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Abstract
Used for over 3600 years, hypothermia, or targeted tem-
perature management (TTM), remains an ill defined 
medical therapy. Currently, the strongest evidence for 
TTM in adults are for out-of-hospital ventricular tachy-
cardia/ventricular fibrillation cardiac arrest, intracerebral 
pressure control, and normothermia in the neurocriti-
cal care population. Even in these disease processes, 
a number of questions exist. Data on disease specific 
therapeutic markers, therapeutic depth and duration, 
and prognostication are limited. Despite ample experi-
mental data, clinical evidence for stroke, refractory 
status epilepticus, hepatic encephalopathy, and inten-
sive care unit is only at the safety and proof-of-concept 
stage. This review explores the deleterious nature of 
fever, the theoretical role of TTM in the critically ill, and 
summarizes the clinical evidence for TTM in adults.
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INTRODUCTION
Since the time of  the Edwin Smith Papyrus’s, and un-
doubtedly before, physicians have employed hypothermia 
(HT). HT has been used for treatment of  cancer pain, 
induction of  electrocerebral silence in surgery, tetanus, 
traumatic brain injury (TBI), and even status epilepticus 
(SE)[1-6]. It is unquestionably the greatest tool for neuro-
protection in surgical cases requiring circulatory arrest 
and the standard of  care for ventricular fibrillation/pulse-
less ventricular tachycardia cardiac arrest (CA)[7-9].

Temple Fay, Claude Beck, and Charles Bailey ushered 
in the modern era of  HT in the 1930s and 1940s with 
their work on TBI and circulatory arrest for cardiac sur-
gery[6]. Fays work demonstrated the absence of  irrevers-
ible neurologic change in humans refrigerated to as low 
as 26 ℃[10]. In this era and into the 1960s, patients were 
often cooled over 24 h, and to temperatures below 28 ℃. 
With increased awareness of  the numerous cardiac, pul-
monary, and infectious side effects, interest waned[11-17]. 
These side-effects were a function of  the duration and 
depth of  HT, and the state of  intensive care unit (ICU) 
care at the time. Interest in HT again developed in the 
1990s, when data from TBI, stroke, and CA animal mod-
els demonstrated mild to moderate HT (30-35 ℃) for 2-24 
h produced sizeable improvements in outcome[18-21]. 

Modern ICU protocols for HT follow a “one tem-
perature fits all” mentality. Rather than augmenting HT 
based on brain metabolism or surrogate markers, most 
centers cool to 32-34 ℃. While the appropriateness of  
this strategy is a matter of  debate, evidence now supports 
the use of  HT in the ICU setting. The most impressive 
current data comes from the CA literature where the 
number needed to treat for a good outcome from an out-
of-hospital ventricular tachycardia/fibrillation is 5-6[8,9].

A growing body of  evidence is building favoring 
maintenance of  “normothermia” in the critically ill[22,23]. 
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This use of  cooling techniques to maintain tempera-
tures in the HT to normothermia ranges has prompted 
a new nomenclature, targeted temperature management 
(TTM)[24]. This review with briefly summarize the pro-
posed mechanisms by which TTM is thought to work, 
identifys the disease processes with the strongest evi-
dence for use in adults to-date, and addresses the logistics 
of  TTM delivery.

PHYSIOLOGY OF TTM
Role of fever in critical illness
Is fever bad? This ubiquitous response to infections, le-
sional, or toxic exposure alerts clinicians that “something 
is wrong.” Potentially blunting this response could be 
deleterious. Patients with community-acquired pneumo-
nia, Escherichia coli bacteremia, and Pseudomonas aeruginosa 
sepsis have improved survival if  they develop fever[25-27]. 
Yet, the development of  fever in the medical ICU (MICU) 
portends poor outcome[28]. In the neurocritical care 
unit (NCCU), fever occurs in 60%-91% of  this popula-
tion, and 20%-33% of  fevers in the NCCU are unex-
plained[29,30]. In this population, the presence of  fever, 
regardless of  etiology [stroke, intracerebral hemorrhage 
(ICH), subarachnoid hemorrhage (SAH), TBI, SE], is as-
sociated with increased morbidity and mortality[30-33]. In 
CA, HT may be a desired target[8,9]. 

As data accumulates, fever increasingly appears to 
play a deleterious role in the ICU population. Fever re-
sults from neurons in the preoptic anterior hypothalamus 
(POAH) decreasing their rate of  discharge (Figure 1). 
This may result from pyogenic cytokines [i.e., interleukin 
1 (IL-1), 6; tumor necrosis factor α (TNF-α)] produc-
ing prostaglandin E2 (PGE2), which then acts upon the 
POAH. Stimulation hepatic Kupffer Cells by comple-
ment also increase PGE2 production. Temperature eleva-
tions increase proinflammatory cytokines and lead to the 
accumulation of  neutrophils in damaged tissue, increas-
ing inflammation[34-40]. The development of  fever increase 

neuronal excitotoxicity and glutamate release, accelerating 
free radical production[41,42]. Fever also causes a variety 
of  physiologic derangements including weakening of  the 
blood-brain barrier (BBB), hemodynamic instability, and 
cardiovascular dysfunction[43]. The unanswered question 
remains, how should fever be treated? Should clinicians 
control the expression of  fever, or control the humors 
responsible for its development? 

Physiology of thermoregulation
Humans rigorously regulate core body temperature. Heat 
loss occurs as the result of  convection, conduction, radia-
tion, and evaporation. Sensation of  temperature change 
is largely controlled by the transient receptor potential 
(TRP) family of  ion channels[44,45]. TRPs are expressed by 
sensory neurons and activated at various temperatures. 
Information from these channels in the skin and core 
organs eventually arrives at the hypothalamus. Behavioral 
and autonomic responses then effect change to alter 
temperature. Behavioral defenses play less of  a role in the 
ICU. The autonomic response controls the amount of  
heat the core organs will expose to outer world through 
precapillary sphincters, vasodilation, vasoconstriction, 
shivering, and sweating control[46,47]. 

Contracting near 37 ℃, arteriovenous shunting oc-
curs largely in the hands and feet via special connections 
between arterioles and veins[48]. These shunts have a pro-
found effect on core temperature, and are the first line 
of  thermoregulation. Another means limiting heat loss 
is through vasoconstriction[49]. Should these mechanisms 
be insufficient, shivering is typically initiated a degree 
below the shunting threshold[50]. Signals originating in the 
POAH descend, eventually reaching the α-motor neu-
rons of  the spinal cord. Motor neuron groups are recruit-
ed, beginning with the γ motor neurons and ascending to 
the α motor neurons. Shivering increase metabolism, but 
loses efficacy with age and prolonged duration[51].

