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Abstract
Physiological stress takes place in the endoplasmic 
reticulum (ER) of cells where activation and up-regulation 
of genes and proteins are primarily induced to enhance 
pro-survival mechanisms such as the unfolded protein 

response (UPR). A dominant protein in the UPR response 
is the heat shock GRP78 protein. Although GRP78 is 
primarily located in the ER, under certain conditions it is 
transported to the cell surface, where it acts as a receptor 
inducing pathways of cell signaling such as proliferation or 
apoptosis. In the prolonged chronic stress transportation 
of the GRP78 from the ER to the cell membrane is a major 
event where in addition to the presentation of the GRP78 
as a receptor to various ligands, it also marks the cells 
that will proceed to apoptotic pathways. In the normal 
cell that under stress acquires cell surface GRP78 and in 
the tumor cell that already presents cell surface GRP78, 
cell surface GRP78 is an apoptotic flag. The internalization 
of GRP78 from the cell surface in normal cells by ligands 
such as peptides will enhance cell survival and alleviate 
cardiovascular ischemic diseases. The absence of cell 
surface GRP78 in the tumor cells portends proliferative 
and metastatic tumors. Pharmacological induction of 
cell surface GRP78 will induce the process of apoptosis 
and might be used as a therapeutic modality for cancer 
treatment.
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Core tip: In the prolonged chronic stress transportation 
of the GRP78 from the endoplasmic reticulum to the 
cell membrane is a major event where in addition to 
the presentation of the GRP78 as a receptor to various 
ligands, it also marks the cells that will proceed to 
apoptotic pathways. In the normal cell that under stress 
acquires cell surface GRP78 and in the tumor cell that 
already presents cell surface GRP78, cell surface GRP78 
is an apoptotic flag. This review analyzes the input of cell 
surface GRP78 on apoptosis in normal and tumor cells.
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INTRODUCTION
Cellular stress response covers a number of molecular 
changes that cells undergo in reaction to patho-physiolo-
gical conditions, such as lack of nutrients and oxygen, or 
exposure to toxins in their micro environment[1,2]. 

The cellular response to stress aims to protect the 
cells by either a short or a long term mechanism that 
minimizes the damage to the cell integrity. Cellular stress 
responses are primarily located in the endoplasmic 
reticulum (ER) and are mediated through highly 
conserved stress proteins such as heat shock proteins, 
some of which are only activated by stress while others 
are involved both in stress responses and in normal 
cellular functioning[2,3].

One such mechanism is the unfolded protein 
response (UPR), an evolutionarily conserved mechanism 
in which survival or apoptotic pathways are activated[4,5]. 
UPR is initiated upon the accumulation of unfolded 
proteins in the ER. The master UPR regulator is the 
glucose-regulated protein GRP78, a member of the heat 
shock protein 70 family that functions as a chaperone for 
the folding, maturation and transport of polypeptides and 
proteins in the ER[6,7]. GRP78 is also a key member of the 
UPR. Its primary role is to protect cells from undergoing 
apoptosis under physiological stress conditions[8]. If the 
adaptive response fails, apoptotic cell death ensues[9].  

As an adaptive response to ER stress, the UPR triggers 
a set of pathways that results in the activation of inositol-
requiring protein1 (IRE1), PKR-like ER kinase (PERK) 
and setting in motion transcription factor 6 (ATF6)[10]. 
Activation of these pathways selectively suppresses 
protein synthesis while promoting the translation of other 
specific proteins and regulating a variety of UPR target 
genes expression, including glucose-regulated protein 
GRP78 and the major pro-apoptotic transcription factor 
CHOP (also called GADD153)[10]. 

The induction of GRP78 to enhance protein folding and 
assembly in the ER leads to an increase in GRP78 in the 
ER compartment as well as to the promotion of GRP78 
re-localization to the cell surface- where it assumes a new 
function as a receptor for cell-surface signaling[6]. 

Several possibilities for how GRP78 escapes to the 
cell surface in tumor cells were suggested[11]. In general, 
GRP78 trafficking from the ER to the cell surface is 
not well understood. It was demonstrated that ER 
stress actively promotes GRP78 localization on the cell 
surface, however ectopic expression of GRP78 is also 
able to cause cell surface relocation in the absence of ER 
stress[11]. There are also conflicting reports of whether 
GRP78 is expressed on specific tumor cell lines, such 

as PC-3 prostate cancer cells[12]. It is reasonable that 
since ER membrane is a source of plasma membrane, 
this form of GRP78 could be cycled to the cell surface. 
Studies also suggested that specific cell types may utilize 
different proteins for transporting GRP78 to the cell 
surface. For example, the ER transmembrane protein, 
MTJ-1 is implicated as the GRP78 carrier protein in 
macrophages[13]. The tumor suppressor Par-4 is reported 
to be required for GRP78 cell surface localization in PC-3 
cells[14]. 

