
approaches to identify specific amino acid residues and 
the immune escape kinetics which may impose Vpu 
functional constraints in vivo . This review will focus 
on HIV-1 accessory protein Vpu in the context of its 
sequence variability at population level and also bring 
forward evidence on the role of the host immune re-
sponses in driving Vpu sequence variability; we will also 
highlight the recent findings that illustrate Vpu func-
tional implication in HIV-1 pathogenesis.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Viral protein U (Vpu) is a highly polymorphic 
human immunodeficiency virus type 1 (HIV-1) accesso-
ry protein; however factors that are attributable to Vpu 
sequence variability are not well defined. In this review 
we have focused on the immune responses both innate 
(natural killer cells) and adaptive (cellular and humoral) 
immunity that are directed towards HIV-1 Vpu and we 
also show the interaction between Vpu and host cel-
lular factors. We also highlight evidence that suggests 
interaction between the host immune responses and 
Vpu may contribute to Vpu sequence variability. Finally 
we have summarized the current knowledge on HIV-1 
Vpu functions including Vpu evasion activities from the 
host immune surveillance. 
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INTRODUCTION
Human immunodeficiency virus type 1 (HIV-1) dem-
onstrates a significant genetic diversity due to its high 
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Abstract
Viral protein U (Vpu) is an accessory protein associated 
with two main functions important in human immu-
nodeficiency virus type 1 (HIV-1) replication and dis-
semination; these are down-regulation of CD4 receptor 
through mediating its proteasomal degradation and en-
hancement of virion release by antagonizing tetherin/
BST2. It is also well established that Vpu is one of the 
most highly variable proteins in the HIV-1 proteome. 
However it is still unclear what drives Vpu sequence 
variability, whether Vpu acquires polymorphisms as a 
means of immune escape, functional advantage, or 
otherwise. It is assumed that the host-pathogen inter-
action is a cause of polymorphic phenotype of Vpu and 
that the resulting functional heterogeneity of Vpu may 
have critical significance in vivo . In order to compre-
hensively understand Vpu variability, it is important to 
integrate at the population level the genetic association 
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mutation rate; so far this extraordinary diversity has been 
a major setback in development of  vaccine and antiret-
roviral drugs. Low fidelity of  reverse transcriptase that 
give rise to error prone replication process, high progeny 
production, turnover rates and recombination of  circu-
lating HIV-1 strains are some of  the viral factors that 
contributes to HIV-1 diversity[1-3]. The adaptive potential 
of  HIV-1 is shaped by both virus and the host immune 
factors, in other words both the diversifying and purify-
ing selection factors influence HIV-1 diversity. In fact, 
strong evidence has also indicated that the host immune 
responses influence HIV-1 diversity by selection of  es-
cape mutations[4-6]. Thus a comprehensive analysis of  the 
dynamics of  polymorphisms in HIV-1 proteins is a pow-
erful tool to reveal actual interactions between HIV-1 and 
the host immune system[7-9]. 

 HIV-1 viral protein U (Vpu) is a 16-kDa accessory 
protein[10] responsible for various functions such as CD4 
down-regulation[11-13] and enhancement of  virion release 
by antagonizing tetherin/BST2[14-17]. Interestingly, func-
tionally competent Vpu (with respect to BST-2 antago-
nistic activity) were only found in the pandemic group 
M subtypes, suggesting that Vpu functional adaptation 
may confer pandemic spread of  this HIV-1 subtype[18]. In 
general, the host genetic factor is one of  the main driv-
ing force of  sequence polymorphism in HIV-1[18], as evi-
denced in HIV-1 Nef[7,19-21] and Env[22,23] proteins whose 
highly polymorphic phenotype is mostly attributed by the 
host immune responses such as HLA class I-restricted 
CD8+ T lymphocytes and neutralizing antibodies, re-
spectively. However, it is still unclear to what extent the 
host immune responses influence Vpu sequence varia-
tion. This review focuses on the role of  host immune 
responses in Vpu sequence variability. Briefly, we also dis-
cuss the current understanding of  Vpu functions includ-
ing evasion of  the immune system and their implication 
in viral pathogenesis. 