These differences are paramount in understanding 
TTM. As it does little to address shunting of  blood flow 
to core organs, paralysis is only minimally effective in re-
ducing the febrile response, and thus is of  limited benefit 
in TTM[52-55]. When shivering occurs, effective treatments 
include sedation and focal hand and face warming, with 
or without surface warming[56-59]. Reducing the shivering 
threshold may abate much of  this problem from occur-
ring. However, the largest obstacle in controlling the fever 
response is the arteriovenous shunts and systemic vaso-
dilation/vasoconstriction[49,60-62]. Interventions that relax 
sphincters or produce vasodilatation (i.e., magnesium, 
propofol) result in superior heat transfer[62]. Arguably, 
the fastest method of  heat exchange would be to directly 
cool the core organs.

Protective physiology
Injury to the brain and spinal cord occurs in two phases. 
In the peri-insult period, neuronal membranes become 
disrupted via insufficient energy, metabolic disturbance, 
and/or excitotoxicity, heralding necrosis. In the h to d 
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following injury, programmed cell death occurs. Thus, the 
role for TTM can be grossly divided into two therapeutic 
time windows: Early/ischemia and late/reperfusion. Ear-
ly mechanisms revolve around improving energy balance, 
reducing metabolic demand, and reducing membrane and 
mitochondria injury[63-65]. Later mechanism involve the 
consequences of  reperfusion injury including suppres-
sion of  spreading depression and epileptic discharges, re-
ducing inflammation, reducing cerebral edema, bolstering 
the BBB, and reducing apoptosis (Table 1). 

Although TTM offer an array of  potential therapeu-
tic actions, yet the, specific targets to focus this therapy 
remains largely unknown. For example, the metabolism 
suppressive roles of  TTM are intuitively important for a 
disease process like stroke, but may be less important for 
a disease such as ICH (Figure 2)[66-68]. In ICH, the reduc-
tion of  cerebral edema and suppression of  inflammation 
may play a larger role[68,69]. Thus, the role of  TTM may 
vary depending on the disease. 

Early phase protective physiology 
Membrane and mitochondrial effect: Within seconds 
of  interrupted blood supply, the high energy phosphate 
compounds adenosine triphosphate and phosphocreatine 

(ATP and PC) plummet[70]. These reductions cause the 
tissue to transition from aerobic to anaerobic metabo-
lism; increasing intracellular levels of  inorganic phos-
phate, lactate, and H+. This leads to an intracellular in-
crease in calcium (Ca2+). With failure of  ATP dependent 
Na+ and K+ pumps, the excess Ca2+ causes mitochondrial 
failure, activation of  intracellular kinases and proteases, 
and neuronal depolarization[71,72]. These depolarizations 
lead to accumulation of  glutamate and excitatory neu-
rotransmitters, leading to more Ca2+ influx via glutamate 
receptor stimulation, producing a maelstrom of  cellular 
destruction. This disruption of  ionic balance leads to cell 
swelling and rupture, exposing the interstitial tissue to ex-
citatory neurotransmitters. 

Evidence from animal models of  global hypoxic-isch-
emia (HI) and TBI demonstrate inhibition of  glutamate 
release, and suppression of  reactive oxygen species (ROS) 
formation between the temperatures of  30 ℃-33 ℃[73]. 
The decreased synthesis, reuptake, and release of  excit-
atory neurotransmitters, including glutamate, are thought 
responsible[74-76]. Temperature influences the membrane 
permeability of  K+, Na+, and Ca2+ with secondary effects 
on cerebral energy state[73,77]. Animal models of  focal and 
global ischemia demonstrate mild-to-moderate HT is as-
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Table 1  Potential therapeutic effects of hypothermia

Effect Mechanism Onset and duration of effect

Improved energy balance Reduced cerebral metabolism for O2 and glucose. O2 consumption reduced 
5%-6%/1 ℃ between 22-37 ℃ and ATP hydrolysis decreased by a similar rate  

Hours to d. Metabolism may begin to 
increase after 24 h

Reduced ATP demand and promotes glycolytic production of ATP. Net increase 
ATP
Decreased mitochondrial dysfunction
Improved recovery of high-energy phosphate compounds upon improvement 
of perfusion demand and following rewarming

Anti-epileptic effect Attenuation of [K+]ex increases with resulting decrease in Ca2+ influx. Temps 
between 31%-33% have demonstrated decreased duration, amplitude, and 
frequency of ictal discharges

Hours to days. This anti-epileptic effect 
may continue for a period of  t ime 
following rewarming

Increased duration between depolarizations with slowing return of membrane 
potential
Decreased synthesis, reuptake, and release of excitatory neurotransmitters 
including glutamate

Neuro-protective Reduced CNS edema-Improves BBB and energy reserve for membrane pumps 
via better energy balance

Hours to days

Prevent/reduce apoptosis-Hypoxia/ischemia can induce apoptosis and calpain-
mediated proteolysis. HT mitigates the initiation of these processes.  

Hours to weeks

Intracellular alkalinization Hours to days
Less Excitotoxicity-Ca++ accumulation precedes neuronal damage in sensitive 
brain regions. Excessive pre-synaptic release of glutamate activates NMDA 
and non-NMDA post-synaptic receptors with resulting Ca++ entry and release 
of intracellular Ca++ stores. This [Ca++]in increases activates Ca++ dependent 
enzymes producing cell injury. Decreased release of glutamate may reduce 
mitochondrial dysfunction, DNA damage, and decreased activation of kinases 
and excitotoxic cascades

Minutes to 72 h

Anti-oxidant effects-30%-40% decrease in Krebs cycle metabolites with shunting 
to Pentose Phosphate Pathway occurs. This shunting of metabolites may result 
in increased NADPH/NADH, improved glutathione reduction, peroxide 
detoxification, and reduced membrane peroxidation

Hours to days

Suppression of inflammatory reaction and impaired leukocyte function First hour to first week
Improved microcirculation, improving CBF and reducing cerebral edema Hours to days

Adapted from references 69, 73, 74, 92, 146, 207. Number in right column refer to numbered entry in “mechanisms” column. ATP: Adenosine triphosphate; 
BBB: Blood-brain barrier; HT: Hypothermia; NADPH: Nicotinamide adenine dinucleotide phosphate; CBF: Cerebral blood flow.
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sociated with attenuation of  the initial rise of  extracellu-
lar K+ (Ke) and delayed terminal depolarization[78,79]. Less 
neuronal loss after reperfusion in animals treated with 
HT suggests the temperature dependent influx of  Ca++ 
could be linked to changes in K+ efflux, raising the link 
between HT and suppression of  intracellular Ca2+ accu-
mulation[77].

