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Abstract
The Food and Drug Administration (FDA) has approved 
two mechanism-based treatments for tuberous sclero-

sis complex (TSC)-everolimus and vigabatrin. However, 
these treatments have not been systematically studied 
in individuals with TSC and severe  autism. The aim of 
this review is to identify the clinical features of severe 
autism in TSC, applicable preclinical models, and po-
tential barriers that may warrant strategic planning in 
the design phase of clinical trial development. A com-
prehensive search strategy was formed and searched 
across PubMed, Embase and SCOPUS from their incep-
tion to 2/21/12, 3/16/12, and 3/12/12 respectively. 
After the final search date, relevant, updated articles 
were selected from PubMed abstracts generated elec-
tronically and emailed daily from PubMed. The refer-
ences of selected articles were searched, and relevant 
articles were selected. A search of clinicaltrials.gov was 
completed using the search term “TSC” and “tuber-
ous sclerosis complex”. Autism has been reported in as 
many as 60% of individuals with TSC; however, review 
of the literature revealed few data to support clear 
classification of the severity of autism in TSC. Variabil-
ity was identified in the diagnostic approach, assess-
ment of cognition, and functional outcome among the 
reviewed studies and case reports. Objective outcome 
measures were not used in many early studies; how-
ever, diffusion tensor imaging of white matter, neuro-
physiologic variability in infantile spasms, and cortical 
tuber subcategories were examined in recent studies 
and may be useful for objective classification of TSC in 
future studies. Mechanism-based treatments for TSC 
are currently available. However, this literature review 
revealed two potential barriers to successful design and 
implementation of clinical trials in individuals with se-
vere autism-an unclear definition of the population and 
lack of validated outcome measures. Recent studies of 
objective outcome measures in TSC and further study 
of applicable preclinical models present an opportunity 
to overcome these barriers. 
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sclerosis complex; Intellectual disability

Core tip: Children with severe behaviors and cognitive 
impairment may benefit from newly available mecha-
nism-based treatments; however, several factors war-
rant consideration in clinical trial design and implemen-
tation.
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INTRODUCTION
Tuberous sclerosis complex (TSC) is a leading cause of  
syndromic autism characterized by multi-system ham-
artomas. Clinically, the diagnosis is classified as definite, 
probable, or possible TSC based on the presence of  a 
specific combination of  major and minor features (Table 
1)[1] or genetically by mutations in TSC1 or TSC2. Al-
though autism has been reported in as many as 61% of  
individuals with TSC[2,3], severity is not frequently report-
ed. Existing neurologic comorbidities include epilepsy in 
60%-90%[4-6], intellectual disability in 45%[7], self-injury in 
10%[8], and severe aggression in 13%[9]. The contribution 
of  these neurologic comorbidities or the features of  TSC 
to the severity of  autism in this population is unknown. 

The neurobiology underlying this condition has been 
established. TSC1 and TSC2 encode hamartin and tu-
berin respectively, which indirectly inhibit mammalian 
target of  rapamycin (mTOR). This enzyme is an essential 
component of  two complexes, mTORC1 and mTORC2, 
which have distinct, wide-ranging effects on gene tran-
scription, protein translation and cell proliferation. Ex-
cessive mTOR activity results from a mutation in either 
TSC1 or TSC2. Disrupted synaptic plasticity, character-
ized by excessive glutamate activity, may occur through 
downstream effects of  this excessive mTOR activity on 
ribosomal s6 and EIF4E. Targeted drug development 
based on this neurobiology has resulted in FDA approval 
of  the mTOR inhibitor, everolimus, and the irreversible 
inhibitor of  GABA transaminase, vigabatrin, for individ-
uals with TSC. While everolimus targets the underlying 
mechanism of  TSC and may have wide-ranging effects, 
vigabatrin, in addition to anti-seizure effects, may also 
have an impact on glutamatergic mechanisms important 
in brain development, synaptic plasticity and learning. 