The present review aims to describe the function and 
modulation of cell surface GRP78 for the treatment of a 
number of maladies.  

CELL SURFACE GRP78 IN THE NORMAL 
CELLS
Although Shock protein GRP78 has long been studied 
as a molecular chaperone in the ER expressed in mam-
malian cells and has a critical role in cellular integrity, its 
translocation to the plasma membrane on different cells 
was recently found to have several implications[6,15]. 

Stress induced mechanisms such as hypoxia that 
increased the expression of GRP78 on the cell surface 
was also found to stimulate cell cycle arrest at the G0/G1 
phase, resulting in massive cell apoptosis[16]. It is possible 
therefore that hypoxia induced membrane GRP78 is a 
trigger for apoptosis.

Therefore, the binding of a peptide or an anti-
GRP78 antibody to hypoxia- induced membrane GRP78 
might decrease the stress protein on endothelial cell 
membranes and reduce apoptosis. 

This last affirmation was substantially corroborated 
by the experiments in which cell surface GRP78 binding 
of peptides RoY, ADoPep1, or an anti GRP78 antibody, 
inhibited hypoxia-induced apoptosis of endothelial cells 
and induced proliferation and angiogenesis[17-19].

The addition of ADoPep1 to endothelial cells under 
hypoxic conditions induced a dramatic decrease in mem-
brane GRP78 after only 15 min, as measured by FACS 
analysis. This was most likely due to the internalization 
of the cell surface GRP78 receptor. The internalization of 
the GRP78 receptor triggered PI3K pathway increasing 
Akt phosphorylation and MEK pathways including 
ERK phosphorylation for the activation of the survival/
proliferation activity. The implications of specific inhibitors 
to PI3K and MEK pathways confirmed the specific 
signaling[18].

The inhibition of apoptosis was initiated by the 
internalization of the GRP78 receptor and the inhibition 
of cytochrome c release, caspase 3 activation and 
decrease of p38 phosphorylation[18-22].

Cell surface GRP78 induction in cultured endothelial 
cells was triggered by their incubation for 24 h under 
hypoxic conditions[17-19]. The process of cell surface GRP78 
removal from the endothelial cells by peptide binding 
and its internalization, lead to the inhibition of apoptosis, 
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activation of a survival mechanism, proliferation and the 
initiation of the angiogenic process[17,23]. 

Similar to the results obtained with cultured end-
othelial cells was the outcome of experiments with 
ischemic (ischemia is the term for the lack of oxygen) 
diseases.

As for hypoxic conditions, the chronic lack of oxygen in 
mammalian tissues is the basis for ischemic diseases.  An 
experimental ischemic hind limb model can be obtained 
by ligation of the femoral artery in one of the mouse hind 
limbs and comparing it to the non-operated second limb 
which serves as a control for the ischemic disease of the 
legs[17-19,24]. 

Histological sections from the ischemic leg that 
featured a significant decreased in blood flow, showed 
a significant increase in GRP78-positive endothelial cells 
along with the increased number of apoptotic cells and 
the decrease in number of capillaries[17,18].

A single local administration of the peptide binding 
GRP78 to the femoral ligated ischemic mouse alleviated 
the ischemia and restored blood transfusion after 3 
wk. Histological analysis of the peptide treated limb 
demonstrated reduction in GRP78 positive endothelial 
cells accompanied by proliferation, numerous capillaries 
and restored blood perfusion[17,18].

CELL SURFACE GRP78 INDUCED 
APOPTOSIS IN NORMAL CELLS IS 
IMPLICATED IN THE PATHOPHYSIOLOGY 
OF SEVERAL DISEASES
Normal cells under normal conditions maintain a homeo-
stasis of GRP78 in the ER where this protein serves as 
a chaperone for the normal folding and final secretion 
of glycoprotein[25]. Stress will induce the up-regulation 
of GRP78, that as stated, aims to protect the cell from 
undergoing apoptosis[1-4,25]. However, in chronic stress 
conditions the up-regulation of GRP78 expression that is 
associated with the expression of cell surface GRP78 on 
the normal cell will direct the cell to apoptosis, probably 
in order to protect the organism from secreting abnormal 
proteins[17-19,26,27]. 