Post reperfusion, the mitochondrial electron transport 
chain generates free radicals[80-88]. This is referred to as 
ischemic-reperfusion (IR) injury. Compounds including 
peroxynitrite (NO2

-), hydrogen peroxide (H2O2), superox-
ide (O2

-), and hydroxyl radicals (OH-) may damage cells 
via membrane and nucleic acid peroxidation, triggering 
apoptosis[76,89-91]. HT limits the production of  free radi-
cals, with lower temperatures appearing to be more effec-
tive[89,92].

Energy balance: Central to TTM is the supply-side 
economics tenant of  supply and demand. Specifically, 
HT reduces metabolic demand for oxygen and glucose, 
improving the supply of  ATP[93]. HT decreases brain 
consumption of  oxygen approximately 5%-6%/1 ℃ be-
tween 22-37 ℃, with commensurate reductions in ATP 
hydrolysis and CO2 production[67,70,93,94]. In a study of  
10 patients with severe TBI (defined at GCS < 7), HT 
between 32-33 ℃ decreased CMRO2 by 45% without 
changes in cerebral blood flow (CBF)[95]. This suggests 
that HT may produce a state of  relative hyperemia. HT 
attenuates, but does not stop, ATP and PC depletion, and 
pH reduction, in HI models[42,73,96]. The development of  
acidosis, known to increase cell loss, is controlled in part 

by slowing the rate of  high energy phosphate consump-
tion[73].

In the post ischemic period, hypothermic animals and 
humans demonstrated faster recovery of  pH[97]. Stud-
ies with magnetic resonance spectroscopy (MRS) have 
suggested HT attenuates the development of  acidosis in 
long-term ischemia and decreases the decline of  high en-
ergy phosphates approximate 5% per 1 ℃[98,99]. Although 
lactate levels still increase, HI animal models treated with 
HT demonstrate faster clearance of  lactate, improved 
glucose utilization, resolution of  pH, and quicker recov-
ery of  high-energy phosphates compared with normo-
thermic (NT) controls[73]. 

An approximate 30% decrease in Krebs cycle and 
glycolytic intermediates, except glucose-6-phosphate, oc-
curs with a marked decrease of  Krebs cycle activity dur-
ing HT[93]. Experimental work with MRS in moderate HT 
(31 ℃) has demonstrated a 30%-40% decrease in cortical 
and hippocampal metabolism, with shunting of  interme-
diates to the pentose phosphate pathway (PPP). This cor-
responds to increases in nicotinamide adenine dinucleo-
tide phosphate (NADPH)[73,93]. One could hypothesize 
that increase shunting to the PPP could reduce oxidized-
glutathione, increase peroxide detoxification, and limit 
oxidative stress. HT causes intracellular alkalinization, 
promoting glycolysis[93]. Glycolysis may help to increase 
ATP levels during HT in conjunction with ebbing de-
mand[93]. In piglet model studies with phosphorus MRS, 
after and during circulatory arrest at NT (37 ℃) and 
HT (15 ℃), HT animals displayed slower decay rate of  
high energy phosphate compounds, improved recovery 
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of  ATP and PC, and improved recovery of  intracellular 
pH[100]. This suggests HT ameliorates injury independent 
of  phosphate compound stores. High energy phosphate 
compounds are depleted with ischemia in both HT and 
NT; however, tissue recovers ATP and other high energy 
phosphate compounds faster if  occurring during HT[101]. 
Gerbils treated with HT (34 ℃) during bilateral carotid 
artery occlusion experienced a 10%-20% improved meta-
bolic recovery during reperfusion compared to NT con-
trols, displaying less histopathologic evidence of  neuronal 
damage in the cerebral cortex and hippocampus. Animals 
treated with HT during ischemia demonstrated less cy-
totoxic edema, as noted by diffusion-weighted imaging 
and apparent diffusion coefficient on magnetic resonance 
imaging, than NT controls[20,102]. 

Cerebral blood flow: While metabolic reductions are 
clearly demonstrated, evidence for changes in CBF is 
variable. During cooling, CMRglucose and CBF are directly 
proportional to intrinsic flow and metabolic rate with 
reductions normally in the most metabolically active 
areas[103]. In the uninjured brain, animal data routinely 
demonstrates CBF and CMRO2 are closely coupled 
from 33 ℃-35 ℃, with reduction in CBF nearly paral-
lels that of  CMRO2 with an 8% decrease per ℃[104]. This 
relationship is inconsistently coupled from 28 ℃-33 ℃, 
and below 28 ℃ studies report the development of  both 
ischemic and hyperemic states[77]. The cerebral vascula-
ture retains its responsiveness to CO2 even at reduced 
temperatures. Given relatively small differences between 
α-stat and pH-stat for temperatures ≥ 32 ℃, the low 
end of  the typical target range in the ICU setting, it is 
unlikely that either acid-base measure would effect brain 
physiology[104].

However, in the diseased state, this coupling may 
not hold. Review of  experiment literature demonstrates 
increases, no change, or decreases in CBF[21,77,105,106]. Clini-
cally, TBI studies have demonstrated similar findings[95,107]. 
The clinical data for other disease states is even less clear. 
Studies in high grade SAH patients (World Federation of  
Neurosurgical Societies Grade Ⅳ or Ⅴ) cooling to 35 ℃, 
then 33 ℃ over two d, have demonstrated CMRO2 and 
CBF reductions to a greater degree on the side ipsilateral 
to the ruptured aneurysm[108]. Using a similar protocol, 
another report demonstrated relative hyperemia ipsilateral 
to the site of  aneurysm rupture, suggesting less autoregu-
lation coupling in the most traumatized tissue[109]. Work 
in stroke patients has demonstrated early in HT, the de-
crease in CBF is greater than the commensurate decrease 
in CMRO2, resulting in relative ischemia[110]. Again, the 
loss of  autoregulation appears to play a role. 

Late phase protective physiology
Inflammation: In the h to first week following injury or 
ischemia the inflammatory response develops. Mediated 
initially by astrocytes, microglia, and endothelium, the re-
lease of  TNF-α and IL-1 stimulates leukocyte activation 
and allow for crossing of  the BBB[70,111]. Concurrently, 

adhesion molecules on leukocytes and endothelium 
emerge. Activation of  complement pathways further aid 
the accumulation of  neutrophils, and later monocytes-
macrophages, in damaged tissues. This leukocyte infiltra-
tion and cytokine production exacerbate injury[111-113]. 
HT suppresses this inflammatory reaction through 
attenuating adhesion molecule upregulation and inflam-
matory cytokine release[36,114-118]. Further, the function of  
neutrophils and macrophages are impaired, particularly at 
temperatures < 33 ℃. Experimental stroke models have 
demonstrated genes for inflammation are suppressed 
with TTM[119]. However, similar findings are not seen with 
TBI and CA, once again suggesting the role of  TTM will 
vary with the disease[120-122].