TSC is considered a cause of  syndromic autism; how-
ever, causality and determinants of  severity are unknown. 
Additionally, the risk/benefit profile of  approved treat-
ments in this population has not been tested in a clini-
cal trial. The aim of  this review is to identify the clinical 
features of  severe autism in TSC, applicable preclinical 
models, and potential barriers that may warrant strategic 
planning in the design phase of  clinical trial development.

In order to identify key research, a comprehensive 
search strategy was formed and then searched across 
PubMed, Embase and SCOPUS from their inception to 
2/21/12, 3/16/12, and 3/12/12 respectively. Database-
specific controlled vocabulary terms were combined 
with keyword terms and phrases for each concept. These 
terms and phrases were then combined and translated for 
use in each database. The results were limited to studies 
conducted on humans and to those written in English. 
References from key papers were also reviewed and key 
studies, including preclinical studies were included.

AUTISM 
Autism is a syndrome clinically defined by the presence 
of  stereotyped, repetitive behavior and impairments in 
language and social interaction with onset prior to the age 
of  3[10]. TSC, the first identified cause of  autism, is now 
considered a leading cause of  syndromic autism[2,3,11,12]. 
The prevalence of  autism in TSC is 26%-61% with an 
average prevalence of  32%[2,3,9,13-23]. Variability in opera-
tional definitions of  autism and study design, in particu-
lar the approach to individuals with intellectual disability, 
may contribute to variation in these estimates. We did not 
discover any studies of  the severity of  autism in TSC. 
However, self-injury was observed in 10% of  a large 
clinical population. Self-injury, one of  the main parental 
concerns in TSC, may signal a severe form of  autism in 
this subgroup[24].

Operational definitions of autism in TSC
The Diagnostic Statistical Manual and the International 
Classification of  Disease have provided checklist criteria 
for defining autism. The study with the highest reported 
prevalence of  autism and 3 additional studies used these 
checklists[3,10,19-21,25]. Other instruments have been devel-
oped to assist professionals in identifying individuals 
with autism, and combined use of  the Autism Diagnostic 
Observation Schedule (ADOS) and Autism Diagnostic 
Interview (ADI, ADI-R) has been widely accepted as 
the gold standard. However, the original sample used in 
developing these instruments did not include individu-
als with profound intellectual disability[26,27]. The Social 
Responsiveness Scale (SRS) and the Social Communica-
tion Questionnaire (SCQ) are screening instruments for 
autism; however, the presence of  intellectual disability 
decreases the specificity of  SCQ from 80% to 67%[28,29]. 
The Hunt and Dennis Questionnaire is a screening in-
strument designed for use in individuals with TSC, be-
havioral difficulties, and profound intellectual disability. 
Autism is evaluated by 13 out of  321 questions; however, 
psychometric properties have not been reported to date[9]. 

Prevalence study designs
The diagnostic approach used in each of  the 19 reviewed 
studies is indicated in Table 2. Multiple sequenced evalua-
tions were used in 3 studies. The highest reported preva-
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lence of  autism in TSC was determined using 3 struc-
tured interviews, Childhood Autism Rating Scale (CARS), 
Autistic Behavior Checklist, and review of  DSM Ⅲ-R 
criteria[3]. In addition to variation in diagnostic approach, 
inclusion of  children with severe or profound intellectual 
disability varied among these studies and may contribute 
to variability in prevalence estimates.

Risk factors
Potential risk factors and clinical associations of  autism 
in TSC include epilepsy, structural or neurophysiological 
abnormalities, and/or joint effects of  these categories, 
but causality has not been established. Intellectual disabil-
ity and autism were not uniformly characterized among 
the studies, making it difficult to compare studies focused 
on risk factors associated with autism or ASD to those 
focused on risk factors associated with cognitive impair-
ment. Among studies using standard measures to assess 
cognition, the choice of  measure was often based on the 
assessed functional level or age of  the individual. How-
ever, this approach was not routinely applied to assess-
ments for autism or ASD. Therefore, we included studies 
of  risk factors for autism and/or intellectual disability in 
TSC.

