related to 
the chemistry of  the materials used, including primers. 
The authors suggest that a more hydrophobic compound 
is required to better resist the detrimental effect of  hy-
drolysis in order to gain full benefit from the primers[95-97].

In a novel approach to enhance zirconia resin bond 
strength, selective infiltration-etching of  zirconia-based 
materials has been tried. This method creates a retentive 
surface where the adhesive resin can infiltrate and inter-
lock in order to establish a strong and a durable bond with 
zirconia[98-101].

CONCLUSION
Several positive characteristics of  zirconia, such as bio-
compatibility, color and mechanical properties, make the 
material suitable for use in modern dentistry. However, 
ceramic bonding, ageing, light transmission and manu-
facturing processes are all factors that need to be further 
evaluated in order to guide the successful use of  zirconia 
as a prosthetic restorative material. Milling zirconia to full-
contour might be an alternative to traditionally veneered 
restorations.
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