SEQUENCE VARIABILITY OF VPU
Vpu exhibit a stable reading frame in vivo despite being a 
highly variable protein, suggesting functional importance 
of  Vpu in HIV-1 replication and persistence. Further-

more, it has evidently been shown that only HIV-1 strains 
of  the pandemic M group evolved a fully functional 
Vpu that efficiently antagonizes human tetherin/BST-2; 
this suggests that Vpu evolutional adaptation may be as-
sociated with the pandemic spread of  HIV-1[18]. Several 
studies have demonstrated the extent of  Vpu sequence 
variability both at inter- and intra-patient level. By using 
the 101 aligned amino acid sequences of  entire HIV-1 
genome, one study showed that Vpu had the highest 
average entropy score in comparison to other proteins 
in HIV-1 genome[24]. Another study analyzing the intra-
patient diversity and adaptation of  non-structural genes 
in primary HIV-1 subtype C infection reported that vpu 
compared to vif, vpr, tat exon 1 and rev exon 1 genes has 
the highest mean of  intra-patient diversity that increased 
gradually[25]. We retrieved full lengths clade B sequences (n 
= 544) of  HIV-1 proteins (Gag, Pol, Env, Nef, Vif, Vpu, 
Vpr, Tat and Rev) from Los Alamos database and the av-
erage entropy score of  each protein was determined. Vpu 
was observed to be one of  the proteins with the highest 
average entropy score (Figure 1), confirming the highly 
variable nature of  Vpu at population level. However, 
interestingly, a recent study has shown that despite exten-
sive Vpu sequence variation in HIV-1 infected individu-
als, Vpu functions (CD4 cell surface downregulation and 
tetherin counteraction activity) were maintained[26]. 

IMMUNE RESPONSES TOWARDS VPU 
Humoral immunity
Several studies have reported Vpu-specific humoral im-
mune responses during HIV-1 infection[27-31]. However 
there has been some controversy on correlation between 
the presence of  anti-Vpu Ab responses in HIV-infected 
patients’ sera and clinical outcome. Some studies have 
indicated that anti-Vpu Ab responses may influence the 
clinical outcomes in HIV-1 infected individuals[27,28,30,31]; 
while on the other hand other studies have showed no 
correlation[29]. These findings indicate that Vpu is indeed 
a target of  antibodies although no evidence yet support 
that such antibody responses influence the Vpu vari-
ability. The epitopic regions for such antibodies reported 
include 37-50[30] and 68-81[28] of  Vpu; nonetheless there 
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is no specific Vpu activity mapped to these regions so 
far. However, considering that Vpu is a small protein (81 
amino acids); it is intriguing to test whether such Vpu-
specific antibodies can inhibit Vpu functions and subvert 
viral replication. 

Cellular immunity
A growing number of  clinical evidence has suggested that 
HLA-restricted, HIV-specific CD8+ cytotoxic T lympho-
cytes (CTL) is mainly involved in controlling HIV-1 repli-
cation[32-34]. CTL responses have been well appreciated in 
SIV-infected macaque’s model[32,33] and in HIV-1 infected 
patients of  both acute[35,36] and chronic[37] phases as well as 
in elite controllers who spontaneously suppress viral repli-
cation below detection limit[38,39]. HLA-restricted CTL re-
sponses are thought to be the main driving force of  HIV-1 
control and viral evolution[40-43]. The viral polymorphism in 
response to immune selective pressures follows predictable 
patterns and kinetics at the population and these immune 
“footprints/landscape” could be predictable based on the 
autologous viral sequences and the host immune genet-
ics[9,42,44]. However, Vpu has been reported to be a poor 
target for CD8+ T cells as revealed by interferon (IFN)-γ 
Elispot assay[45], because only some few epitopes were iden-
tified and less than 3% of  patients showed detectable Vpu-
specific CD8+ T cell responses. Although several HLA-
restricted CTL epitopes of  Vpu are reported[45-49], this 
protein is less targeted by CTLs at least compared to the 
Nef  protein. Consistently, our previous study showed only 
three HLA-associated polymorphisms in Vpu at Glu-5 
with HLA-C*03 and Arg-37, Lsy-37 with HLA-A*3303 in 
a chronic HIV-infected patient cohort in Japan (n = 216), 
indicating that the HLA class I has minor contribution (2% 
of  the total codons) towards Vpu variability[50]. The in-
creased numbers of  subjects to 516 showed similar results 
(DK, ZH, and TU: unpublished observation). Further-
more, an international large IHAC cohort (International 
HIV Adaptation Collaborative, n = 1888) identified that 
only 26.3% of  the highly variable Vpu codons exhibited 
statistically significant HLA class Ⅰ associations[20]. Al-
though the HLA class Ⅰ-associated viral polymorphisms 
observed in the two cohorts suggested to be influenced by 
several factors such as the host genetic profiles, mixture of  
multiethnic populations, studied sample size, geographical 
location and circulating HIV-strains, these results suggest 
that HLA-associated polymorphisms are only partly at-
tributable to the Vpu variability (Figure 2). However, it is 
of  note that the low CTL responses observed in the previ-
ous studies[45,51] and subtle numbers of  HLA-associated 
polymorphisms[20,50] may be an underestimation due to the 
current technical limitation toward a highly variable pro-
tein, even though a number of  studies reported a plenty of  
CTL targeting[52,53] and HLA-associated polymorphisms in 
Nef[19,20,42], which showed comparable variability with Vpu 
at a population level (Figure 1). 