Epilepsy
Epilepsy affects 60%-90% of  individuals with TSC[2,6,30-38]. 
Age of  epilepsy onset, seizure type and/or severity have 
been evaluated as potential risk factors for autism and/or 
intellectual disability in children with TSC. Early age of  
seizure onset[2,33,34,36-40] and infantile spasms were most 
commonly identified as risk factors[2,14,17,34,34-42,41-46]. 

Epilepsy intractability and/or severity was character-

ized using measures such as development of  multiple sei-
zure types after infantile spasms, time to epilepsy control, 
duration of  seizure control, and/or EEG features and 
was reported as a potential risk factor in 6 of  8 studies 
that characterized severity[14,37,38,41,46,47].

Neuropathology
Early studies focused solely on lesion location[34,39,40,43,45,48] 
as a potential risk factor for autism in TSC. Temporal 
lobe location was linked to poor neurodevelopmental 
outcomes, including severe language impairment, autism 
and intellectual disability in these studies; however, this 
approach did not fully explain the neurodevelopmental 
phenotype of  TSC. Newer studies, illuminating the neu-
robiology of  classic brain lesions in TSC through detailed 
structural and functional analysis, have expanded knowl-
edge regarding the potential impact of  these lesions on 
the neurodevelopmental phenotype in TSC[21,49-51]. 

Different approaches to analysis of  brain lesions 
in TSC have identified features associated with autism. 
Cortical tuber and/or white matter lesion load has been 
identified as a potential risk factor for poor neurodevel-
opmental outcomes[14,33,36,42,50]. Cortical lesions seem to 
worsen the neurological phenotype. The mechanism by 
which this occurs is unclear, but may be associated with 
epilepsy and/or circuit disruption or reorganization. T1, 
T2 and FLAIR imaging have been used to identify spe-
cific characteristics of  white matter that are associated 
with autism[51]. White matter abnormalities have also been 
detected using diffusion tensor imaging fractional anisot-
ropy (FA), a measure of  white matter integrity. Lower FA 
values indicate loss of  the typically restricted diffusion 
found in normal white matter, and are thought to repre-
sent deficits in white matter. Autism spectrum disorder 
in 12 individuals with TSC was associated with lower 
average FA when compared to 28 individuals with TSC 
without autism spectrum disorder and 29 age-matched 
controls[52]. A subsequent study compared the FA of  the 
arcuate fasciculus, which interconnects language areas in 
the temporal and frontal lobes, among individuals with 
TSC, with or without autism, to typical controls. FA in 
this key pathway for language was lowest in those indi-
viduals with TSC and autism[53]. 

Functional analysis has been carried out using EEG, 
PET, and diffusion tensor imaging (DTI). Across all of  
these studies, temporal lobe abnormalities were most 
commonly identified as a risk factor for poor neurode-
velopmental outcome. In a retrospective study of  19 in-
dividuals, temporal lobe epileptiform activity and seizure 
onset within the first 36 mo of  life were independently 
associated with autism and PDD[39]. Interictal temporal 
lobe spikes increased the likelihood of  autism spectrum 
disorder by a factor of  15 in another group[20]. Poor neu-
rodevelopmental outcome was also associated with a sub-
type of  hypsarrhythmia[47]. PET studies revealed reduced 
glucose metabolism (a measure of  neuronal activity) in 
temporal lobe of  individuals with autism and TSC, but 
increased glucose metabolism in deep cerebellar nuclei 
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Table 1  Criteria for clinical diagnosis of tuberous sclerosis 
complex

Major features Minor features

Cortical tubers Dental enamel pits
Subependymal nodules Hamartomatous rectal polyps
Subependymal giant cell 
  astrocytoma

Bone cysts

Hypomelanotic macules (3 
  or more)

