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Abstract
Uropathogenic Escherichia coli  (UPEC) is the leading 
cause of urinary tract infections in women, causing 
significant morbidity and mortality in this population. 
Adherence to host epithelial cells is a pivotal step in 
the pathogenesis of UPEC. One of the most important 
virulence factors involved in mediating this attachment 
is the type 1 pilus (type 1 fimbria) encoded by a set 
of fim  genes arranged in an operon. The expression 
of type 1 pili is controlled by a phenomenon known as 
phase variation, which reversibly switches between the 
expression of type 1 pili (Phase-ON) and loss of expres-
sion (Phase-OFF). Phase-ON cells have the promoter 
for the fimA structural gene on an invertible DNA ele-
ment called fimS, which lines up to allow transcription, 
whereas transcription of the structural gene is silenced 
in Phase-OFF cells. The orientation of the fimS invert-
ible element is controlled by two site-specific recombi-
nases, FimB and FimE. Environmental conditions cause 
transcriptional and post-transcriptional changes in UPEC 
cells that affect the level of regulatory proteins, which 
in turn play vital roles in modulating this phase switch-
ing ability. The role of fim  gene regulation in UPEC 
pathogenesis will be discussed.
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ROLE OF TYPE 1 PILI IN 
Uropathogenic Escherichia coli 
PATHOGENESIS
Uropathogenic Escherichia coli (UPEC) is the number one 
cause of  urinary tract infections in the United States[1,2]. 
Approximately 6-7 million people are afflicted with a 
urinary tract infection each year in the United States at a 
cost of  $2.5 billion per year. Urinary tract infections are 
modeled as ascending infections. In women, the UPEC 
bacteria move from the rectum to the vaginal surface to 
the urinary tract. Although UPEC can express several 
different varieties of  pili, type 1 pili may be the most im-
portant in the human lower urinary tract. Agglutination 
of  guinea pig erythrocytes in the absence of  mannose 
is an important characteristic of  type 1 pili[3,4]. Besides 
Escherichia coli (E. coli), type 1 pili are found on several 
other species within the Enterobacteriaceae family[5]. The 
role of  type 1 piliated UPEC cells in the pathogenesis of  
human urinary tract infections was first demonstrated in 
the early 1980s and has continued in more recent stud-
ies[6-12]. Moreover, these human patient studies have been 
supported by several murine urinary tract infection model 
studies that have shown the importance of  type 1 pili in 
UPEC pathogenesis[11,13-15]. This culminated in a study by 
Connell et al[16], who compared a fimA mutant strain to 
the wild-type parent to show the critical role of  type 1 
pili in UPEC colonization of  the lower urinary tract.

REVIEW

17 December 30, 2011|Volume 1|Issue 1|WJCID|www.wjgnet.com



Schwan WR. fim regulation in UPEC

GENETIC ORGANIZATION OF THE UPEC 
fim OPERON
Type 1 pili are produced from a contiguous DNA seg-
ment, labeled the fim operon, which encodes the genes 
necessary for their synthesis, assembly, and regulation. 
The fim cluster was mapped to the 98 min on the E. coli 
chromosome[17]. Nine genes have now been identified 
within the gene cluster (Figure 1).

The pilin structural gene, fimA, encodes a 158-159 
amino acid polypeptide with an approximate molecular 
weight of  17 kDa[18,19]. Immediately upstream of  the fimA 
gene is a 314-bp invertible DNA element called fimS, 
which contains the promoter for fimA with 9 bp inverted 
repeats (IRs) flanking this segment of  DNA (5’ TT-
GGGGCCA), labeled IRL and IRR (Figure 1)[20,21]. The 
fimA promoter sequence undergoes site-specific recom-
bination, positioning the invertible element in either the 
Phase-ON (piliated phenotype) or Phase-OFF (nonpili-
ated phenotype) orientation. This switching phenomenon 
is known as phase variation. Two genes upstream of  the 
fimS invertible element, fimB and fimE, encode proteins 
thought to be involved in positioning the fimS DNA and 
will be discussed further below.