Blood-brain barrier and edema: Following ischemia-
reperfusion or trauma, the BBB often becomes disrupted, 
potentiating cerebral edema[123-125]. Cerebral edema has 
been implicated in delayed neurological deterioration, and 
worse outcome, through the elevation of  intracerebral 
pressure (ICP)[126]. Elevations in ICP reduce the ability 
of  blood to reach the brain, exacerbating the injury and 
producing ischemia. In ICH the formation of  perihema-
tomal edema contributes to approximately 75% of  total 
volume change[127]. Animal models of  ICH demonstrate a 
large perihematomal area that undergoes neuronal death 
characterized by increased water content and inflamma-
tion[128]. TTM may be an effective means to limit cerebral 
edema[68,129]. 

TTM reduces the disruptions in the BBB caused by 
IR injury and trauma[123-125]. TTM decrease the extravasa-
tion of  hemoglobin following TBI[34]. Following IR injury 
or trauma, regional production of  endothelin (ET-1), 
thromboxane A2 (TxA2) and prostaglandin I2 (PGI2), 
become altered, affecting endothelium[130,131]. ET and 
TxA2 act as vasoconstrictors, and PGI2 as a vasodila-
tor. These injurious conditions typically favor vasocon-
striction, and platelet aggregation via TxA2, promoting 
regional hypoperfusion. Animal data in TBI suggest the 
imbalance between TxA2 and PGI2, and excessive ET-1 
production, are mitigated by TTM[132,133]. Further, reduc-
tions in inflammation and improved membrane integrity 
further contribute to reductions in cerebral edema[63]. 
Finally, reduced temperatures limit the activity of  matrix 
metalloproteinases limiting BBB breakdown[134,135].

Cortical spreading depression and epileptic discharg-
es: Clinical evidence has demonstrated TTM to be effec-
tive in treating refractory SE[2,136,137]. Another neuro-elec-
trical phenomenon, cortical spreading depression (CSD), 
has been correlated to the development of  ischemia in 
TBI and stroke[63]. TTM has demonstrated suppression of  
CSD[33,102,138]. HT diminishes and slows axonal depolariza-
tions, limiting the release of  glutamate and attenuating the 
development of  spreading depression[33,102,138,139]. Further, 
HT (31-33 ℃) HT decreases the duration, amplitude, 
and frequency of  ictal discharges; lengthens the duration 
between depolarizations; slows the return of  membrane 
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potential; and is associated with decreased CMRglucose
[140-145]. 

Thus with decreasing temperature an inverse relationship 
to cerebral electrical activity develops[2,142,146,147]. 

Electroencephalogram (EEG) provides a consistent 
and reproducible means of  qualifying cerebral metabolic 
rate[148-150]. EEG activity correlates directly with cerebral 
metabolism and indirectly with neuroprotection[148]. Both 
animal and human studies demonstrate an abrupt change 
in EEG activity between 30-33 ℃[150-152]. Low amplitude 
∆ activity is noted as the predominant pattern at around 
30 ℃[149,152]. When concerned about neuroprotection, 
cooling to a specific temperature may not be advisable 
as systemic temperatures are not indicative of  brain tem-
perature or metabolism[148,149].

Apoptosis: Beginning in the 48-72 h after an ischemic 
or traumatic injury, HT interrupts the activation and 
propagation of  apoptosis[153-158]. HT attenuates release of  
cytochrome c, up-regulation of  Fas and Bax, and caspase 
activation[159-161]. Further, HT increases p53 expression, 
promoting tissue repair[162]. The anti-apoptotic signaling 
pathways for Erk1/2 and Akt are activated too[163-166].

INDICATIONS FOR TTM
Despite nearly 3600 years of  use, and a plethora of  ex-
perimental data, remarkably few clinical indications exist 
for TTM[65]. To date, the strongest evidence for use in 
adults is in out-of-hospital pulseless ventricular tachycar-
dia/ventricular fibrillation (VF/VT) CA, ICP control, 
and fever control in the NCCU population[24,65]. 

Cardiac arrest
TTM at 32-34 ℃ for 12-24 h in patients comatose af-
ter out-of-hospital cardiac arrest (OHCA) with initial 
rhythms of  VF or pulseless VT has become the standard-
of-care[8,9,24]. In this population, the number needed to 
treat for an outcome of  good or minimal disability is 
5 to 6. Both of  these landmark studies demonstrated 
improved outcomes, and the larger trial demonstrated a 
reduction in mortality, with TTM[8,9]. Evidence suggests 
TTM in this population is well tolerated, with no neuro-
cognitive deficits associated with therapy[167]. With respect 
to patients with cardiogenic shock or requiring primary 
coronary angiography, TTM can be delivered safely, im-
proving outcomes and not significantly increasing “door-
to-balloon” times[9,168,169].

Despite the evidence favoring TTM for OHCA in 
VT/VF, consensus is not unanimous. A recent meta-
analysis of  5 randomized controlled trials of  TTM in CA 
totaling 478 total patients concluded there was a lack of  
firm evidence for benefit[170]. The authors cite a number 
of  criticisms. The HT after Cardiac Arrest (HACA) study, 
recruited only 8% of  screened patients, and was stopped 
for slow recruitment[8,170]. This study lacked a predefined 
power calculation too. Decisions regarding withdrawal of  
therapy cannot be standardized, and may have influenced 
the outcomes. The smaller Bernard trial and colleagues 

evaluated outcome at discharge, finding good outcomes 
(discharge to home or rehab) in 49% of  HT patients and 
26% of  controls[9,170]. There was no difference in mortal-
ity. This differed from the HACA trial that measured out-
comes at six mo, using the Pittsburgh- Glasgow Cerebral 
Performance Category.

In spite of  these differences, the strength of  these 
findings has made TTM for OHCA from VT/VF the 
standard-of-care. However, fewer than 20% of  patients 
with CA fulfill the inclusion criteria for these studies[171]. 
Regarding the use of  TTM with in-hospital CA and 
pulseless electrical activity (PEA)/asystole (AS), a recent 
consensus report of  five different critical care profes-
sional societies concluded the evidence was insufficient 
to make any recommendations regarding PEA/AS[24]. 
Similarly, this group could not make a recommendation 
for or against the use of  TTM for in-hospital VT/VF ar-
rest. Therefore, TTM plays more a supportive role in the 
story of  CA.

