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Abstract
Major pulmonary disorders may occur after brain 

injuries as ventilator-associated pneumonia, acute 
respiratory distress syndrome or neurogenic pulmonary 
edema. They are key points for the management of 
brain-injured patients because respiratory failure and 
mechanical ventilation seem to be a risk factor for 
increased mortality, poor neurological outcome and 
longer intensive care unit or hospital length of stay. 
Brain and lung strongly interact via  complex pathways 
from the brain to the lung but also from the lung to the 
brain. Several hypotheses have been proposed with a 
particular interest for the recently described “double hit” 
model. Ventilator setting in brain-injured patients with 
lung injuries has been poorly studied and intensivists 
are often fearful to use some parts of protective venti-
lation in patients with brain injury. This review aims to 
describe the epidemiology and pathophysiology of lung 
injuries in brain-injured patients, but also the impact 
of different modalities of mechanical ventilation on the 
brain in the context of acute brain injury.
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Core tip: Brain lung crosstalk is a complex interaction 
from the brain to the lung but also from the lung to the 
brain. Intensivists are often fearful to use some parts of 
protective ventilation in patients with brain injuries but 
if correctly applied, mechanical ventilation could have 
beneficial effect on brain oxygenation, even if positive 
end-expiratory pressure and recruitment maneuvers 
are used. This review aims to describe the epidemiology 
and pathophysiology of lung injuries in brain-injured 
patients, but also the impact of different modalities of 
mechanical ventilation on the brain in the context of 
acute brain injury. 
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INTRODUCTION
Brain lung crosstalk is a complex interaction from the 
brain to the lung but also from the lung to the brain. 
The occurrence of severe pulmonary injuries after 
experiencing a brain injury, such as severe traumatic 
brain injury (TBI), subarachnoid hemorrhage (SAH) or 
stroke, has been described[1-5]. These pulmonary injuries 
include ventilator-associated pneumonia (VAP), acute 
respiratory distress syndrome (ARDS) and neurogenic 
pulmonary edema (NPE). They are key points for 
the management of brain-injured patients because 
respiratory failure and mechanical ventilation seem to 
be a risk factor for increased mortality, poor neurological 
outcome and longer intensive care unit (ICU) or hospital 
length of stay (LOS)[4-9]. The pathophysiology of brain-
lung interaction is complex and several hypotheses have 
been proposed with a particular interest for the recently 
described “double hit” model[1]. 

This review aims to describe the epidemiology 
and pathophysiology of lung injuries in brain-injured 
patients, but also the impact of different modalities of 
mechanical ventilation on the brain in the context of 
acute brain injury. 

LUNG INJURIES AFTER BRAIN INJURIES
Major pulmonary disorders may occur after brain 
injuries as VAP, ARDS or NPE. In this review, the direct 
consequences of chest trauma, such as rib fractures, 
lung contusions or hemo/pneumothorax will not be 
discussed in the present review. Zygun et al[6], in an 
observational cohort study, reported non-neurologic 
organ dysfunctions in 209 patients with severe TBI. 
Eighty-nine percent of patients had at least one non-
neurologic dysfunction (organ system component 
score ≥ 1), and 81% of patients developed respiratory 
dysfunction [arterial partial pressure of oxygen/inspired 
fraction of oxygen ratio (PaO2/FiO2) = 226-300]. Thirty-
five percent of patients developed at least one organ 
failure (organ system component score ≥ 3), and the 
most common non-neurologic organ system failure was 
severe respiratory failure (PaO2/FiO2 ≤ 150), occurring 
in 23% of patients. Other multicenter studies have 
also reported high incidence of extracerebral organ 
dysfunctions after TBI[10] or SAH[11]. These extracerebral 
organ failures, especially respiratory failure and ICU-
acquired sepsis, seem to be more frequent in patients 
with brain injuries than in patients with non-neurologic 
conditions[12]. 

Lung injuries are frequent and can lead to significant 
consequences for patients with brain injuries by 

directly altering outcomes. Respiratory failure and 
mechanical ventilation appear to be risk factors for 
increased mortality and poor neurological outcomes 
in patients with brain injuries[6-9] and are associated 
with longer ICU and hospital LOS[4,5]. Pelosi et al[13], in a 
recent prospective observational and multicenter study, 
described outcomes among mechanically ventilated 
patients with various types of brain injuries (362 
patients with ischemic or hemorrhagic stroke and 190 
patients with brain trauma) and compared them to non-
neurologic patients. Respiratory failure was the most 
frequent extracerebral organ dysfunction in neurologic 
patients. Patients with neurologic disease who were 
mechanically ventilated had longer ICU and ventilator-
days, more tracheostomy requirement, more VAP and 
higher mortality rates than non-neurologic patients. 

VAP 
Pneumonia and VAP are frequently encountered in 
neurologic patients due to decrease in the level of 
consciousness and massive aspiration or even microas-
pirations[14]. Risk factors for developing VAP in brain-
injured patients have been identified: polytransfusion, 
age, obesity, diabetes, immunocompromized status, 
chronic pulmonary disease and use of barbiturates[15]. 
Moreover, mechanical ventilation, sedation and myore-
laxant use, previous antibiotic therapy and the absence 
of proclive position during mechanical ventilation 
increase the risk of developing VAP[16]. Additionally, 
brain injury-induced immunosuppression promotes the 
development of infectious diseases[17-20].

The incidence of VAP in patients with severe TBI is 
21% to 60%[15,21,22]. Methicillin-susceptible Staphylo-
coccus aureus is the most common pathogen reported 
in VAP in patients with severe TBI. Early enteral feeding 
and oral care has been shown to decrease the incidence 
of VAP in the neuro-ICU[22,23]. Pelosi et al[13] reported 
a higher rate of VAP in patients with TBI compared to 
patients with ischemic or hemorrhagic stroke and non-
neurologic patients. 