The fimI gene was the last gene within the fim operon 
to be characterized[22]. FimI’s function is not known. 
Within the fim gene cluster, there are two additional genes 
involved in transport and assembly of  type 1 pili: fimC 
and fimD. FimC is a periplasmic chaperone protein[23-25] 

that helps translocate the fimbrial proteins through the 
periplasm until the FimC-Fim protein complex reaches 
the FimD usher. FimD is an integral outer membrane 
protein that serves as an usher, allowing surface localiza-
tion of  the nascently forming type 1 pilus[26-28].

Although the FimA monomers comprise the bulk of  
the type 1 pilus structure, FimA does not mediate bind-
ing to the mannose containing receptor. An adhesin, 
encoded by the fimH gene, is responsible for this bind-
ing[29-33]. The two remaining genes in the fim operon are 
fimF and fimG. FimF and FimG are associated with FimH 
adhesin, forming a fibrillum structure that anchors the 
adhesin to the pilus shaft and controls the length of  the 
type 1 pilus[29,30,34-37]. 

PHASE VARIATION’S ROLE IN TYPE 1 
PILUS EXPRESSION
Phase variation is a reversible process, which, in the case 
of  UPEC, leads to an oscillation between Phase-ON pili-
ated cells and Phase-OFF nonpiliated cells. Using fimA-
lacZ operon fusions, rates of  10-3 to 10-4/cell/generation 
were originally calculated for type 1 pilus expression[38,39]. 
Phase variation results in agar and, particularly, broth 
cultures of  UPEC to comprise a mixture of  piliated and 
nonpiliated cells.

The site-specific recombination that allows phase 
variation to occur requires two trans-acting factors lo-
cated proximally upstream of  fimS, encoded by fimB and 

fimE[40]. Sequence analysis of  fimB and fimE indicated 
that the predicted proteins were highly basic, a property 
of  many DNA-binding proteins[41]. The predicted amino 
acid sequences show homology with the DNA binding 
domain of  integrase[42] and contain a tetrad of  conserved 
amino acids required for the recombinase activity[43-45]. 
Furthermore, FimB and FimE have 48% amino acid ho-
mology with each other[40]. Klemm[40] originally suggested 
that FimB and FimE might act independently to switch 
the fimS element unidirectionally, either Phase-ON to 
Phase-OFF or vice versa, via the two 9 bp invertible repeat 
elements, IRL and IRR. FimB can bind to the fimS ele-
ment to either switch from Phase-ON to Phase-OFF or 
vice versa, with a slight bias towards the Phase-OFF over 
the Phase-ON orientation (Figure 2)[46-56]. By contrast, 
FimE binds to switch fimS from Phase-ON to Phase-
OFF. In rare cases, FimE has been shown to initiate a 
Phase-OFF to Phase-ON switch[57] or when specific ami-
no acid substitutions are made[45]. Orientation of  the fimS 
element in the Phase-OFF position leads to the produc-
tion of  antisense transcripts from the fimA promoter[49,58].

FimB-mediated recombination occurs at the rate of  
10-3 to 10-4 per cell per generation that was originally de-
scribed; however, FimE-mediated switching occurs more 
often at a frequency of  0.3 per cell per generation[52,59]. 
Base substitutions within fimS demonstrated that FimB 
and FimE used the same DNA cleavage and religation 
sites within IRL and IRR, allowing more DNA base 
variations for FimB than FimE[60]. When fimB and fimE 
were provided in trans on plasmids, they affected pilin ex-
pression, suggesting that the ratio of  FimB and FimE is 
important. 

The promoters for both fimB and fimE have been 
mapped[61-63]. For the fimB gene, the number of  promot-
ers varies between one and three. Promoters P1 and P2, 
which were mapped by Schwan et al[63] in two UPEC 
strains (Figure 1), were confirmed by another group[61]. 
A potential third fimB promoter was also identified by 
Schwan et al[63], approximately 650 bp upstream of  the 
fimB P2 promoter, and around 840 bp upstream of  the 
translational start site of  fimB. This third fimB promoter 
has not been confirmed by other groups and could be an 
anomaly. It could also be a third fimB promoter connect-
ed to sialic acid regulation of  fimB (see below). Certainly, 
strain differences could explain the different numbers of  
fimB promoters. Only one promoter has been identified 
for the fimE gene[62]. 