Natural killer cells
A number of  evidence suggests that natural killer (NK) 

cells have an important role in control of  HIV-1 infec-
tion[54-56]. Assuming that NK cells may act as a selective 
force, as similar to CTLs, HIV-1 may leave footprints as 
viral polymorphisms in association with polymorphic 
NK cell ligand such as killer-cell immunoglobulin-like 
receptors (KIR). In fact, one study identified 22 amino-
acid polymorphisms within the HIV-1 clade B sequence 
that are significantly associated with the expression of  
specific KIR genes in chronically HIV-1 infected, treat-
ment naïve patients (n =91)[44]. Three (13.6%) of  these 
KIR associated polymorphisms were located in Vpu at 
positions Ser-3 and Vpu-Env overlapping region (Met-71 
and His-74) (Figure 2)[44]. In addition, the HIV-1-specific 
antibody-dependent NK cell cytotoxicity is identified 
towards a 13-mer Vpu peptide (69EMGHHAPWDVD-
DL81)[57]. Such responses are also observed toward Env[58] 
and Nef[59] in HIV-1 infected patients as well. However, 
there is no evidence at the moment that show antibody-
dependent NK cell cytotoxicity associates with viral poly-
morphisms.

VPU FUNCTIONALITY INCLUDING 
IMMUNE EVASION ACTIVITY
In order to conquer the hostile host environment, viruses 
need to evolve and develop critical interactions with the 
host cellular factors. Vpu does not only play important 
role in HIV-1 pathogenesis through CD4 receptor deg-
radation[11] and enhancement of  virion release from in-
fected cells by antagonizing tetherin/BST-2[60-62]; but Vpu 
has also evolved to interact with and modulate other host 
surface receptors and factors (Figure 3).

Vpu induces CD4 receptor degradation
Vpu induces the rapid degradation of  newly synthesized 
CD4 receptor molecules that are retained together with 
Env precursor protein (gp160) in the endoplasmic reticu-
lum[13]. The cytoplasmic domain of  Vpu and the DSGxxS 
motif  are critical in interaction with and degradation of  
CD4, respectively[12,63] (Figure 2). The degradation process 
is achieved by Vpu recruiting β-TrCP and then interacts 
with CD4 cytoplasmic domain and subsequently subject 
CD4 to degradation by the ubiquitin-proteasome path-
way[11,64]. In doing so Vpu contributes to the suppression 
of  HIV-1 primary receptor at the surface of  the infected 
cell. 

Vpu enhances virion release
Enhancement of  virion release by Vpu has been shown 
to be achieved through antagonizing tetherin/BST-2, 
an IFN regulated host restriction factor. BST-2 directly 
binds to virions and hence retains them on the surface 
of  infected cells[61,62]. Vpu through AxxxAxxxA mo-
tif  in transmembrane domain directly interacts with 
BST-2 transmembrane domain, the Vpu DSGxxS and 
[D/E]XXXL[L/I/V] motifs in the cytoplasmic domain 
also play crucial role in ensuring BST-2 downmodula-
tion[15,65,66] (Figure 2). Previous studies indicated BST-2 
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port of  NTB-A by retaining it within the Golgi compart-
ment and hence affects its glycosylation pattern that sub-
sequently reduces surface expression of  NTB-A[75]. 

PVR (CD155, Necl-5) is a ligand for the activating 
receptor DNAM-1 (CD226) expressed by NK cells[76,77]. 
PVR downmodulation by Nef  and Vpu is another strat-
egy evolved by HIV-1 to avoid NK cell-mediated lysis of  
infected cells[71]. PVR downregulation alters multiple im-
portant PVR-mediated innate cellular immune processes 
such as adhesion and migration, and therefore may influ-
ence HIV-1 pathogenesis. 

CD1d molecules are important in dendritic cells 
for lipid antigen presentation to CD1d-restricted NKT 
cells[78,79]. CD1d and CD1d-restricted NKT cells are pres-
ent at pathogen entry sites thus play a crucial role in early 
immune responses[80]. Vpu has been shown to be the 
major viral factor that inhibit recycling of  CD1d from 
the endosomal compartment back to cell surface through 
retaining CD1d in early endosomes[72].  

Vpu has also been implicated in inhibition of  ubiq-
uitination and degradation of  p53 (a substrate of  SCFβ-

TrCP ligase complex). The successful interaction of  SCFβ-

TrCP complex with β-TrCP binding motif  (DS52GNES56) 
present in Vpu has been shown to be essential[81]. It was 
observed that Vpu mutants with alanine substitutions 

downmodulation is through β-TrCP-dependent protea-
somal degradation pathway[67] while others suggested 
the β-TrCP-dependent endo-lysosomal pathway[65,68]. In 
contrast, recent studies showed that BST-2 antagonistic 
activity by Vpu takes place in the trans-Golgi networks 
(TGN)[14]. Vpu interferes with anterograde transport of  
BST-2 to the cell surface subsequently leading to BST-2 
trapping in the TGN[15-17,69].