Cerebral white matter radial migration 
  lines

Shagreen patch Gingival fibromas
Facial angiofibromas or   
  forehead plaque

Nonrenal hamartoma

Multiple renal nodular 
  hamartomas

Retinal achromatic patches

Nontraumatic ungual or 
  periungual fibromas

“Confetti” skin lesions

Cardiac rhabdomyoma, 1 or > Multiple renal cysts
Pulmonary 
Lymphangiomyomatosis and/
  or renal angiomyolipomas

Tuberous sclerosis complex (TSC) can be clinically diagnosed as definite, 
probable, or possible based on the presence or absence of a specific com-
bination of major and minor features. Definite TSC: two major features or 
one major and two minor features; Probable TSC: one major and one minor 
feature; Possible TSC: one major feature or two or more minor features.



that was associated with intellectual disability, stereotypi-
cal behavior, communication impairments, and impaired 
social interaction[43]. Subsequent PET studies examined 
tubers in cerebellar cortex and found decreased glucose 
metabolism associated with symptoms of  autism[54]. Out-
put from cerebellar cortex normally inhibits the deep 
cerebellar nuclei, and decreased activity in cerebellar 
cortex would be expected to result in increased activity in 
the deep cerebellar nuclei, as reported in the earlier study. 
The effect of  tuber location within the cerebellum has 
also been examined, and children with right cerebellar 
tubers showed increased social isolation and deficits in 
communication and development, compared to children 
with left cerebellar tubers[54]. The output of  the right 
cerebellum influences activity in the left cerebral cortex, 
where language areas are located in most individuals, and 
taken together these findings support a role for cerebellar 
deficits in TSC-associated autism. 

Joint effects: neuropathology and epilepsy
Almost half  of  the reviewed studies simultaneously in-
vestigated features of  both epilepsy and neuropathology 
as potential risk factors. In the majority of  those studies, 
autism was associated with joint effects of  these two risk 
factors[33,34,36,39,40,42,43,45,47,48]. Thus, multiple factors should 
be considered in a risk assessment for autism in individu-
als with TSC. Development of  a standard, generalizable 
approach to assessing these complex risk factors would 
be informative for clinical trial design in this population.

NEUROBIOLOGY OF TSC RELATED TO 
DEVELOPMENTAL DISABILITIES
An excellent and comprehensive review recently out-
lined effects of  TSC proteins and the mTOR pathway 
in the nervous system[55]. A working knowledge of  basic 
neuroscience research as it pertains to TSC is critical in 
considering therapeutic targets for humans. Highlighted 
here are discoveries most relevant to patients with severe 

manifestations of  TSC: central nervous system effects of  
TSC, animal models with phenotypes that mimic particu-
lar manifestations of  TSC, and effects of  rapamycin in 
these models. Autism, epilepsy and cognitive impairment 
have all been modeled preclinically, and treatment with 
inhibitors of  mammalian target of  rapamycin, such as 
rapamycin and everolimus, has demonstrated potentially 
beneficial effects in some models (Table 3). 

TSC is an autosomal dominant condition that oc-
curs when there is a mutation in either TSC1, which is 
located on chromosome 9q34 and encodes the protein 
hamartin, or TSC2, which is located on chromosome 
16 and encodes the protein tuberin. Normally, TSC1 
(hamartin) and TSC2 (tuberin) form a complex in which 
TSC1 stabilizes TSC2 by blocking its ubiquitination and 
degradation. The TSC1/TSC2 complex inactivates Rheb, 
which otherwise stimulates mammalian target of  rapamy-
cin (mTOR) activity. Mutations in TSC1/TSC2 lead to 
increased mTOR activity and dysregulation of  gene tran-
scription, metabolism, and cell proliferation. Although 
most cells in individuals with TSC have a single germline 
mutation in TSC1 or TSC2, recent studies discovered a 
second somatic mutation limited to giant cells within cor-
tical tubers or to subependymal giant cell astrocytomas 
(SEGAs). These cells with mutations in both alleles of  
TSC1 or TSC2 were characterized by hyperactivation of  
mTOR[56,57]. These studies suggest that a two-hit mecha-
nism may underlie the formation of  cortical tubers or 
SEGAs, but the contribution of  this mechanism to de-
velopment of  autism/ASD remains unclear.