OTHER CO-FACTOR PROTEINS THAT 
AFFECT PHASE SWITCHING
Besides the fim gene cluster, other genes and their gene 
products contribute to the expression of  type 1 pili. Early 
work mapped a gene, pilG, at 27 min on the E. coli chro-
mosome that affected inversion of  the fimS region[21]. A 
mutation of  the pilG gene increased the inversion of  the 
fimS region by up to 100-fold as measured with a fimA-
lac fusion[21]. The pilG locus was shown to be allelic to 
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bglY[64], drdX[65], and osmZ[66]. Later, it was determined that 
the pilG and osmZ genes were in fact alleles of  the hns 
gene[66-68]. The hns gene encodes the H-NS global regula-
tory protein[69]. 

H-NS possibly controls the phase variation of  the 
fimS region both directly and indirectly[61,62,70-74]. For a po-
tential direct effect, H-NS binds to sequences adjacent to 
the fimS invertible element[72,75].

Indirectly, H-NS represses the transcription of  both 
fimB and fimE[62,71,74]. H-NS binds, with a high degree 
of  specificity, to both the P1 and P2 promoter sites for 
fimB[71,72]. The DNA-binding regulatory protein also binds 
to the fimE promoter[71]. Moreover, H-NS also represses 
lrp transcription[76], which would in turn affect the phase 
switching of  the fimS element, as described below. Thus, 
transcriptional repression of  the fimB and fimE site-
specific recombinase genes would indirectly influence the 
position of  the fimS element, which would indirectly af-
fect phase variation.

Besides H-NS, integration host factor (IHF) and 

leucine-responsive protein (Lrp) are additional co-factors 
that affect type 1 pilus phase variation. Both proteins 
cause sharp bends in the DNA structure, introducing 
hairpin loops that facilitate recombination events within 
UPEC. IHF is a two-component protein consisting of  
IHF encoded by ihfA[77] and IHF encoded by ihfB[78]. 
Both Eisenstein et al[42] and Dorman et al[43] showed that 
IHF plays a role in type 1 pilus switching. Mutations in 
either ihfA or ihfB locked the fimS region in either the 
Phase-OFF or Phase-ON orientation[79]. In both studies, 
an IHF binding site (IHF Ⅱ) proximal to IRR was identi-
fied (Figure 3). In addition, an IHF binding site was also 
identified between IRL and the 3’ end of  fimE (IHF Ⅰ)[80]. 
A mutational analysis of  this IHF Ⅰ site demonstrated 
that FimB-mediated recombination was more adversely 
affected, suggesting a directional bias for FimB recombi-
nation[73,75,79,81,82]. 

The leucine-responsive regulatory protein (Lrp) is 
another protein that has been shown to affect the fimS 
region. Lrp is a global regulator of  genes involved in 
metabolic functions within E. coli, including pili synthe-
sis[83]. Mutations of  the lrp gene cause a lower frequency 
of  recombination of  the fimS element[80,84]. Lrp binds 
to three distinct sites within the fimS element that are 
closer to the IRL site. When the high affinity sites 1 and 
2 are mutated, the recombination frequency declines[79,85]. 
Lrp binding to the low affinity site 3 inhibits recombina-
tion[86,87]. Lrp and IHF can bend the fimS DNA; therefore, 
they would allow the proper positioning of  IRL and IRR 
that facilitates recombination[80,87]. The levels of  specific 
amino acids will also affect Lrp binding to the fimS ele-
ment and subsequently phase variation[86]. Lrp binding 
causes an orientational bias to the fimS element. When 
neither Lrp nor IHF are present at sufficient levels, H-NS 
will bind and maintain the Phase-OFF orientation[88]. 
Although Lrp binds to multiple sites within the fimS ele-
ment, Lrp directly regulates neither fimB nor fimE. 
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Another protein that regulates type 1 pilus expression 
is the LysR-type regulator, LrhA[89]. LrhA was first identi-
fied to be associated with RpoS degradation[90]. Microar-
ray analysis of  mRNA populations from an lrhA mutant 
vs wild-type bacteria revealed increased expression of  the 
fimAICDFGH operon. Purified LrhA protein bound to 
the promoter regions of  both fimB and fimE; however, 
there was higher affinity for the fimE promoter. The use 
of  fimB- or fimE-lacZ translational fusions indicated there 
was a greater effect with the fimE-lacZ fusion. Thus, LrhA 
appears to activate fimE, which would repress type 1 pilus 
expression.