Cinotti et al[24] reported a retrospective analysis 
of 193 patients with SAH who were mechanically 
ventilated. VAP occurred in 48.7% of the patients, and 
the main responsible pathogen was also Methicillin-
susceptible Staphylococcus aureus. This study did not 
find an increase in the mortality for these patients, but 
a longer duration of mechanical ventilation and ICU 
LOS[24]. Frontera et al[25] analyzed data of 573 patients 
with SAH (with or without mechanical ventilation) and 
quantified the prevalence of nosocomial infectious 
complications. The most common complication was 
pneumonia with a prevalence of 20%. Pneumonia was 
an independent factor for mortality or severe disability 
at 3 mo[25]. 

Kasuya et al[26] observed a 28% rate of VAP in 
111 stroke patients on mechanical ventilation. VAP 
prolonged the duration mechanical ventilation and 
ICU LOS. Chronic lung disease, National Institute of 
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Health Stroke Score at admission and hemorrhagic 
transformation were independent risk factors for VAP. 
The most common responsible bacteria were Methicillin-
resistant Staphylococcus aureus and Methicillin-
susceptible Staphylococcus aureus[26]. In patients with 
severe ischemic stroke, VAP increased mortality by 
3-fold[27]. 

ARDS
ARDS occur with a high incidence rate in patients with 
brain injuries. The definition of ARDS used in most 
of the studies is the American-European consensus 
conference criteria[28]. A recent study reported an 
incidence of 35% of ARDS in a cohort of 192 patients 
with neurologic disorders (hemorrhagic stroke, SAH, 
subdural hematoma, TBI and ischemic stroke)[29]. Other 
studies have shown an ARDS incidence of 19% to 35% 
in patients with a glasgow coma scale (GCS) score < 
9[12,29,30]. 

Patients with isolated TBI present 20%-25% of 
ARDS[31,32], and patients with SAH present 20%-38% 
of ARDS[3,7,33]. A recent retrospective study conducted 
from 1994 to 2008 in the United States of America 
reported an incidence of ARDS in admissions of patients 
with acute ischemic stroke of 4%[4]. Aspiration-related 
ARDS was diagnosed in 3.6% patients in another recent 
retrospective cohort study on 1495 patients with acute 
stroke[34].

In all cases, ARDS impacts the morbidity and 
mortality of patients with brain injuries[4,7,30,35,36]. Occur-
rence of ARDS after TBI leads to a 3-fold increase 
in hospital mortality[32]. ARDS is an independent risk 
factor for increased mortality and poor neurologic 
outcomes and is associated with longer ICU and 
hospital LOS[4,30]. Risk factors have been identified 
for the development of ARDS. First, the severity 
of the initial brain injury revealed by low Glasgow 
coma score (GCS 3-4) and initial cerebral computed 
tomography (CT) scan abnormalities (midline shift 
and global CT findings)[31,35,36]. Secondly, induced 
hypertension, administration of vasoactive drugs 
and a history of drug abuse have been reported as 
independent factors for ARDS in severe TBI[35]. Finally, 
general risk factors have been identified such as young 
age, male gender, ethnicity, history of chronic arterial 
hypertension, diabetes, chronic obstructive pulmonary 
disease, development of sepsis, cardiovascular, renal 
and hematological dysfunctions[4,32,37]. Recently, Mascia 
et al[30] described the ventilatory management of 82 
patients with severe TBI in a prospective multicenter 
observational study. Twenty-two percent of the patients 
developed ARDS, and these patients initially had 
higher tidal volumes (Vt) than patients without ARDS. 
The proportion of ARDS increased with Vt settings in 
a dose-response relationship. In the days preceding 
ARDS, 72% of patients with ARDS had a mean Vt ≥ 10 
mL/kg predicted body weight (PBW)[30]. The ventilator 
management of patients with severe TBI seems to be a 

key point in ARDS development and fits into the “double 
hit” model which will be detailed later in this review.

The ARDS distribution over the time is bimodal, with 
an early peak on day 2-3 after the onset of mechanical 
ventilation and a later peak on day 7-8[10], often related 
to pneumonia[15].

NPE
NPE has been described for more than 100 years[38]. 
It has been defined as a clinical entity with an acute 
onset of protein-rich lung edema after significant central 
nervous system injuries such as TBI, SAH, stroke, spinal 
cord injury, status epilepticus, meningitis or subdural 
hemorrhage and the exclusion of other plausible 
causes[39-42]. 

In a review on NPE cases reported from 1990 to 
2003, the most frequent neurologic injury was SAH 
(42.9%) and symptom onset was < 4 h after brain 
injury in 71.4% of patients. The mortality rate of NPE 
was high, nearing 10%, but patients who survived 
usually recover very quickly (< 72 h for 52.4%)[41]. 
Rogers et al[40] reported a large autopsy database of 
patients with head injuries who died at the scene or 
within 96 h of injury. The diagnosis of NPE included 
the presence of edema, congestion and hemorrhage 
associated with an increase in lung weight. The incidence 
of NPE in isolated TBI patients who died at the scene 
was 32%. It reached 50% for patients who died within 
96 h. An inverse correlation between cerebral perfusion 
pressure and the PaO2/FiO2 ratio was observed, even if 
the chest X-ray was considered normal[40]. The incidence 
of NPE in aneurysmal SAH varies from 2% to 25%[11,43]. 
The incidence seems to be higher in fatal SAH[44]. Risk 
factors identified are old age, delay to surgery, vertebral 
artery surgery and the severity of clinical and CT-
scan scores (Hun-Hess and Fisher grades)[11,45]. The 
occurrence of NPE after SAH is associated with poor 
outcomes and higher mortality[46,47]. 