Animal models have been developed to investigate the 
effects of  heterozygous mutation of  TSC1 or TSC2, or 
of  conditional deletion of  one or both alleles in different 
populations of  neurons or in astrocytes. The characteris-
tics and major findings obtained with selected models are 
summarized in Table 3. 

Heterozygous Tsc1 and Tsc2 models
Mouse lines that are Tsc1+/- or Tsc2+/- and a rat strain with 
a spontaneous mutation in Tsc2 (Eker rat) have been 
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Table 2  Prevalence studies for autism in tuberous sclerosis complex

Instrument Administration method(time) Children with severe or profound 
ID included (Y/N)

Measured prevalence of autism in TSC 
(N)

     Ref.

ADOS Observation schedule (20-30 min) N 29% (28) +ADI [18]
15-33% (4 age-based groups of 12-15) 

ADI Structured Interview (2-3 h) Y-severe 54% (13) [15,16]
20% (20) 

SRS 65-item Screening Questionnaire (15-20 min) N (37 w/IQ data) 52% (21) [22]
SCQ 40-item Screening Questionnaire (15-20 min) Y-severe 43% (21) [22]
Hunt and Dennis 
Questionnaire 

321 item interview/13-item subset for autism 
(1-4 h)

Y-estimates only 50% (90) [2,9,14,23]
26% (23) 
24% (21) 

    5% (131) 
DSM Ⅲ-R Checklist (10-20 min) Y-severe 61% (28) [3]

These are reviewed studies reporting epidemiology of autism in tuberous sclerosis complex (TSC). ADI: Autism diagnostic interview; DSM: Diagnostic and 
statistical manual of mental disorders; ADOS: Autism diagnostic observation schedule; SRS: Social responsiveness scale; SCQ: Social communication ques-
tionnaire; Y: Yes; N: No.
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characterized in a number of  studies. Although there 
are no neuropathologic findings and no spontaneous 
seizures reported in these heterozygous mutants, behav-
ioral abnormalities include social interaction deficits[58,59], 
abnormal vocalization[60] and learning deficits that may 
be related to altered synaptic plasticity[58,61]. Both synaptic 
and behavioral learning deficits were reversed by acute 
rapamycin treatment. One study found that social inter-
action deficits in the Eker rat were exacerbated by seizure 
induction in the postnatal period[59]. Thus, in animal mod-
els with heterozygous mutations in Tsc1 or Tsc2, social 
interaction deficits and altered maternal-pup interactions 
that model some aspects of  autism occur in the absence 
of  cortical lesions or epilepsy, but can be exacerbated by 
seizures induced early in postnatal brain development. 
The latter findings support intervention to control sei-
zures in infants with TSC. 

TSC and Fragile X syndrome may share neurobiol-
ogy related to intellectual disability and autism, since 
these conditions have been found to result in opposite 
effects on metabotropic glutamate receptor (mGluR)-
mediated protein synthesis in a recent preclinical study. In 
Tsc2+/- mice, mGluR-mediated long term depression was 
abnormally decreased, but in Fmr-/y mice it was increased. 
These alterations were rescued by up or down modula-
tion of  mGluR5 activity, respectively, and by rapamycin 
treatment in Tsc2+/- mice. Investigators also crossed the 
two mouse lines and observed reversal of  memory defi-
cits in offspring expressing both mutations[62].