Chronic stress conditions due to reduced blood flow 
in atherosclerosis or diabetes patients[28,29], might induce 
ischemic vascular diseases (IVD) in mammals that might 
affect the legs, heart and brain[19,30,31]. In pathological 
conditions such as atherosclerotic lesions of the human 
aorta and in endothelial cells of the tumor vasculature, 
cell-surface GRP78 co-localizes with T-cadherin in 
human umbilical vein endothelial cells (HUVECs).  Overe-
xpression of T-cadherin in HUVECs mediated cell survival 
in a GRP78-dependent fashion by increasing phospho-
Akt and phospho-GSK3β and decreasing caspase-3 
levels[32].

It has been demonstrated that ER stress associated 
apoptosis is involved in the pathogenesis of heart failure 

following acute myocardial infarction (MI)[30]. 
Ischemia was demonstrated to induce myocardial 

apoptosis, which results in loss of cardiomyocytes, 
leading to the impairment of cardiac systolic and diastolic 
functions[33]. In our studies, cardiomyocytes cultured for 
4 h under hypoxic conditions, manifested the increased 
expression of cell surface GRP78 accompanied by 
increased apoptosis[33].

Additionally, TUNEL staining indicated apoptosis in 
cardiomyocytes in the ischemic myocardium model in 
animals. We have also found increased GRP78 staining 
near the infarct heart of experimentally- induced MI in 
mice[33]. 

Increased GRP78 has previously been reported in 
heart failure[34], in diabetic cardiomyopathy[29], and in an 
experimental rat coronary artery occlusion model, where 
the GRP78 protein level increased after short cycles 
of ischemia[35]. Cardiomyocytes under these hypoxic 
conditions manifested apoptosis[35]. As for the endothelial 
cells, the apoptotic process could be reversed both in 
cardiomyocytes cultures cells or ischemic heart tissues 
by the peptide binding cell surface GRP78[33]. Moreover, 
normal cells studies of ischemia induced increased cell 
surface GRP78 in neurons and ischemia of the optic 
nerve were conducted with similar results[36].

Cell surface GRP78 survival and apoptotic pathways 
in the normal cells are described in Figure 1.

CONTROVERSY OF UP-REGULATED 
GRP78 IN THE TUMOR CELLS
In contrast to the normal cells where cell surface GRP78 
were induced by stress conditions, tumor cells were 
already exposed to cell surface GRP78 to a variable 
extent[6,21,37]. This was attributed to the tumor micr-
oenvironment that is characterized as chronic stress 
conditions caused by the deprivation of oxygen, glucose 
and nutrients[38]. 

The tumor microenvironment induced ER stress res-
ponse activates the UPR[15,38,39] which has been shown to 
be up regulated in primary human tumor cells of several 
origins, including breast[40], lung[41], liver[42], colon[43], 
prostate[44] and brain[45].

Whether the UPR inhibits tumor growth or protects 
tumor cells by facilitating their adaptation to stressful 
conditions within the tumor microenvironment is still 
under controversy[15].

Permanently up-regulated GRP78 expression was also 
frequently documented in tumor cell lines and primary 
clinical samples[8,27]. However, it is not yet clear whether 
the increase in GRP78 expression facilitating tumor cell 
survival is achieved by the blockage of pro-apoptotic or 
the activation of pro-survival pathways[6,7,15]. 

It has been claimed that due to its pro-survival 
property in stress response, GRP78 contributes to tumor 
growth and confers drug resistance onto cancer cells[6,46]. 
In certain tumors the increase in tumorigenicity and drug 
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CELL SURFACE GRP78 ON TUMOR CELLS 
MADIATES SIGNAL TRANSDUCTION 
How GRP78 escapes to the cell surface in tumor cells 
is not well understood, but it may also involve some 
specific mechanisms adapted by the tumor cells[6].

Cell surface GRP78 was reported as a receptor to 
mediate tumor cell signal transduction. 

Cell-surface GRP78 was found to be associates with 
MHC class Ⅰ, a receptor for the coxsackie A9 and Dengue 
viruses, and functions as the signaling receptor upon 
binding to the activated form of the plasma proteinase 
inhibitor, α2-macroglogulin (α2M*)[54]. Binding of cell-
surface GRP78 with α2M* on 1-LN prostate tumor 
cells induced Akt phosphorylation[54] promoting cell 
proliferation either by inactivating apoptotic pathways 
or upregulating activated NFk-Β. Up-regulation of NF-Β 
augments inactivation of mitogen-activated protein 
kinase kinase 7 through its binding, to increase levels of 
growth arrest and DNA-damage-inducible β (GADD45β), 
thereby preventing JNK-mediated apoptosis. In addition, 
inactivation of apoptosis signal-regulating kinase (ASK1) 
by active Akt attenuates downstream JNK-mediated 
apoptosis[54]. 