NPE can be considered as a form of ARDS with the 
consensus definition. So, some authors proposed the 
following diagnostic criteria: (1) bilateral infiltrates; 
(2) PaO2/FiO2 ratio < 200; (3) no evidence of left atrial 
hypertension; (4) presence of severe central nervous 
system injury that has caused increased intracranial 
pressure (ICP); and (5) absence of other common 
causes of ARDS (e.g., aspiration, massive blood 
transfusion or sepsis)[48].

PATHOPHYSIOLOGY OF BRAIN-LUNG 
CROSSTALK
Brain to lung pathway
The pathophysiology of lung injuries after an acute brain 
injury is still in debate, and several theories have been 
proposed; recently, the “double hit” model has been 
described[1].

The sympathetic response to increased ICP has an 
important role. Some authors explained some parts 
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underlying direct pulmonary endothelial damage 
following brain injury[63]. This concept has been called 
“pulmonary venule adrenergic hypersensitivity”.

Pulmonary venule adrenergic hypersensitivity 
Some human cases with continuous hemodynamic 
monitoring reported NPE without hemodynamic insta-
bility[63,64]. So, the NPE may result, in part, from select 
pulmonary venoconstriction after massive sympathetic 
discharge following brain injury. Pulmonary vessels have 
α- and β-adrenergic receptors that may be activated 
leading to endothelial integrity changes[65]. Animal 
models demonstrate an increase in pulmonary vascular 
permeability and edema formation that could not be 
explained by hemodynamic changes alone[61,66]. In 
anesthetized dogs with raised ICP, McClellan et al[66] noted 
a 3-fold increase in pulmonary vascular permeability 
(exudative edema) with a moderate increase in 
pulmonary arterial pressures and cardiac output. 
However, when they reproduced these hemodynamic 
changes in dogs without intracranial hypertension, 
they did not report any changes in the protein leak 
index[66]. Peterson et al[67] administered α-adrenergic 
blockers to anesthetized sheep with progressive levels of 
intracranial hypertension. They reported the prevention 
of pulmonary edema formation with minor systemic 
arterial pressure effects supporting a direct adrenergic 
action on the pulmonary vascular bed[67]. 

Double hit model
Systemic inflammatory response appeared to play a 
major role in the development of pulmonary failure 
after acute brain injury. This pathophysiological process 
completes the blast injury theory[1,68]. Intracranial 
inflammatory response occurs after brain injury, and 
pro-inflammatory cytokines [interleukin 1 (IL-1), IL-6), 
tumor necrosis factor (TNF), IL-8] are produced locally 
in cerebral injured tissue[69]. Microglia and astrocytes are 
the principal source of inflammatory mediators. Then, 
alteration of the blood brain barrier (BBB) permeability 
allows their discharge into the systemic circulation with 
a transcranial gradient. This could be responsible for 
extracerebral dysfunctions[70-72]. This systemic production 
of inflammatory mediators constitutes an inflammatory 
environment: the “first hit”. Organ are therefore more 
susceptible to subsequent events, the “second hit”, 
such as mechanical ventilation, infections or surgical 
procedures, that are in normal condition harmless[1] 
(Figure 1). López-Aguilar et al[73] randomized rabbits to 
control or brain injured group with a 120 min mechanical 
ventilation with the same ventilator settings followed by 
aggressive mechanical ventilation. In the brain-injured 
group, lungs had more changes in the ultrafiltration 
coefficient, weight and alveolar hemorrhage[73]. Hypera-
ctivated neutrophils and leukocyte-endothelial cell 
interactions could probably have contributed to this 
pathological process[74]. Acute inflammatory response 
in both brain and lung after brain injury has been 

of NPE with neuro-cardiac and neuro-hemodynamic 
paradigms[48]. It has been well demonstrated that direct 
myocardial injury with Takotsubo’s cardiomyopathy, 
can participate to NPE[49-51]. Massive sympathetic 
discharge following brain injuries seems to induce direct 
myocyte injuries with wall motion abnormalities that 
follow a pattern of sympathetic nerve innervation[52]. 
The neuro-hemodynamic theory is defined by indirect 
ventricular compliance impairment resulting from 
rapid increases in systemic and pulmonary pressures. 
Indeed, translocation of blood flow from the highly 
resistant systemic circulation to the low resistance 
pulmonary circulation causes a hydrostatic form of 
pulmonary edema[53]. Animal models have shown an 
increase in left atrial, systemic and pulmonary pressures 
associated with NPE[54-56]. Although hydrostatic pressure 
and cardiac impairment most likely play a role in the 
pathogenesis of NPE, these theories do not explain the 
presence of red blood cells and protein in the alveolar 
fluid[57].