Conditional homozygous deletion of Tsc1 or Tsc2
Mice with conditional deletion of  both alleles of  Tsc1 
or Tsc2 in cortical neurons exhibit a variety of  struc-
tural abnormalities such as increased brain and cell size, 
dysplastic neurons and deficits in cortical organization; 
mosaic homozygous inactivation of  Tsc1 produced het-
erotopias and white matter nodules that resemble some 
cortical lesions in individuals with TSC. Spontaneous 
epileptiform discharges, seizures and increased excitatory 
synaptic activity have also been reported in these mice. 
Conditional homozygous deletion of  Tsc1 in GFAP-
expressing cells, which include astrocytes and possibly 
adult neural progenitors in neurogenic niches such as the 
hippocampal subgranular zone, decreased the expression 
of  the astrocyte transporter for glutamate, Glt1. These 
mice exhibited spontaneous seizures, altered hippocampal 
organization, as well as increased astrocyte number and 
brain size. Thus, homozygous deletion of  Tsc1 or Tsc2 
produced more severe effects on brain structure and 
function and also reduced survival; rapamycin treatment 
reversed or ameliorated glial and neuronal abnormalities 
and increased survival. In the mice with homozygous 
deletion of  Tsc1 in astrocytes and GFAP-positive neural 
progenitors, early rapamycin treatment prevented seizures 
and later treatment reduced seizure frequency. None of  
these studies of  mice with homozygous deletion in corti-
cal neurons or astrocytes examined social behavior.

Two recent studies examined the behavioral effects of  

conditional loss of  one or both alleles of  Tsc1 or Tsc2 
that was limited to cerebellar Purkinje cells (PCs)[63,64]. Ho-
mozygous deletion caused a progressive loss of  PCs, and 
both heterozygous and homozygous deletion mutants 
exhibited a striking increase in PC dendritic spine den-
sity and reduced PC excitability. Autistic-like behaviors 
were observed in both heterozygous and homozygous 
mutants, including deficits in social approach, response 
to social novelty, altered vocalization during a limited 
postnatal period, and increased grooming. Chronic rapa-
mycin treatment initiated at about 1 wk of  age reversed 
the neuropathologic and behavioral effects in these mice. 
These animal models provide important insights into the 
role of  the cerebellum in autism caused by TSC, which 
was initially proposed based on human neuropathologic 
and PET imaging studies.

These animal models of  TSC exhibit the neuropatho-
logical, neurophysiological and behavioral abnormalities 
characteristic of  TSC. They have been used to evaluate 
therapies based on mTOR inhibition, antiepileptic medi-
cations, and positive modulation of  mGluR5 activity, and 
provide essential platforms for developing and preclinical 
testing of  new therapies.

IMPLICATIONS FOR TREATMENT OF 
AUTISM
Currently available behavioral and pharmacological 
treatment options for children with TSC and autism do 
not differ from treatments available to children without 
TSC[65,66]. Mutations in TSC1 or TSC2 lead to increased 
activity of  mTOR. Two mechanism-based treatments 
have been FDA-approved for use in individuals with 
TSC, everolimus for tumors (SEGAs and renal angio-
myolipomas) and vigabatrin for infantile spasms. It is 
unknown whether either treatment would be effective for 
severe autism.  

The protein kinase mTOR is incorporated into two 
protein complexes, mTORC1 and mTORC2, which have 
distinct downstream effects on gene transcription, me-
tabolism, cell proliferation, and synaptic plasticity. Everoli-
mus targets excess mTOR activity in the protein complex 
mTORC1 (mTORC2 is unaffected). After 12-18 mo of  
treatment, everolimus has been shown to increase ab-
normally low FA in an open-label study of  20 individuals 
with TSC and SEGAs[67], indicating an improvement in 
white matter structure. A clinical trial of  everolimus for 
neurocognition in high-functioning individuals with TSC 
is ongoing and may include individuals with autism.