What about PEA/AS and in-hospital VT/VF arrest 
make it different than out-of-hospital VT/VF arrest? 
PEA/AS tend to have a longer time to ROSC[172,173]. In-
hospital VF/VT CA is generally a very different entity 
caused by acute respiratory distress, distributive shock, 
electrolyte anomalies, or pulmonary embolism[174]. With 
the advent of  “rapid-response” and “pre-code” teams, 
in-hospital arrest is becoming less common[175]. Regard-
ing PEA/AS, a large, retrospective review demonstrated 
despite similar percentages of  treatment with TTM, pa-
tients with out-of-hospital PEA/AS treated with TTM 
demonstrated only a 15% good outcome compared to 
44% with VT/VF[172]. Those treated with TTM in the 
PEA/AS cohort had a longer delay to receiving basic life 
support, and a longer time to return of  spontaneous cir-
culation (ROSC), than those not receiving TTM. Perhaps, 
it is time to ROSC, not initial rhythm, clinicians should 
concern themselves with?

Once TTM has been initiated, what are the best prog-
nostic tools? How does TTM change these? The 2006 
American Academy of  Neurology (AAN) guidelines on 
prognosis following CA are largely developed from stud-
ies prior to the TTM era. In sum, the absence of  motor 
reaction to noxious stimuli, loss of  brain stem reflexes, 
presence of  myoclonic SE, bilateral absence of  cortical 
somatosensory evoked potentials (SSEP) N20 responses, 
and serum neuron specific enolase (NSE) > 33 mg/L 
in the first 3 d following CA predict poor outcome[176]. 
Since these guidelines have been published TTM has 
been increasingly used for CA. Reports of  patients with 
NSE levels > 33 mg/L, absent N20 SSEP response, and 
myoclonic SE recovering have been made suggesting our 
current prognostic tools need re-fitting[177-179].

First, does treatment with HT delay waking, poten-
tially resulting in premature withdrawal of  artificial organ 
preservation therapies? A recent retrospective review of  
227 patients attempted to answer this question[180]. One 
hundred and twenty-eight patients treated with, and 99 
patients not treated, with TTM were analyzed comparing 
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time to awakening. It is important to note that patients 
not treated with TTM had rhythms other than VF or 
were in-hospital CA. Further, this center employs a strict 
sedation protocol to minimize the confounding effect of  
these drugs on neurologic examination. Patients who sur-
vived regained consciousness at a median of  2 d (range 
2-8 d) in the TTM group, and at 2 d (range 1-7 d) in the 
non-TTM group[180]. Thus, TTM appears to not delay 
awakening following CA.

Next, in the TTM era, what clinical or paraclinical 
findings predict outcome? Regarding the neurologic as-
sessment, reports are variable. A recent prospective study 
of  111 CA survivors treated with TTM demonstrated 
status myoclonus, absent motor response to pain, and 
incomplete brain stem reflexes did not predict poor out-
come in all patients[181]. In fact, this study found a motor 
score on the Glasgow Coma Scale (GCS) ≤ 2, or decer-
ebrate/extensor posturing, has a false-positive prediction 
of  mortality of  24% at 36-72 h. However, the specifics 
of  type, amount, and duration of  sedatives were not re-
ported in this study, complicating its interpretation. These 
motor findings have been previously reported in smaller 
studies[182,183]. In another study comparing predictors of  
recovery in CA patients treated with and without TTM 
at a single center, of  14 patients with a motor score ≤ 2 
at day two, 2 survived with a good or moderate outcome 
as scored by the Cerebral Performance Categories Score 
(CPC)[184].

Brainstem reflexes offer no clearer insight. In the 
aforementioned study, patients treated with TTM did not 
recover if  pupillary response to light and corneal reflexes 
were absent up to 5 d[184]. Similar findings have been 
previously reported[182]. Notably, Fugate et al[184] reported 
no patient with a spontaneous downward gaze survived. 
While the absence of  cranial nerve reflexes and purpose-
ful motor responses at day 2-3 are concerning, they are 
not conclusive of  final outcome. A recent study reported 
absence of  one or greater brainstem reflexes had a false 
positive rate (FPR) of  4% when measured between 36 
and 72 h in predicting mortality[181]. However, the effect 
of  sedation in this study is uncertain and complicates 
many studies in TTM.

Do biomarkers offer a better prognostic option? The 
2006 AAN guidelines, NSE was reported to have a 0% 
FPR for predicting poor outcome between 24 and 72 h 
following CA if  > 33 mcg/L[176]. The increased use of  
TTM in CA calls into question reliance of  the absolute 
value of  this benchmark[184,185]. NSE between 24 and 48 h 
in patients randomized to TTM or no-TTM found higher 
values in the TTM group[185]. This suggests TTM may 
affect the normal clearance of  NSE. Of  note, a study 
evaluating serial NSE levels in CA patients treated with 
TTM suggest a downward trend of  NSE values portend 
good outcome, suggesting TTM affects the normal clear-
ance of  NSE[184].

Recently a prospective, observational study looked at 
the patterns of  various prognostic markers in patients still 
comatose three d following HT for CA[186]. The authors 

note NSE levels > 33 mg/L demonstrated extensive dif-
fusion weighted MRI changes, in all patients. Of  patients 
who underwent SSEP studies, all died who had NSE 
values of  > 27 mg/L and bilateral loss of  N20 peaks. All 
patients lacking pupillary light reflex or corneal reflex and 
having an NSE > 33 mg/L died. In fact, no patient with 
a NSE > 27 mg/L made a recovery. 

What role do electrodiagnostic studies play in prog-
nostication? SSEP use is limited by inter-observer vari-
ability and sensitivity of  system noise[187]. Despite this, 
SSEPs in the 2006 AAN guidelines reported a FPR of  
0.7% for poor outcome when N20 responses were absent 
bilaterally[176]. A recent retrospective review of  36 patients 
treated with TTM for CA, and demonstrating bilaterally 
absent or minimally present N20 response at day 3, re-
ported recovery of  consciousness and cognitive function 
in 2 patients[178]. This suggests these studies may not be as 
useful in the setting of  TTM.

Electroencephalography may provide a means of  
prognostication, particularly when complimented by oth-
er biomarkers or exam findings. Although a universally 
accepted classification system is lacking, a few patterns 
are generally accepted as benign or malignant (Table 2). 
When correlating to NSE, a continuous EEG pattern 
demonstrated lower NSE levels compared to a burst-
suppression, or flat and non-reactive, background[186]. 
Recent studies have demonstrated the ability of  EEG to 
identify patients with a poor prognosis based on malig-
nant patterns and good prognosis based on benign pat-
terns[184,188,189]. Patients presenting in a burst-suppression 
pattern at either initiation of  EEG or normothermia, or 
in SE at normothermia did not regain consciousness.