The blast theory
Theodore and Robin first defined the “blast theory” of 
NPE as an impairment of vascular permeability[58]. The 
transient increase of intravascular pressure, caused by 
an acute increase in ICP, damages the capillary-alveolar 
membrane. So, pulmonary endothelium injuries cause 
a leak of protein-rich plasma[58]. This theory includes 
the coexistence of high hydrostatic pressure and 
pulmonary endothelium injury. Some degree of capillary 
hypertension seems necessary for the occurrence of 
this pulmonary edema, and a pressure-dependent 
increase in permeability may be a common point in 
NPE[59,60]. Animal models have allowed the exploration 
of this theory. Maron et al[59] reported in canine isolated 
perfused lung lobes, a minimum of 70 torr of venous 
pressure is necessary to have protein permeability and 
to note a linear correlation between the increase in 
venous pressure and the osmotic reflection coefficient for 
total proteins[59]. Bosso et al[60] explored the relationship 
between the degree of pulmonary hypertension and 
post-mortem extravascular lung water content (EVLW) 
in rabbits with intracranial hypertension. The pulmonary 
arterial pressure had to exceed 25 torr to observe an 
increase in extravascular lung water[60]. In contrast, 
Bowers et al[61] determined the effects of intracranial 
hypertension in a sheep model by measuring the flow 
rate and protein content of lung lymph. They noted a 
constant increase in lung vascular permeability but with 
inconstant increase in pulmonary vascular pressure[61]. 
Few reports are available in humans because hemo-
dynamic monitoring at the time of the initial severe 
increase in ICP is rare. After this initial hemodynamic 
instability and massive sympathetic response, systemic 
and pulmonary pressures could return to normal 
values, whereas capillary-alveolar membrane damage 
persists[58,62]. Some authors observed no changes 
in systemic pressure, despite the occurrence of NPE 
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shown in human and animal. Experimental intracerebral 
hemorrhage injury is accompanied by an increase in 
intracellular adhesion molecule-1 and tissue factor in 
both brain and lung. Progressive neutrophil recruitment 
and morphological pulmonary damage such as disruption 
of alveolar structures has been observed[75]. Kalsotra 
et al[76] showed a large migration of macrophages and 
neutrophils in the major airways and alveolar spaces 
after brain injury in rats, with an increase of leukotriene 
B4 production within the lung[76]. Brain-dead human 
donors have significantly higher IL-8 levels in the 
broncho-alveolar lavage compared to healthy subjects 
or ventilated non brain-dead patients. Moreover, 
neutrophil infiltration in the lungs well correlates with 
levels of IL-8[77]. In a rat weight-drop model of TBI, 
ultrastructural damage in type II pneumocytes with 
important intracellular vacuoles and increased lipid 
peroxidation have been reported[78]. Recently, Heuer et 
al[79] studied pigs with acute intracranial hypertension. 
They reported higher scores of inflammation, edema 
and necrosis in the lung and other organs compared 
with control pigs without intracranial hypertension 
despite the absence of hypoperfusion and hypoxemia[79]. 
Previously, they compared 4 groups of pigs: control, 
with intracranial hypertension, with ARDS and with 
intracranial hypertension + ARDS. They analyzed lung 
CT-scans of each group. Intracranial hypertension alone 
increased lung density and exacerbated the increase 
in lung density in pigs with ARDS. Moreover, the gas-
tissue ratio of the lung was decreased by intracranial 
hypertension in normal and injured lungs with an 
increase of poorly aerated and atelectatic lung areas. 
These lung CT-scan injuries were exacerbated by 
intracranial hypertension[74]. 

The catecholamine storm, in conjunction with the 

cerebral and systemic inflammatory reaction (first hit) 
creates an inflammatory environment leading to an 
increased susceptibility of the lung to further injurious 
events (second hit). This pathway could be the bed for 
lung injuries in patients with acute cerebral damage. 
However, this inflammatory cascade does not occur only 
in one way: from the brain to the lung, but also from 
the lung to the brain.

Hypothalamo-pituitary adrenal axis 
Since several years, hypothalamo-pituitary adrenal axis 
[Hypothalamo-pituitary adrenal (HPA) axis] in brain 
injury has been explored in experimental and clinical 
studies and it could participate to lung dysfunction. 
Indeed, it has major effects on stress and systemic 
inflammatory response after trauma[80,81]. In the initial 
phase of trauma, inflammation mediators, such as 
IL-6, activate massively HAP axis to induce an initial 
hypercortisolism, main effector of compensatory anti-
inflammatory response syndrome[80,82,83]. This hyper-
cortisolism allow decreasing deleterious effects of 
inflammatory response, as its spread in organism and 
protect also other organs[81,84]. Moreover, endogenous 
glucocorticoids stimulate anti-infectious immunity[85] and 
HAP axis has major role in hemodynamic response and 
maintain of blood pressure[86,87]. 

After TBI, 25%-50% of patients present an acute 
secondary adrenal insufficiency[88-91]. These patients 
had worse outcomes and neurologic prognostic, 
lower arterial pressure, greater vasopressor use and 
higher mortality rate[88,89,92,93]. Moreover, trauma-
induced adrenal insufficiency is correlated with systemic 
inflammatory response syndrome[94]. Patients with 
adrenal insufficiency have longer high plasma IL-6 
levels than patients with normal adrenal response to 
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stress[89,95]. In multiple-injured patients, persistence 
of high IL-6 plasma level at day 7 is associated with 
higher mortality rate and incidence of pneumonia[96]. 
Persistence of systemic inflammatory response syndrome 
seems to be predictive of nosocomial infection in trauma 
patients[97,98]. The principal theory is that secondary 
adrenal insufficiency exposes patients to deleterious 
effects of uncontrolled systemic inflammation with 
immunodepression, nosocomial infections, especially 
VAP and overwhelming inflammatory response[90,98,99]. 
So this HAP axis dysfunction could participate to weaken 
the lung after TBI. 

A multicenter, randomized trial reported in 150 
intubated patients with severe trauma and corticos-
teroid insufficiency, a decrease risk of hospital-acquired 
pneumonia with stress-dose of hydrocortisone, particul-
arly in the sub-group of patients with severe TBI[100]. 
However, this result was not confirmed with recent trial 
in patients with severe TBI[101]. Stroke-induced immuno-
depression has been described with HAP axis-related 
abnormalities following acute ischemic stroke[102] and is 
probably implicated in high incidence of pneumonia[103].

Lung to brain pathway
A complex pathway throughout autonomic, neuro-
inflammatory, neuro-endocrine and immunologic sys-
tems has been described. This pathway is involved in 
normal physiology to contribute to maintain homeo-
stasis, but may lead to adverse effects[104]. Two com-
ponents may be involved in this lung to brain pathway: 
lung injuries themselves, such as ARDS, and mechanical 
ventilation.