Vigabatrin, an irreversible inhibitor of  γ-aminobutyric 
acid (GABA) transaminase, targets excessive levels of  
glutamate (the brain’s most common excitatory neu-
rotransmitter) by increasing levels of  GABA (the brain’
s inhibitory neurotransmitter). To date, there are no ac-
tive clinical trials of  vigabatrin for neurocognition or 
autism. Directly targeting the neurobiology of  TSC may 
be therapeutic for children with severe autism; however, 
definitive clinical trials are warranted. Successful design 
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and implementation of  these trials will require careful 
planning. In this review, we identified 4 areas of  need: (1) 
validation of  severe autism as an endophenotype in TSC; 
(2) natural history of  severe autism in TSC; (3) selection 
of  reliable, valid outcome measures in this population; 
and (4) assessment of  recruitment and protocol compli-
ance (feasibility factors relevant to trial implementation).

DISCUSSION
To date, discovery of  mechanism-based treatments for 
TSC has not impacted the clinical and educational in-
tervention offered to children with autism and TSC. A 
severe form of  autism characterized by self-injurious 
behavior and/or aggression may exist in some individuals 
with TSC; however, few data are available about this po-
tential endophenotype. Level of  parental concern, danger 
to self  and others, decreased quality of  life, and lack of  
full participation in the community provide a rationale for 
prioritizing inclusion of  this population in clinical trials. 
Clearly, improved treatment options for individuals with 
extreme behavioral manifestations of  TSC are needed. 
Targeting the neurobiology directly may result in greater 
improvement than non-specific treatments. 

This structured review of  TSC literature revealed im-
portant clinical and preclinical features of  TSC, including 
autism, intellectual disability, self-injury, and/or aggres-
sion in individuals with TSC. Several clinical associations 
were without clear causation, such as location of  cortical 
tubers and autism. However, clinical trials demonstrating 
the efficacy of  vigabatrin in individuals with TSC and 
infantile spasms[68] and of  everolimus for non-surgically 
resectable SEGAs[69] have led to FDA approval for these 
indications. A comprehensive phenotypic analysis of  
patients with TSC can be achieved using measures that 
provide an assessment of  neural activity, such as EEG 
and PET scans, newer MRI methods that detect subtle 
structural abnormalities, and appropriate behavioral as-
sessments. This approach may also prove useful for 
evaluating the efficacy of  mechanism-based treatments.

Review of  the basic science literature highlighted the 
biological pathways and downstream effects of  increased 
mTOR activity in TSC, alterations in neurochemistry 
in TSC, effects of  pharmacological agents that directly 
impact the mTOR pathway, and described several animal 
models that recapitulate important features of  TSC in hu-
mans. Although an animal model that exhibits all of  the 
severe manifestations of  this disorder does not currently 
exist, further study of  the current models will continue to 
lead to important discoveries.

FUTURE DIRECTIONS
Shared deficits in neurobiology related to neurodevel-
opmental disabilities may represent an opportunity to 
generalize findings from research in TSC to individuals 
affected by related conditions. Abnormalities in mTOR 
signaling and associated pathways, as seen in TSC, have 

been identified in focal cortical dysplasia type Ⅱ, hemi-
megalencephaly[70], phosphatase and tensin homologue 
hamartoma syndromes, such as autism associated with 
mutations in PTEN[71-73], neurofibromatosis-1[74-76], and 
autism associated with mutations in EIF4E (eukaryotic 
translation initiation factor 4E)[77-79]. Targeting pathophys-
iological mechanisms has resulted in phenotypic rescue 
in animal models of  several other single gene disorders, 
such as Lhermitte-Duclos[80], Fragile X syndrome[81], 
Angelman syndrome[82], Rett syndrome[83], Neurofibro-
matosis Ⅰ[84,85], Down syndrome[86,87], and Rubenstein-
Taybi[88-90].

Although usually considered to be chronic, life-long 
conditions, there is hope for children and adults affected 
by TSC and other diseases that are associated with severe 
neurological manifestations, such as self-injurious behav-
ior, aggression, intellectual disability, autism and seizures. 
Rescue of  the synaptic plasticity deficits that underlie 
these manifestations may eventually be achieved with 
comprehensive treatment by pairing available mechanism-
based treatments with evidence-based educational and 
behavioral interventions[91,92].
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