If  a continuous EEG pattern was present at either 
initiation or normothermia, 29/32 and 54/64 patients 
regained consciousness respectively. The positive predic-
tive value of  this was 91%[188]. Examining this dynamic 
testing further, a study of  post-CA comatose patients 
receiving continuous EEG, the background activity to 
repetitive vocal, visual, and nociceptive stimuli corre-
lated to in-hospital mortality and neurologic outcome at 
2 mo[189]. Survivors in this cohort never demonstrated a 
non-reactive background to stimulation, epileptiform dis-
charges, or prolonged periods of  flat EEG. Recently, two 
patients treated with TTM having continuous EEG were 
reported who demonstrated a continuous α pattern that 

Table 2  Qualitative description of Electroencephalogram 
pattern

Malignant EEG Patterns Benign EEG Patterns

Non-reactive background Generalized slowing
Burst-suppression associate with 
generalized epileptic activity

Mixed α-theta frequencies

Diffuse periodic complexes on a 
non-reactive background

Reactive background

Generalized suppression to < 20 mV Continuous rhythm 
Status epilepticus

EEG: Electroencephalogram.
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attenuated to verbal or noxious stimuli[190]. These changes 
occurred both during and after cooling. Both patients 
made an excellent recovery.

Increased intracerebral pressure
HT decreases ICP, but how[24]? In the uninjured brain, 
CBF and cerebral metabolic rate are closely coupled from 
33-35 ℃; with that coupling becoming inconsistent be-
tween 28-33 ℃[67,93,103,191-194]. The 2011 consensus review 
of  TTM in critical care contends the uncertainty of  the 
mechanism of  action for ICP reduction in TTM pre-
cludes an affirmative recommendation. Are the elevations 
of  ICP a marker of  disease severity or a target where 
treatment will improve outcome? During TTM, ICP most 
likely falls secondary to a pleiotropic mechanism. HT de-
creases brain consumption of  oxygen (CMRO2) approxi-
mately 5%-6%/1 ℃ between 22-37 ℃ and slows ATP 
hydrolysis by nearly the same rate[77]. In a study of  10 pa-
tients with sever TBI (defined at GCS < 7), HT between 
32-33 ℃ decreased CMRO2 by 45% without changes in 
CBF[95]. This suggests that HT may produce a state of  
relative hyperemia. However, this study also reported 
CMRO2 may start to increase after 24 h of  cooling[95]. 
It is notable that post-cooling normothermia values for 
CMRO2 remained approximately 15% below baseline val-
ues. Similar to CMRO2, reductions in CMRglucose and CBF 
are found to be directly proportional to intrinsic flow and 
metabolic rate with the highest reductions in the nor-
mally most metabolically active areas[103]. While metabolic 
reductions may contribute to lower ICP, this is likely not 
the full explanation.

Although recent meta-analysis of  TTM in stroke 
found current evidence too heterogeneous to recom-
mend TTM in stroke patients, some findings are note-
worthy[24,195]. Previous work with TTM to a goal temp of  
33 ℃ for 48-72 h found ICP elevation positively corre-
lated to the rate of  rewarming and were associated with 
poor outcome[196]. A larger study found slowing the rate 
of  rewarming lead to a statistically significant reduction 
in mortality of  patients with large MCA strokes treated 
with surface delivered TTM to 33 ℃[197]. This suggests 
something with cooling is rewarming rate dependent. Al-
though different disease mechanisms, clinical studies in 
TBI found continued reduction in brain metabolism per-
sisting after rewarming, suggesting the elevations in ICP 
found upon warming are not likely the result in changes 
in cerebral metabolism[95,196].

A recent study with endovascular delivered TTM com-
pared eighteen patients[129]. Seven patients were deemed, 
“effectively cooled” or below 34.5 ℃ within 8 h of  
therapy initiation. This group maintained a temperature 
of  33.5 ℃ ± 0.6 ℃ for 12-24 h. Eleven patients were not 
effectively cooled, maintaining a temperature of  35.7 ℃ 
± 0.7 ℃ for 12-24 h. All patients had CT scans at admis-
sion, at 36-48 h, and at 30 d post stroke. CSF volume at 
these three time points served as indirect markers of  ce-
rebral edema. Specifically, a larger CSF volume presumed 
less cerebral edema. The authors found a statistically 

significant difference in the CSF volume of  those effec-
tively cooled, compared to the 11 not so, at this second 
measure suggesting less cerebral edema (Figure 3)[129]. 

This edema reducing phenomenon may not require 
cooling to the same degree as for CA. A recent study of  12 
patients with > 25 mL of  ICH who were cooled to 35 ℃ 
for 10 d reported reduced cerebral edema (Figure 3)[68]. 
Perifocal edema was measured on CT. These volumes 
were compared to cohort of  25, uncooled patients from a 
local database. In the HT group, edema volume remained 
stable. The uncooled cohort demonstrated significantly 
increased cerebral edema. These increases were both in 
terms of  absolute volume and as a ratio of  ICH vol-
ume[68].

Reductions in cerebral edema, and cerebral metabo-
lism, may not be the only means by which ICP is reduced. 
The growing evidence for the use of  TTM in acute liver 
failure/hepatic encephalopathy suggests another mecha-
nism. As the development of  hyperammonemia overtakes 
the astrocytes ability to export organic osmolytes to com-
pensate for accumulating glutamine, cerebral edema de-
velops[198]. As serum ammonia levels approach 150 mmol, 
the risk of  elevated ICP increases[199]. To briefly review, 
glial cells release glutamine, which is metabolized into 
glutamate in the presynaptic terminals by glutaminase. 
Glutamate can also be produced by transamination of  
2-oxoglutarate, an intermediate in the Citric acid cycle. 
Experimental evidence has demonstrated TTM to the 
range of  32-33 ℃ attenuates the uptake of  extracellular 
glutamate[200]. Glutamate levels can be further reduced 
by a shunting of  nearly 1/3 of  Krebs Cycle intermedi-
ates into the Pentose Phosphate Pathway[201]. This could 
potentially improve the cell’s ability to resist damage from 
membrane peroxidation.

A series of  studies by Jalan and colleagues have 
noted the beneficial effects of  TTM to 32-33 ℃ in pa-
tients with HE. One study of  14 comatose patients with 
elevated ICP reported average ICP reductions from 36.5 

Figure 3  Approximate percent increases in cerebral edema, over time, in 
stroke and intensive care unit patients treated with and without targeted 
temperature management. Changes between stroke patients effectively and 
ineffectively cooled, and changes between intensive care unit patients receiving 
targeted temperature management (TTM) and controls not receiving TTM, are 
significant. Stroke patients day two measurements are between 36-48 h. ICH: 
Intracerebral hemorrhage.
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to 16.3 mmHg[202]. However, in six patients the results 
were not sustained requiring intermittent mannitol bolus-
ing. Five patients responded, and one patient succumb to 
herniation. Yet 13 of  these patients went on to successful 
orthotopic liver transplantation and full neurologic re-
covery. Another report of  five patients with elevated ICP, 
TTM was maintained through surgery[203]. This strategy 
improved cerebral perfusion and abated the ICP spikes 
noted during dissection.