Another interacting protein with GRP78 receptor is the 
GPI-anchored oncogene Cripto (Cripto-1, teratocarcinoma-
derived growth factor 1). Cripto is expressed at high levels 
in human tumors and is associated with cell proliferation, 
migration, invasion and tumor angiogenesis via activation 
of MAPK/ERK and PI3K/Akt. Binding of GRP78 receptor 
to Cripto was ound to inhibit transforming growth factor-β 
(TGF-β) signaling and to promote cell proliferation[55]. 

The Protease-activated receptor 4 also known as 
coagulation factor Ⅱ (Par-4) is a tumor suppressor that 
was also associated with cell-surface GRP78. Binding of 

resistance has been attributed to the over expression of 
GRP78[15]. 

For example, it was reported that increased GRP78 
expression in glioblastoma and melanoma promotes cell 
survival and correlates with poor prognosis[45,47]. High 
GRP78 levels produced the predicted result in WM266-4 
melanoma and MO59J glioblastoma cell lines, reducing 
cell death in response to stress. However, inducing stable 
over-expression of GRP78 was accompanied by large 
changes in UPR activator expression, with reductions 
in PERK and increased IRE1 in glioblastoma cells but 
decreased ATF6 in the melanoma cells. The contribution 
of these changes in UPR activator expression to 
decreased stress sensitivity is uncertain because GRP78 
over-expression in these cells was also accompanied 
by reduced stress, possibly as a result of the large 
and unexpected increases in expression of all three 
UPR activators[48]. In contrast, other studies associated 
increased GRP78 expression with tumor growth inhibition 
and a predictor for positive cancer treatments[49]. One 
such study described GRP78 as a novel positive predictor 
for breast cancer sensitivity to doxorubicin/taxane-based 
adjuvant chemotherapy[50]. Increased GRP78 expression 
was also shown in neuroblastoma that correlated with 
improved stress sensitivity and prognosis[51]. In addition, 
the expression of GRP78 correlated with an ameliorated 
prognosis in lung cancer[52]. 

A recent study indicated that metabolism deficiency 
that promotes increase in GRP78 is related to stress 
induced apoptosis[53]. An explanation to these contra-
dictory reports might suggest that GRP78 has different 
roles as a sensor of ER stress in tumors. 

Besides in the ER, GRP78 was also found to be located 
in the cytoplasm, mitochondria, nucleus, cell membrane 
as well as extracellular secretions by tumor cells[6,8]. 
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Figure 1  Cell surface GRP78 survival and apoptotic pathways in the normal cells. Hypoxia induced apoptosis is inhibited by RoY/ADoPep1 peptide binding 
to cell surface GRP78. Peptide binding activates the PI3K pathway by Akt phosphorylation and the NEK pathway by ERK1/2 phosphorylation, inducing endothelial 
cell proliferation, migration and angiogenesis. On the other hand, peptide binding to cell surface GRP78 protects cardiomyocytes and neurons from hypoxia induced 
apoptosis by activation of the UPR arms. This anti-apoptotic mechanism is characterized by the inhibition of p38 phosphorylation, reduced cytochrome c release 
followed by a decrease in caspase 3/7 activity. ER: Endoplasmic reticulum.
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Par-4 to GRP78 receptor near its N-terminus elicits the 
apoptotic pathway by activation the FADD/caspase-8/
caspase-3 pathway[14]. On the other hand, Kringle 5 of 
human plasminogen binding to the N-terminal domain 
of GRP78 receptor mediates apoptosis of tumor cells 
involving activation of caspase-7[56]. 

CELL SURFACE GRP78 ON TUMOR 
CELLS AS A SIGNAL FOR APOPTOSIS
Cell surface GRP78 has been demonstrated in a large 
variety of tumor cell types and to variable extent[11,13-15].