Lung injuries due to inadequate ventilator settings, 
could result in an inflammatory response, initially 
located in the lung parenchyma. But this could extend 
to the systemic circulation and then to other organs 
and the brain. Multi-organ failure can occur as a result 
of pulmonary injuries[105]. The main cause of mortality 
in patients with ARDS is multiple organ failure and not 
hypoxemia or pulmonary dysfunction[106]. It has been 
well described that ARDS survivors have cognitive 
deterioration including memory, language and cognitive 
decline[107-109] and that patients with a long duration of 
mechanical ventilation present neurologic impairment 
with memory and cognitive alteration[110]. The hippo-
campus, which is involved in learning and memory 
processes, is particularly vulnerable to hypoxia[111]. 
However, ARDS can lead to hippocampal injuries 
with memory defects, regardless of the degree of 
hypoxia[112]. ARDS, in the same way than septic shock, 
can induce neuronal damages. Nguyen et al[113] studied 
170 patients with severe sepsis or septic shock in a 
prospective study. They found an increase in plasmatic 
marker of brain damages as S-100β protein and 
neuron-specific enolase (NSE) in respectively 42% and 
53% of these patients[114]. High S-100β protein levels 
were reported in patients with decreased consciousness 
and encephalopathy. In pig models of ARDS (lavage 

model), S-100β protein levels were significantly higher 
than in pigs with hypoxemia induced by lavage than 
when hypoxia was induced by reducing the inspired 
oxygen fraction[115]. Moreover, histopathologic changes 
in the hippocampus occurred only in pigs with ARDS. 
The authors suggested that brain damage could only 
be observed in ARDS independently to hypoxemia. 
S-100β protein and NSE might represent cerebral 
injuries and BBB alterations in patients with ARDS[113]. 
Permeability of both the blood-brain and lung barriers 
can be altered by pathophysiologic situations and allows 
communication between the brain and the lung[116]. 

Lung injuries may aggravate the sensitivity of the 
brain to acute injuries. In their previous study, Heuer 
et al[74] reported brain damage in pigs with ARDS alone 
and reciprocal synergistic effects between the lung and 
brain with worsening of brain damage in the group 
with ARDS + intracranial hypertension[74]. Indeed, 
cerebral tissue oxygenation (PtiO2) and brain tissue 
density (reflecting cerebral edema) decreased in all 
animals (intracranial hypertension, ARDS and ARDS + 
intracranial hypertension) compared to the control group. 
NSE and S-100β protein levels increased significantly 
in all animals compared to the control group, but the 
most marked increase was in the group with ARDS, as 
for IL-1β and IL-6. So ARDS could exacerbate cerebral 
damage in acute cerebral hypertension. Hegeman 
et al[105] described, after injurious stress and strain in 
the lung, inflammation of the alveoli, recruitment of 
neutrophils and production of cytokines. Endothelial 
cells, activated by cytokines, secrete chemokines and 
express adhesion molecules on their surface, leading to 
enhanced leukocyte adhesiveness and transmigration 
of active immune cells across the endothelium[105]. This 
local inflammation can then spread into the systemic 
circulation. Lung inflammation could spread to the 
cerebral system through humoral, cellular and neural 
pathways[116].

Beyond pulmonary injuries, mechanical ventilation 
strategies, used daily in the ICU, could impair regional 
blood flow and brain oxygenation. Indeed, Bickenbach 
et al[117] studied PtiO2 and cerebral metabolism in a 
porcine model of ARDS over 8 h. Pigs were randomized 
in 2 groups: low tidal (LT) volume (6 mL/kg) and 
high tidal (HT) volume (12 mL/kg)[117]. No differences 
between the two groups were found in terms of PaO2, 
PaCO2 and pH. ARDS induced a significant decrease in 
PtiO2 in both groups, but the PtiO2 increased significantly 
at 4 and 8 h in the LT group compared to the HT group. 
Lactates in microdialysis were higher in the HT group 
at 2, 4 and 8 h. After 2 h, the plasmatic S-100 protein 
level decreased in the LT group, and IL-6 increased 
in the HT group. Therefore, LT volume ventilation 
improved cerebral tissue oxygenation compared to 
HT volume ventilation in ARDS. HT volume ventilation 
could increase the inflammatory response and could 
impair cerebral oxygenation and metabolism. Quilez et 
al[118] studied the effect of Vt on activation in areas of 
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the brain in a rat model of MV with c-fos expression, 
a marker of neuronal activation. They randomized 3 
groups of healthy-brain rats: basal (not submitted 
to mechanical ventilation), low Vt (8 mL/kg and 
positive end-expiratory pressure (PEEP) of 0 cmH2O) 
and high Vt (30 mL/kg and PEEP of 0 cmH2O). The 
inflammatory response (TNF-α) and c-fos expression in 
the retrosplenial cortex and thalamus were higher in the 
high Vt group than in the low Vt group[118]. So, setting of 
mechanical ventilation can directly affect the brain, most 
likely via inflammatory mediators. These data highlight 
the importance of the ventilator setting in patients 
undergoing mechanical ventilation and particularly in 
brain injured patients. 

THE CONFLICT BETWEEN THE LUNG 
AND THE BRAIN
Mechanical ventilation allows the supply of oxygen and 
the removal of carbon dioxide (CO2) with tight control 
of the PaO2 and PaCO2, the goal is to prevent secondary 
cerebral ischemia and increase neurologic outcomes. 