Three other proteins have unexplained effects on type 
1 pilus expression in E. coli: OmpX, IbeA, and IbeT. In-
activation of  ompX, encoding an outer membrane protein 
OmpX, caused an increased production of  FimA[91]. A 
disruption caused by the loss of  OmpX would change 
the cell surface, which would affect cell-surface interac-
tions. It is likely that OmpX acts indirectly to regulate 
type 1 pilus expression. A deletion of  the ibeA gene 
caused diminished type 1 pilus expression, as well as low-
er transcription of  fimB and fimE, whereas an ibeT mutant 
was shown to have the fimS element preferentially in the 
Phase-OFF orientation[92]. How each of  these proteins 
works to regulate the fim genes has not been determined.

The regulatory alarmone, ppGpp, has been connected 
to the regulation of  multiple genes in E. coli, including the 
fim operon. ppGpp-deficient strains exhibited diminished 
type 1 pili expression compared to the wild-type strain[93]. 
Furthermore, primer-extension analysis indicated that 
ppGpp activated the fimB P2 promoter. A follow through 
study demonstrated that DskA, a cofactor required for 
ppGpp-mediated positive regulation of  several amino 
acid biosynthesis promoters[94], also activated transcrip-
tion from the fimB P2 promoter[95].

Besides FimB and FimE, there are four other site-
specific recombinases that could affect phase switching 

of  the fimS element: HbiF, IpuA, IpuB, and IpbA. The 
HbiF-mediated inversion of  the fimS element occurs 
primarily from Phase-OFF to Phase-ON[96]. Constitutive 
expression of  HbiF locked the fimS DNA in the Phase-
ON position. The three other site-specific recombinases 
(IpuA, IpuB, and IpbA) were discovered by sequence 
analysis of  the UPEC strain CFT073 genome because 
of  their high homology with the fimB and fimE genes[97]. 
Both IpuA and IbpA bind to the fimS element and medi-
ate phase switching. IpuA functions like FimB, allowing 
a Phase-OFF to Phase-ON switch as well as Phase-ON 
to Phase-OFF switching, whereas IpbA can switch fimS 
from Phase-OFF to Phase-ON. It is not clear under what 
environmental growth conditions these alternative site-
specific recombinases affect the fimS element positioning.

Also linked to the fimS genetic switch are Rho and 
LeuX. Transcriptional termination of  fimE was deter-
mined to be Rho-dependent, based on the use of  a rho 
mutant or by treatment with bicyclomycin, an antibiotic 
that interferes with Rho[98,99]. Thus, when the phase 
switch is in the Phase-OFF position, there is a Rho-de-
pendent termination of  the fimE sense transcript, leading 
to a truncated, unstable mRNA that is readily degraded. 
Less FimE site-specific recombinase would allow FimB 
to bind and switch the fimS element to the Phase-ON 
position. The minor leucyl tRNA, LeuX, affects the fimS 
element switching from Phase-OFF to Phase-ON[100,101]. 
Placing the leuX gene on a multicopy plasmid caused 
greater expression from the fimAICDFGH operon[102].

All of  the studies examining fimB regulation described 
above have concentrated on the P1 and P2 promoter 
regions. However, several other studies have shown 
that the intergenic region between the yjhATS operon 
and the fimB gene also plays a role in genetic regula-
tion of  fimB[103-105]. Sialic acid and N-acetylglucosamine 
inhibit the FimB recombinase. Two proteins, NagC (a 
N-acetylglucosamine-6P-responsive protein) and NanR 
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(a sialic acid-responsive protein), linked to sialic acid 
and N-acetylglucosamine catabolism[106,107], bind to two 
deoxyadenosine methylation sites within the intergenic 
region[103-105] that align with P3 fimB promoter described 
earlier[58]. In addition, NagC also binds to an operator 
site 212 bp closer to the fimB translational start site[105]. 
Both proteins are thought to act as antirepressors that 
allow fimB transcription to occur[103]. However, a urinary 
tract infection caused by type 1 piliated UPEC will elicit 
an inflammatory response[108], leading to increased levels 
of  both sialic acid and N-acetylglucosamine that will, in 
turn, activate some cis-active regulatory protein that shuts 
off  fimB transcription.