Vpu modulation of other cell surface receptors and host 
factors 
Recent studies have indicated that Vpu is emerging as a 
viral factor with a range of  activities devoted to counter-
acting host innate and adaptive immunity including the 
modulation of  NK cell co-activation ligand NK-T and 
B cell antigen (NTB-A)[70], PVR activating ligand of  NK 
cells[71], and CD1d[72,73] (Figure 3).

NTB-A triggering is necessary for induction of  effi-
cient lysis of  target cells upon engagement of  the activat-
ing receptor NKG2D[74]. The Ser-52 and Ser-56 residues 
important for CD4 and BST-2 degradation did not affect 
NTB-A expression, indicating that the down modulation 
of  NTB-A by Vpu is mediated by different domains[70]. A 
recent study has shown that downmodulation of  NTB-A 
is achieved by Vpu interfering with the anterograde trans-
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(DA52GNEA56) failed to stabilize p53 and did not pre-
vent its ubiquitination. This suggested that Vpu is able to 
achieve modulation of  p53 through competing efficiently 
with p53 protein for the β-TrCP subunit of  the SCF com-
plex and hence inhibits subsequent ubiquitination of  p53 
protein. The modulation of  p53 positively correlated with 
apoptosis during the late stages of  HIV-1 infection[81]. 

Finally, although Vpu showed multiple functions in 
vitro and ex vivo, it is yet clear how and what functions of  
Vpu are important in viral pathogenesis in vivo. 

CONCLUSION 

The current knowledge on factors that are attributed 
to Vpu polymorphism has not been quite sufficient; 
therefore this prompt for further analysis to reveal the 
unresolved questions of  why Vpu is so variable and what 
factors drive Vpu polymorphism. In order to define the 
complex dynamics of  HIV-1 Vpu evolution, immune 
escape patterns, and functional adaptation during the 
course of  infection, further insight is needed on the role 
of  host genetics and other immune selection pressures 
towards shaping HIV-1 Vpu diversity. The emergence of  
advanced DNA sequencing technologies such as ultra-
deep sequence which is superior and more sensitive than 
Sanger sequence methods has made it possible to accu-
rately detect and analyze minor variants of  HIV-1 within 
a host[82-85]. Furthermore, the establishment of  different 
contemporaneous cohorts of  HIV-1-infected individuals 
worldwide enables us to examine to what extent the host 

immune components play a role on viral adaptation and/
or evolution at both intra- and inter-patients’ level.  

So far the current studies have indicated that the host 
immune responses directed towards Vpu is not entirely 
attributable to HIV-1 Vpu variation (Figure 2), it is there-
fore crucial to apprehend other factors that may explain 
Vpu variation. Of  note previous studies have identified 
immune responses directed towards Vpu, using peptides 
of  HIV-1 consensus sequences[45,57]. However, ironically 
due to Vpu polymorphic nature itself, these results may 
mask the exact extent to which immune responses con-
tribute to Vpu sequence variation. Alternatively, HIV-1 
like other RNA viruses has evolved to shorten its genome 
length through overlapping its genes[86]. The overlapping 
region of  Vpu and Env is one of  promising aspect to 
consider when we focus on Vpu variation. Because host 
immune responses (neutralizing antibodies) contribute 
to Env polymorphic nature[87,88], it is enticing to assume 
that immune responses directed towards Env may influ-
ence Vpu polymorphisms through Vpu-Env overlapping 
region. KIR associated polymorphisms within Vpu-Env 
overlapping region have been reported previously[44]. 
Although it is still unknown whether NK cells recognize 
Vpu or Env protein, nonetheless these findings indicate 
the importance of  this region for Vpu variability. Fur-
thermore, it is reported that X4- and R5-tropic HIV-1 
showed differential amino acid polymorphisms in Vpu[89], 
suggesting that cellular compartment influences Vpu 
variability. 

The current increase in number of  new findings of  
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Vpu from pandemic HIV-1 group M strain and other 
HIV-1 strains, enlighten us the precise role or mecha-
nisms of  how Vpu degrade the viral receptor CD4, 
antagonize tetherin/BST-2, enhance p53 stability and 
modulate NK-cell activities through modulation of  PVR, 
NTB-A and CD1d receptors (Figure 3). Understanding 
the mode of  action of  Vpu and association of  the im-
mune factors certainly open plenty of  new windows to 
deciphering the intricate mechanisms associated with 
HIV-1 immune pathogenesis in vivo. Also, understanding 
pathways of  Vpu intra- and inter-patients sequence vari-
ability and adaptation may provide us with an alternative 
approach for prospects of  viral persistence and Vpu con-
tributions in vivo. 
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