To prevent or limit Ventilation-Induced Lung Injury 
(VILI) the concept of protective ventilation has been 
developed using with low Vt, plateau pressure < 30 
cmH2O and adequate PEEP levels[119]. VILI has been 
described as the results of 3 mechanisms: volotrauma, 
atelectrauma and biotrauma[120,121]. Volotrauma results 
from overdistension of the lung parenchyma with a 
high Vt. Atelectrauma results from the recruitment-
derecruitment of collapsed alveoli due to an inadequate 
PEEP level. Biotrauma comes from a local inflammatory 
process due to overdistending tidal volumes and 
repetitive opening and closing lung units. However, 
most of the studies that have enhanced ventilation 
strategy in ARDS patients have excluded brain-injured 
patients[122-124]. The concept of “open the lung and 
keep it open” for ARDS with a low Vt, high PEEP and 
recruitment maneuvers, with permissive hypercapnia 
could have potential deleterious consequences on the 
brain, and intensivists are often fearful to use some parts 
of protective ventilation in patients with brain injury.

Tidal volume
The use of low Vt decreases systemic and pulmonary 
inflammatory responses in patients with ARDS[124-126] but 
also in patients with inflammatory processes such as 
aspiration, sepsis, pneumonia or trauma[127,128]. Mascia 
et al[30] reported that the proportion of ARDS in patients 
with severe TBI increased with higher initial tidal 
volume (Vt) settings in a dose-response relationship[30]. 
The ventilator management of patients with severe 
TBI seems to be a key point of ARDS development. As 
we described before high Vt could affect the brain and 
could be an injurious event (second hit) in the lung that 
is particularly sensitive due to brain injury. There is no 
prospective study regarding the use of low Vt in TBI 
patients. However, recently, Krebs et al[129] reported in 

rats with massive brain damage that a low Vt (6 mL/kg) 
with open lung PEEP (set according to the minimal static 
elastance of the respiratory system) compared to a high 
Vt (12 mL/kg) and low PEEP improved oxygenation 
reduced lung damage according to histology, genome 
analysis and real-time quantitative polymerase chain 
reaction with a decrease of IL-6[129].

The protective mechanical ventilation for ARDS 
includes low Vt (6 mL/kg PBW) and then low minute 
ventilation, with consequently permissive hypercap-
nia. Cerebral effects of hypercapnia are well known 
(vasodilation) and should be avoided in case of intra-
cranial hypertension[130]. Objectives for the manage-
ment of severe TBI are maintaining the PaCO2 between 
35 to 40 mmHg[131] but this goal is sometimes not 
possible when using protective mechanical ventilation. 
Individualized management with neuromonitoring could 
allow us, in specific difficult cases, to use higher values 
of PaCO2 and supervise its impact on brain homeostasis. 
A small retrospective study in 12 patients with SAH and 
ARDS reported no increase in ICP with lung protective 
ventilation and hypercapnia (50-60 mmHg)[132]. Recently, 
Westermaier et al[133] performed a gradual increase of 
PaCO2 to 40, 50 and 60 mmHg in patients with poor-
grade SAH. Cerebral blood flow and brain tissue oxygen 
saturation (StiO2) reacted with sustained elevation 
without an increase in intracranial pressure[133].

PEEP
Application of PEEP is part of the protective mechanical 
ventilation to recruit collapsed alveoli, improve PaO2 
and lung compliance[134]. However, the use of PEEP 
may alter the cerebral blood flow by CO2-mediated and 
hemodynamic repercussion[135,136]. Therefore, Pelosi et 
al[13] reported in a prospective observational multicenter 
study that more than 80% of neurologic patients in the 
ICU were ventilated with a PEEP ≤ 5 cmH2O[13]. PEEP is 
necessary to prevent collapse and/or recruit collapsed 
alveoli and thereby reduce atelectasis, especially when 
low Vt is used. Its application is also a key point of 
protective ventilation. 

Some studies reported the effects of PEEP on 
cerebral hemodynamics. Mascia et al[137] randomly 
applied PEEP at 5 and 10 cmH2O in 12 brain-injured 
patients with ARDS. Patients who were responders had 
decreased elastance and increased PaO2, while patients 
who were non-responders had an increase of elastance 
and PaCO2. Intracranial pressure and jugular saturation 
were constant in recruiters but increased in non-
recruiters suggesting deleterious effects in this group[137]. 
Therefore, the use of PEEP in brain-injured patients 
seems to be safe when patients are responders to the 
PEEP level (i.e., not creating overdistension, increase in 
dead space and in PaCO2)[138]. When PEEP induces lung 
recruitment, intracranial pressure and cerebral perfusion 
do not change, and PaO2 increases[1]. PEEP could be 
safety used and must probably be used in brain-injured 
patients if the optimal PEEP is searched and adapted 
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individually, as for patients with ARDS and a healthy 
brain.

Muench et al[139] examined the influence of PEEP 
levels on intracranial pressure, PtiO2, cerebral blood 
flow and systemic hemodynamics in healthy pigs 
and patients with SAH[139]. High levels of PEEP did not 
influence cerebral parameters in pigs. In patients with 
SAH, changes in the regional cerebral blood flow were 
reported, resulting from arterial pressure changes 
and altered cerebral autoregulation. Normalization of 
systemic arterial pressure restored cerebral blood flow. 
Recently, Schramm et al[140] measured cerebral blood 
flow in 20 patients with ARDS. An increase in PEEP from 
9 to 14 cmH2O did not influence blood flow velocity. 
Caricato et al[141] examined the effect of respiratory 
system compliance on the intracranial effects of PEEP. 
No impact on cerebral and systemic hemodynamics 
were reported with 0, 5, 8 or 12 cmH2O of PEEP[141]. The 
use of PEEP appears to be safe, if arterial blood pressure 
is maintained. Euvolemia is probably a condition that 
can minimize the effect of PEEP on arterial blood 
pressure[139,142,143].