Regulatory proteins for other pilus systems can also 
regulate type 1 pilus expression through a cross-talk 
mechanism. PapB, which affects the phase variation of  
the pyelonephritis associated pilus (pap) operon[109,110], 
also regulates the orientation of  the fimS element[111-113]. 
In contrast to FimB, PapB inhibits the Phase-OFF to 
Phase-ON switching. Two proteins associated with S pili, 
SfaB and SfaX, also have a negative effect on Phase-OFF 
to Phase-ON switching[111,114]. Thus, there appears to be 
an expression competition between the different pilus 
operons. These regulatory proteins that allow expression 
of  other types of  pili in other environments counter the 
need for type 1 pili under growth conditions where type 
1 pili are not needed.

In stationary phase-grown E. coli cells, type 1 pilus 
expression is diminished compared to logarithmic grown 
cells. The alternative sigma factor, RpoS, which is activated 
during stationary phase, represses fimB transcription[115]. 
Another regulatory signal active in a logarithmic phase 
culture may be provided by glucose acting as a catabolite 
repressor by increasing internal cAMP concentrations, 
which allow for greater interactions with its receptor 
protein, CRP[116]. For type 1 pilus expression, the role 
of  cAMP and glucose is opaque. Early studies indicated 
that cAMP affected pilus expression in some strains of  
E. coli[117] and in cya (adenyl cyclase) mutants of  Salmonella 
enterica serovar Typhimurium[118]. However, in a later study, 
glucose had no effect on pilus expression, even when 
added with exogenous cAMP or when tested in adenlyate 
cyclase mutants[119]. Unfortunately, some of  the early work 
was done with the CSH50 strain of  E. coli, which has a 
fimE::IS1 mutation[52], so the role of  catabolite repression 
remained unclear, until recently. Using a more defined 
system, Müller et al[120] have shown that CRP-cAMP di-
rectly represses the fimA promoter and indirectly affects 
phase variation by limiting the switch from Phase-OFF to 
Phase-ON in a logarithmic stage population.

Two other proteins that activate fimB transcription 
are RcsB and SlyA. RcsB is part of  the RcsC/RcsB two-
component phosphorelay regulatory system[121]. Using 
an rcsB mutant, it was shown that under neutral pH/low 
osmolality growth conditions, RcsB appears to activate 
fimB[122]. Growth in an acidic environment did not affect 
fimB expression in the rcsB strain compared to wild-type 
cells. Recently, the SlyA global regulator was implicated 

in fimB gene activation[123], but the growth conditions that 
would favor slyA expression were not determined.

The last accessory protein with relevance to fim gene 
regulation is OmpR. OmpR is part of  the EnvZ/OmpR 
two-component regulatory system that regulates genes 
under an osmotic stress[124]. A study by Schwan et al[74] 
found that an ompR mutant strain had de-repressed tran-
scription of  fimB and fimE compared to wild-type cells. 
More recently, they found that unphosphorylated OmpR 
bound to the P2 promoter of  fimB to repress fimB tran-
scription[125] (Rentchler, Lovrich, and Schwan, manuscript 
submitted). However, through DNase I footprinting 
analysis, neither unphosphorylated nor phosphorylated 
OmpR bound directly to the fimE promoter, suggesting 
another regulatory element that is regulated by OmpR-P 
would directly affect fimE transcription.

Thus, in addition to FimB and FimE, approximately 
20 different auxiliary proteins have a role to play in the 
regulation of  one or more fim genes or positioning the 
fimS element. These 20 proteins are represented in a sche-
matic model shown in Figure 3. Some of  the proteins 
repress fim gene expression (e.g. H-NS, OmpR, RpoS), 
whereas others appear to activate fim gene expression (e.g. 
DskA, LrhA, NagC, NanR, RcsB, SlyA). How some of  
these proteins may affect UPEC type 1 pilus expression 
during the course of  a human or murine urinary tract in-
fection is described below.