What is the clinician to make of  this? The aforemen-
tioned consensus review by five international critical care 
societies ruled the evidence for ICP control by TTM, as 
it pertains to outcome, is insufficient for an affirmative 
recommendation at this time[24]. The heterogeneous re-
porting of  ICP, and inconclusive outcome data, between 
studies lead to this recommendation. As for specific 
disease process, no recommendation for TTM can be 
made. As previously noted, evidence for stroke and ICH 
remains largely at the proof-of-concept and safety stage. 
Recently, the National Acute Brain Injury Study: HT Ⅱ 
(NABIS: H Ⅱ) findings were reported[204]. NABIS: H Ⅱ 
was a randomized, multicenter trial of  patients with non-
penetrating TBI with ≤ 3 other injured organ systems 
enrolled within 2.5 h of  injury. Patients were cooled to 
33 ℃ or 37 ℃ in controls. Primary outcome was 6 mo 
Glasgow Outcome Scale (GOS) score. This study found 
no difference at 6 mo GOS score. Citing futility, this 
study was stopped at the interim analysis of  the first 97 
patients. Subgroup analysis of  patients with evacuated 
hematomas found those treated with HT had better out-
comes compared to the normothermia group. However, 
this represented only 28 patients. Thus, at least for TBI, 
HT does not appear to improve outcome.

Normothermia
Nearly 70% of  patients in the NCCU experience fever in 
the first two weeks following injury[205]. The etiology goes 
unexplained in 1/5 to 1/3 of  these patients[29]. The pres-
ence of  fever increases the risk of  poor outcome[23,206,207]. 
For the NCCU population specifically, after controlling 
for illness severity and diagnosis (ICH, stroke, or SAH) 
fever was independently associated with longer ICU stay, 
higher mortality, and worse outcome[23]. However, is fever 
causing the miserable outcome or is the miserable out-
come heralded by fever? 

Attempting to answer this question, one must first 
inquire what a safe and effective means to do so is. Ac-
etaminophen effectively lowers temperature, but only by 
approximately 0.2 ℃[195]. Use of  endovascular and newer 
surface cooling systems effectively lowers the fever bur-
den safely, at no increased risk to some patient popula-
tions[22,208,209].

The NCCU data represents a mixed population. 
Certain disease processes may benefit more from TTM 
targeted at normothermia than others. The development 
of  delayed cerebral ischemia (DCI) after SAH has been 
associated with a higher fever burden, portending higher 
morbidity and mortality[210-213]. A recent single center 

study of  40 consecutive febrile SAH patients maintained 
at 37 ℃ with a surface cooling hydrogel device (Arctic 
Sun) during their first 14 d after SAH were matched to 80 
SAH patients who underwent conventional fever control 
(CFC) between 1996 and 2004[214]. The authors found 
patients undergoing normothermia had a longer ICU 
stay (19 ± 7 d vs 14 ± 8 d, P = 0.001) but a similar overall 
hospital length of  stay as compared with CFC patients 
(28 ± 13 d vs 28 ± 21 d, P = 0.9). Although a higher 
proportion of  cooled patients underwent tracheostomy 
and had a higher rate of  pneumonia, the proportion of  
poor outcome at 14 d among cooled patients was no 
different than among control patients (83% vs 85%, P = 
0.7). However, TTM patients had a statistically significant 
lower rate of  poor outcome at 12 mo (21% TTM vs 46% 
CFC, P = 0.03). When entered into a multivariable linear 
regression model adjusting for age, cooling was associ-
ated with improved outcome at 12 mo after SAH, sug-
gesting elimination of  fever with TTM may be associated 
with improved outcome after SAH.

Regarding stroke, the association of  fever to poor 
outcome is strong, but the association of  intervention 
to improved outcome is not so herculean. The 2009 Co-
chrane review of  cooling therapy in acute stroke found 
no statistically significant effect of  pharmacologic or 
physical temperature-lowering therapy in reducing the 
risk of  death or dependency[195]. However, the pooled 
data represented a heterogeneous amalgamation of  small, 
phase Ⅰ trials and acetaminophen studies lacking proto-
col similarity.

Even murkier is the evidence for fever reduction 
in the non-NCCU populations. A recent meta-analysis 
pooled studies representing NCCU, surgical ICU, gen-
eral ICU, liver-transplant ICU, post-operative ICU, and 
trauma ICU populations[215]. This found current intravas-
cular and hydrogel cooling systems significantly better at 
reducing fever burden than traditional cooling blankets 
and cooling baths. However, these studies were markedly 
heterogeneous. Concerning was the trend (P = 0.06) that 
hospital mortality for these newer cooling technologies, 
compared to traditional cooling, was higher at 25.4% vs 
18% in the pooled analysis.

When comparing the effectiveness of  pharmacologic, 
antipyretic treatments (i.e., NSAIDs, acetaminophen), the 
authors analysis demonstrated core body temperature re-
ductions favored continuous, dosing rather than blousing, 
of  these medications[215]. Earlier use of  these medications 
at 38.5 ℃, with cooling blankets above 39.5 ℃, demon-
strated a significant 1.09 ℃ reduction in mean daily tem-
peratures when compared to more permissive interven-
tions (no intervention until 40 ℃)[216]. As noted with the 
newer generation of  intravascular and hydrogel cooling 
technology, this earlier use of  acetaminophen and surface 
cooling demonstrated a trend toward increased mortality 
with P = 0.09. Given the motley findings of  studies look-
ing at TTM for normothermia, it is not surprising that 
the American Thoracic Society, European Respiratory 
Society, European Society of  Intensive Care Medicine, 
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Society of  Critical Care Medicine, and Societe de Reani-
mation de Langue Francaise offer this observation: Re-
garding fever, it is a generic response to so many patho-
logic processes that no recommendation can currently be 
made for or against TTM. If  a RCT is considered, focus 
should probably include severe fever unrelated to infec-
tion[24].

LOGISTICS OF DELIVERY
What features of  TTM can be manipulated, if  any, to 
improve efficacy and outcome? Is the efficacy of  TTM 
determined by the duration, depth, and cooling-rate of  
therapy? Currently, TTM for CA is a “one size for all” ap-
proach. The target is typically a temperature of  32-34 ℃ 
for 12-24 h. Would titrating to a biomarker improve 
efficacy? Given the paucity of  evidence, a biomarker 
targeted approach can not as of  yet be advocated. Given 
the numerous pathways TTM affects, and the variable 
pathophysiology of  diseases present in the ICU, deter-
mining which pathway at which time to focus monitoring 
is difficult. For example, data from TBI suggests cerebral 
metabolic rate starts to actually increase, approaching 
pre-hypothermic values, after 24 h of  TTM[95]. Evidence 
from stroke patients treated with TTM demonstrates 
early in cooling, a state of  relative ischemia develops, later 
replaced by a state of  relative hyperemia[110]. 