Moreover, some authors recommend to optimize 
elevation of the head to enhance cerebro-venous 
drainage through the vertebral venous system, not 
subjected to intrathoracic pressure and to maintain 
PEEP lower than ICP to limit interference with venous 
outflow[1,144,145].

An accurate monitoring of macrohemodynamic, 
respiratory system and cerebral parameters is needed 
to optimize the use of PEEP in brain-injured patients.

Recruitment maneuvers 
Several studies in patients with ARDS recommended 
recruitment maneuvers (RM) to recruit collapsed 
pulmonary alveoli and open the lung followed by appro-
priate PEEP to maintain recruitment of the lung leading 
to improvement of oxygenation and compliance of 
the respiratory system[146,147]. However, for the same 
reasons as PEEP, RM could decrease arterial blood 
pressure and increase ICP by interfering with venous 
blood return and causing an increase in intrathoracic 
pressure[137]. Bein et al[148] reported in 11 patients 
with severe cerebral lesions (traumatic and non-
traumatic) and ARDS, the effects of RM, which included 
sustaining 60 cmH2O for 30 s[148]. They recorded an 
increase in ICP, a decrease in mean arterial pressure, 
cerebral perfusion pressure (< 65 mmHg) and jugular 
oxygen saturation (< 55%) at the end of the RM. The 
improvement of arterial oxygenation was reported just 
after the RM but was not maintained after. Therefore, 
the authors did not recommend this maneuver. The 
impact on cerebral blood flow and intracranial pressure 
depends on the hemodynamic tolerance of RM. Re-
aeration of lung units depends not only on the inflating 
pressure but also on the duration of sustained pressure 
(inflating pressure-time product)[149-151]. Constantin 
et al[146] compared 2 RM: continuous airway pressure 

(CPAP) with 40 cmH2O for 40 s and extended sigh 
(eSigh) with PEEP maintained at 10 cmH2O above the 
lower inflection point for 15 min[146]. They reported that 
only eSigh increased recruited volume and that eSigh 
was hemodynamically better tolerated than CPAP and 
induced a greater and more prolonged increase in 
arterial oxygenation. Moreover, response to RM seems 
to depend on the lung morphology. Patients with diffuse 
loss of aeration are more responsive than patients with 
a focal loss of aeration[152]. These parameters have to 
be considered before using RM. Therefore, eSigh may 
be better adapted to patients with severe brain injuries 
due to its better hemodynamic tolerance. Nemer et 
al[153] compared 2 RM: CPAP at 35 cmH2O for 40 s and 
PEEP of 15 cmH2O and pressure control above PEEP of 
35 cmH2O for 2 min in patients with SAH and ARDS[153]. 
CPAP recruitment leads to higher intracranial pressure (> 
20 mmHg) and lower cerebral perfusion pressure (< 65 
mmHg). In another study, 28 RMs were performed in 
9 patients with ARDS and cerebral injury in a stepwise 
with 3 cmH2O increments and decrements of PEEP. 
No significant differences were found for mean arterial 
pressure, intracranial pressure and cerebral perfusion 
pressure after RMs compared with baseline values[154]. 
Therefore the use of RM may be safe and possible with 
strict monitoring of systemic and cerebral parameters 
and use of progressive and soft maneuvers. 

Wolf et al[155] evaluated the feasibility of the “open 
lung approach” with low tidal volume, a high level of 
PEEP and RM in 13 patients with acute brain injury and 
ARDS[155]. They reported a decrease of FiO2 from 0.85 
to 0.55, 24 h after the first RM with an increase of PaO2/ 
FiO2 from 142 to 257. In parallel, intracranial pressure, 
PaCO2 and PtiO2 remained stable. The authors concluded 
that protective ventilation is safe in neurosurgical 
patients and improves oxygenation without side effects. 

Prone position
Prone position has been used for 30 years in patients 
with ARDS. It has been proven to increase oxygenation 
with different mechanisms such as net recruitment, 
more homogeneous distribution of alveolar inflation 
and protection of VILI. Benefits in terms of outcomes 
and mortality have been shown in severely hypoxemic 
ARDS if a sufficient duration of prone position is 
used[156-158]. This respiratory management has been 
sparsely studied in patients with cerebral injuries. Some 
authors reported cases or series of prone position[159-161]. 
Reinprecht et al[159] analyzed the effect of this position in 
16 patients with severe SAH and ARDS. They reported 
a significant increase in PaO2 and PtiO2 with significant, 
but not deleterious, increases in intracranial pressure 
and decreases in cerebral perfusion pressure[159]. A case 
report of a patient with severe traumatic chest and 
brain injuries showed improvement of oxygenation with 
a moderate, but very transient, increase in intracranial 
pressure after 20 h of prone position[161].

The Table 1 summarizes the effects of different parts 
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of protective ventilation on brain hemodynamic and 
metabolism.

Alternative methods for tight CO2 control and 
refractory hypoxia such as high frequency oscillatory 
ventilation and extracorporeal lung support techniques 
(percutaneous extracorporeal lung assist and extracor-
poreal membrane oxygenation) have been poorly 

evaluated in patients with head injuries[145].

CLINICAL MANAGEMENT OF LUNG 
INJURIES IN BRAIN-INJURED PATIENTS
In clinical practice, there is actually no recommendation 
for ventilator strategy of brain-injured patients except 
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CBF ICP CPP PtiO2 SjO2 Lactates 
(microdialysis)

  High Vt
  In pigs with ARDS[117]

↓ ↑

  Low Vt
  In pigs with ARDS[117]

↑ ↓

  Permissive hypercapnia 
  (PaCO2: 40-60 mmHg)
  in patients with SAH[132,133]

↑ = = ↑

  PEEP =
if MAP is 

maintained[140]

=
if responder patient[137]

=
if responder patient[137]

↑
If non-responder patient[137]

↓
If non-responder patient[137]

  RM ↑
If MAP decreased[148]

↓
If MAP decreased[148]

↓
If MAP decreased[148]

  Open lung approach
  (low Vt + high PEEP + RM)
  in patients with acute brain
  injury and ARDS[155]

= = =

Table 1  Effects of protective ventilation on brain hemodynamic and metabolism

Brain-injured patient

Intensive care unit

Prevention of second hit: 
Vt < 10 mL/kg PBW

Protective ventilation?