ENVIRONMENTAL SIGNALS WITHIN THE 
URINARY TRACT AFFECTING UPEC TYPE 
1 PILUS EXPRESSION
The human or murine urinary tract is a dynamic environ-
ment. In the lower urinary tract, there are ample mannose 
receptors for FimH-mediated attachment of  type 1 piliat-
ed UPEC cells[126]. The temperature in the urinary tract is 
around 37℃. Although one group showed Phase-OFF to 
Phase-ON switching increased at lower temperatures, oth-
ers have demonstrated that the fimA promoter element is 
biased in its switch from the Phase-ON to the Phase-OFF 
orientation in broth cultures grown at 20℃, but the switch 
favors FimB recombination at 37℃[59,71,127]. More recently, 
Kuwahara et al[128] demonstrated that FimB-mediated re-
combination could be linked to a controlled downregula-
tion of  the Phase-ON to Phase-OFF switching rate based 
on a temperature-dependent suppression of  the interplay 
of  the FimE recombinase.

When the UPEC cells move from the vaginal surface, 
which has only a slightly acidic pH/low osmolality envi-
ronment, to the urethra or ascend to the bladder, there 
is a switch to a moderate acidic pH/moderate to high 
osmolality environment[129,130]. Under the slightly acidic 
pH/low salt growth conditions found on the vaginal 
surface, proteins such as SlyA or RcsB may activate fimB 
and prevent H-NS from binding, allowing type 1 pili to 
be created and presented on the surface of  the UPEC 
cells for attachment. When the bacteria move from the 
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exterior opening of  the urinary tract and ascend the 
urethra to the bladder, an acidic pH/moderate osmolal-
ity environment is encountered in the bladder[129,130]. A 
preliminary study implied that an acid tolerance system-
induced protein is involved in the regulation of  several 
fim genes (Schwan WR, unpublished results), which may 
begin to turn off  the fim operon. Furthermore, a change 
in the osmolality would activate the EnvZ/OmpR two-
component regulatory system, allowing OmpR to repress 
fimB transcription[74,125]. 

UPEC infections are ascending infections[13,131]; there-
fore, the presence of  flagella on the UPEC cells would 
allow the bacteria to ascend to the kidneys. Expression 
of  the flagella may coordinately turn off  expression of  
the type 1 pili[132,133]. As the bacteria ascend to the kidneys, 
the pH would drop further and the osmolality would 
increase. OmpR becomes phosphorylated and activates 
an unknown gene whose gene product in turn poten-
tially shuts down not only fimB, but also fimE expression. 
Moreover, H-NS may bind and repress both fimB and 
fimE at this time. This would lock the fimS element in the 
Phase-OFF position, creating nonpiliated UPEC cells. 
Furthermore, as the young E. coli population matures and 
moves into stationary phase, they trigger transcriptional 
activation of  the rpoS gene. The acidic/high osmolality 
environment would cause greater translation of  the rpoS 
transcripts[134], leading to more RpoS protein for repres-
sion of  fimB transcription.

CONCLUSION
Several strains of  UPEC have been shown to become 
nonpiliated in the murine kidney over time[13,135]. There 
are very few mannose receptors in human or murine kid-
neys[136,137] and the innate immune system is more apt to 
target type 1 piliated bacteria[138]; therefore, the regulatory 
loss of  type 1 pili on UPEC cells in the human kidney 
would be an evolutionary advantage for these bacteria. 
Thus, the ability to phase vary their type 1 pilus expres-
sion offers several advantages to the UPEC. On vaginal 
surfaces, the outer rim of  the urinary tract, and within the 
urethra and bladder, type 1-piliated cells benefit the bac-
teria because there are ample mannose receptors. When 
the bacteria ascend into the kidneys, the growth environ-
ment may turn off  expression of  an unneeded external 
surface structure that may target the bacteria for elimina-
tion by the host’s innate defenses. 
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