Experimental evidence suggests increased duration of  
HT could improve efficacy. A recent cardiac arrest animal 
study varied the time from ROSC to the onset of  HT, 
and the duration of  HT[217]. Normothermic animals were 
controls. Good outcomes, as assessed by a standardized 
behavioral scale, occurred significantly more frequently 
in animals cooled within 4 h of  ROSC. Survival was also 
significantly improved. When looking at a histological 
marker, the surviving neuron counts in animals cooled 
longer (48 h) was significantly greater than in animals 
cooled for a shorter period (24 h), or not at all[217]. 

Do these findings clinically translate? Could variation 
therapy duration improve the clinical outcome? Clini-
cal evidence is lacking. Any effort to extend duration of  
therapy must weigh the increased risk of  infection inher-
ent to prolonged HT duration. Evidence from stroke and 
TBI patients treated with TTM report increased incidence 
of  pneumonia with TTM times exceeding 48-72 h[197,218]. 
Recent retrospective review of  421 patients from a single 
center demonstrated 67% of  patients developed 373 in-
fectious complications[219]. These were most commonly 
pneumonia (85%), bloodstream infections (9%), and 
catheter-related infections (3%). Gram-negative bacteria 
were the most frequent isolated agents, occurring nearly 
2/3 of  isolates. Infected patients were most commonly 
treated with TTM, and of  a longer duration. However, 
infection did not impact mortality or favorable neurologic 
outcome.

If  prolonged duration of  therapy is precarious, could 
changing the rate of  cooling improve efficacy? The ques-
tion of  cooling rate and its effect on patients is under-

studied. The Bernard and HACA trials achieved a goal 
temperature typically within 2 h, at a median of  8 h after 
ROSC[8,9]. An observational study of  OHCA, including 
PEA and AS, have not shown time to initiation of  TTM, 
or time to reach goal temperature, as having an effect on 
outcome[220]. However, the protocols for HT were not 
standardized in this review. A recent study in 49 consecu-
tive patients with OHCA (VT/VF, PEA, AS) with ROSC 
within 60 min of  arrest and GCS ≤ 8 after CPR were 
prospectively followed. Predictors of  good outcome in-
cluded youth, early CPR, and a faster rate of  cooling[221]. 
Not surprising, larger body surface area slowed the rate 
of  cooling.

Anesthesia literature in patients receiving intra-opera-
tive HT for neuroprotection during circulatory arrest for 
thoracic aorta procedures provides some insight. Electro-
encephalography was used as a qualitative marker of  ce-
rebral metabolic activity[149]. The development of  periodic 
complexes, burst suppression, and electro-cerebral silence 
patterns were chosen as qualitative markers of  decreasing 
cerebral activity. Previous work has demonstrated reduc-
tions in EEG activity during HT to correlate to cerebral 
metabolism[148,150]. The authors found an association be-
tween rate of  cooling and EEG endpoints. Specifically, 
prolonged time to cool to any EEG marker portended 
prolonged time to cool to reach the next marker[149]. 
Further, lower temperatures required for a marker were 
associated with lower temperatures required for subse-
quent markers. Said another way, a slower rate of  cooling 
required a lower absolute temperature to obtain the nec-
essary cerebral metabolic endpoint. Larger body surface 
area and increased hemoglobin concentration were found 
to directly correlate with times needed to reach burst sup-
pression and electrocerebral silence respectively. 

As uncertainty remains regarding the duration, depth, 
and targeting of  TTM, could the type of  device used 
effect outcome? Although firm answers are missing, 
some provocative findings are reported. In a head-to-
head, single center, observational comparison of  167 
patient receiving either the CoolGard (Zoll Circulation, 
Chelmsford, Massachusetts) or Arctic Sun (Medivance, 
Louisville, Colorado) systems, no significant differences 
were found in the rate of  cooling, ICU stay, duration of  
mechanical ventilation, survival to discharge, survival at 
6-12 mo, of  neurologic outcomes[222]. Of  note, more hy-
pomagnesemia was observed in the endovascular group. 
The surface-cooled patients had more episodes of  hyper-
glycemia. Of  note, a recent prospective, observational, 
registry-based study of  22 U.S. and European hospitals 
demonstrated sustained hyperglycemia was associated 
with increased mortality[220,223].

While the device itself  may not change outcome, many 
practical issue can affect the success of  TTM protocols. 
A Google search demonstrates a number of  devices that 
are commercially available for induction and maintenance 
of  TTM and range from surface and endovascular cool-
ing catheters, cooling helmets, immersion devices, and 
intranasal device. A recent prospective study of  fifty ICU 
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patients requiring TTM evaluated the rate of  cooling, 
and the variation above/below target temperature during 
the maintenance phase of  TTM[224]. Five commercially 
available devices were evaluated which included a water 
circulating external cooling device (Blanketrol Ⅱ, Cincin-
nati Sub Zero, The Surgical Company), an air circulating 
external cooling device (Caircooler CC1000, Medeco), a 
gel-coated adhesive system (Arctic Sun, Medivance), an 
endovascular cooling system (Icy-catheter, Alsius Cool-
Gard 3000), or conventional cooling with cold saline bo-
lus and surface cooling with ice. This was a mixed group 
consisting of  OHCA, TBI with elevated ICP, or patients 
with SAH requiring normothermia. The cohorts of  10 
per device were well matched for APACHE Ⅱ, age, and 
BMI. In sum, the water-circulating blankets, endovascular 
cooling, and gel-adhesive devices provided the fastest rate 
of  cooling. As for maintenance, the endovascular system 
provided the most reliable temperature control, drifting 
out of  target range < 5 ± 5% of  the time. The next clos-
est device was the gel adhesive device, with a variance of  
approximately 40% ± 20%. Further, the endovascular 
and gel adhesive systems rated well with ICU nurses 
regarding maintenance work-load and hygiene, with en-
dovascular cooling also scoring well in reported ease of  
patient monitoring[225].

CONCLUSION
Despite nearly 3600 years of  medical use, the role of  
TTM remains ill defined. Currently, the strongest evi-
dence for the use of  TTM, in adults, is for HT in OHCA 
for VT/VF, ICP control, and for normothermia in the 
neurocritical care population. However, even in these 
disease processes, a number of  questions exist. Data on 
disease specific therapeutic markers, clinical pathophysiol-
ogy, and therapeutic depth and duration are limited. Fur-
ther, for disease processes like HE, stroke, refractory SE, 
and ICH much of  the clinical evidence reported is only 
at the safety and proof-of-concept stage. In sum, though 
intuitively appealing, TTM remains enigmatic in the ICU. 
More work is needed to define targets and goal directed 
therapies before a final “yeah or nea” can be given to this 
therapy. 
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