Treatment of intracranial 
hypertension

NPE Criteria

Protective ventilation ?
α-blockers ?

Probabilistic antibiotherapy 
Protective ventilation with accurate 

monitoring

ARDS criteriaVAP criteria

Respiratory failure
Hypoxia

Cardiac failure treatment:
inotrope

Cardiac function evaluation

Prevention of VAP

Figure 2  Algorithm approach for pulmonary dysfunction in brain-injured patient. ARDS: Acute respiratory distress syndrome; VAP: Ventilator-associated 
pneumonia; Vt: Tidal volume; PBW: Predictive body weight; NPE: Neurogenic pulmonary edema.

Responder patient to PEEP: Decrease in elastance and increased PaO2; Non-responder patient to PEEP: Increase in elastance and PaCO2. CBF: Cerebral 
blood flow; ICP: Intracranial pressure; CPP: Cerebral perfusion pressure; PtiO2: Cerebral tissue oxygenation; SjO2: Jugular vein oxygen saturation; Vt: Tidal 
volume; PEEP: Positive end-expiratory pressure; RM: Recruitment maneuvers; MAP: Mean arterial pressure; ARDS: Acute respiratory distress syndrome.
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for PaO2 and PaCO2 targets[131]. 
Treatment of VAP is not specific for patients with 

cerebral injuries but it is important to note that preven-
tion seems to be a key point. Treatment of VAP has 
to be started quickly as VAP is associated with higher 
mortality rate and poor neurologic outcome. It may 
follow the guidelines for hospital-acquired and VAP[162]. 
Risk factors of VAP in brain-injured patients are 
numerous and prophylactic measures have to focus 
on these, including oral care[23,103,163]. The high rate of 
VAP in brain-injured patients is, in part, explained by 
long duration of mechanical ventilation[164]. So Roquilly 
et al[165] reported in a before/after evaluation of an 
extubation readiness bundle, a decrease of duration of 
mechanical ventilation in patients with brain injury[165]. 
The bundle components were 1/protective ventilation 
(Vt: 6-8 mL/kg PBW, PEEP > 3 cmH2O) 2/early enteral 
nutrition (initiation day 1 and 25 kCal/kg per day before 
day 3) 3/optimization of the probabilistic antibiotherapy 
for VAP and 4/a systematic approach of extubation 
(ventilator weaning and removal of tube if Glasgow 
Coma Scale ≥ 10 and cough). Despite a compliance 
with bundle elements of 21% in the intervention phase, 
they observed a reduction of duration of mechanical 
ventilation, rate of VAP and rate of unplanned extubation 
compared to the control observational phase. In acute 
stroke, the major measure is to avoid per os nutrition 
until swallowing is evaluated and validated[166-168]. No 
difference has been found between percutaneous 
gastrostomy or nasal feeding tube in terms of rate of 
pneumonia but percutaneous gastrostomy tube seems 
to be safer and more effective for feeding[169]. For TBI, in 
front of traumatic-induced adrenal insufficiency, the use 
of stress-dose steroids during initial management are 
still debated for prevention of VAP but literature doesn’t 
allow us to provide an answer[101].

Concerning NPE, few studies have reported specific 
treatment in humans. Some animal studies have focused 
on α-blockers treatment to limit massive sympathetic 
discharge after brain injuries[48,170]. Two cases of human 
NPE were published about use of adrenergic blocker 
(phentolamine or chlorpromazine) and successful 
treatment with improvement of hemodynamic instability 
and oxygenation[171,172]. Further studies are needed to 
explore this way. But the key point of NPE management 
is to treat the underlying cerebral injuries to decrease 
ICP, mitigate the sympathetic discharge and improve 
oxygenation[41,48]. 

Concerning ARDS, protective ventilation has been 
largely discussed in the previous section. An accurate 
monitoring of macrohemodynamic, respiratory and 
cerebral parameters are needed to optimize the mana-
gement. 

When a brain-injured patient presents hypoxia, all 
diagnoses evoked in this review could be discussed. The 
Figure 2 summarizes different steps of management 
and prevention of respiratory failure in brain-injured 
patient. The response of the cardiopulmonary system 
varies widely among patients with brain injury (direct 

myocardial injury, non-cardiogenic mechanisms, etc.). 
So first of all, it is important to evaluate cardiac function 
to adapt our management and initiate treatment of 
cardiogenic failure if necessary. Moreover, normalization 
of ICP is an important step to decrease sympathetic 
discharge and its consequences. Criteria of VAP, ARDS 
and NPE have to be researched and for some patients 
in which difference between NPE and ARDS could be 
difficult, measurement of serum catecholamines may 
be helpful[48]. 

CONCLUSION
Brain and lung strongly interact via complex pathways. 
In cases of brain injury, therapeutic strategies should 
protect the brain but also the lung to avoid worsening 
of both brain and lung dysfunction. If correctly applied, 
mechanical ventilation could have beneficial effect 
on brain oxygenation, even if PEEP and recruitment 
maneuvers are used. Experimental and clinical studies 
are needed to explore pathophysiological processes 
and evaluate optimal ventilator setting in brain-
injured patients with lung injuries. A strict monitoring 
of systemic, respiratory and cerebral parameters is 
probably required to optimize the management of these 
patients. 
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