Subpopulations of cell surface GRP78 positive 
and negative were compared in order to analyze and 
clarify some of the contradictory conclusions on the 
fate of tumor cells expressing cell surface GRP78 and 
to elucidate whether cell surface GRP78 positive and 
negative tumor cells manifest different properties in 
colorectal cancer and whether these cells are directed 
to survival or to apoptotic pathways, or to pro or non 
metastatic directions. Two subpopulations of cell surface 
GRP78 positive and cell surface negative tumor cells 
were artificially separated by GRP78 antibody- bound 
magnetic beads from two different colorectal carcinoma 
cell lines. The HM7 cell line, a sub-line of the human colon 
carcinoma LS174T having a higher metastatic tendency 
and HCT116 cells derived from a human adenomatous 
polyposis. The results demonstrated that only GRP78 
negative cells were highly proliferative, induced 
significant growth in tumor size and metastasized to the 
liver. In contrast, GRP78 positive cells manifested reduced 
proliferation, colony formation, tumor growth and liver 
metastases. The decreased tumorigenicity of the GRP78 
positive subpopulation was abrogated by silencing GRP78 

expression[57]. 
In breast cancer tumors, subtypes are based on the 

expression of cell surface receptors such as estrogen, 
progesterone and human epidermal growth factor 
receptors and tumor cells negative cell surface receptors, 
usually referred to as luminal and basal like tumors[58]. 
The luminal subtype with positive receptors has a 
favorable prognosis while the basal-like tumors with 
triple-negative receptors exhibit a poor prognosis. In 
addition to MDAMB468 cells which are basal- like tumor, 
negative for all 3 receptors were also negative to cell 
surface GRP78. In contrast, BT474, a representative of 
the luminal subtype, was also positive for cell surface 
GRP78 expression[59].

To evaluate the effect of cell surface GRP78 exp-
ression on the basal, receptor negative breast cancer 
cells, cell surface GRP78 was pharmacologically induced 
by doxorubicin and taxotere. These drugs significantly 
increased cell surface GRP78 expression on the basal 
receptor negative breast cancer tumor cells. Increased 
tumor cell surface GRP78 resulted in a significant 
decrease in tumorigenicity, reduced tumor growth and 
an increase in cell apoptosis demonstrating a direct 
correlation between expressed cell surface GRP78 
and apoptosis. In addition, the potential application 
of doxorubicin and tunicamycin to induce the over-
expression of cell surface GRP78 causes a significant 
increase in stress induced apoptosis in the triple negative 
tumor cell lines[59]. In a study of breast cancer, it was 
reported that CHOP/GADD153 over-expression correlates 
with a significantly lower risk of recurrence in the GRP78-
positive subset[49]. It is possible that cell surface GRP78 
expression is associated with the induction of the pro-
apoptotic factor CHOP/GADD153.
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Figure 2  Cell surface GRP78 survival and apoptotic pathways in the tumor cell. Pharmacological induction of cell surface GRP78 induces apoptosis by 
increase expression of CHOP/GADD153, a transcriptional target of both PERK and IRE (two of the 3 UPR sensors). In parallel, doxorubicin and tunicamycin induced 
cytochrome c release followed by the activation of caspase 3. ER: Endoplasmic reticulum.
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The two major apoptotic pathways recognized as the 
death receptor (extrinsic) and mitochondrial (intrinsic) 
pathways play crucial roles in tumor progression as 
well as resistance to therapeutic strategies. Although 
the mechanisms that cause the biological selection for 
a specific mode of cell death remain unclear, it seems 
probable that the results depend on the intensity of the 
stress[60]. Pharmacological induction of intrinsic apoptosis 
was achieved by exogenous agents triggering acute ER 
stress[57,59]. 

Additional applications to cell surface GRP78 induction 
on tumor cells, as a potential target for cancer therapy 
were suggested[61]. For example, pro-apoptotic moieties 
or cytotoxic agents were conjugated onto peptides with 
a high affinity for GRP78 to successfully target and kill 
cancer cells[62]. Also, an un-conjugated peptidic GRP78 
ligand demonstrated toxicity to prostate cancer cell by 
an extrinsic apoptotic pathway[63]. A human monoclonal 
IgM antibody against cell surface GRP78 isolated from 
a cancer patient was found to be capable of inducing 
lipid accumulation and apoptosis, probably extrinsic, in 
cancer cells[64].

Cell surface GRP78 survival and apoptotic pathways 
in the tumor cell are described in Figure 2.

CONCLUSION
The significance of cell surface GRP78 expression, beyond 
cellular stress, might be the focus of new therapeutic 
strategies for ischemic diseases. Pharmacological manipu-
lation of cell surface GRP78 in tumor cells may serve as a 
new modality for tumor therapy. 
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