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Abstract
Approximately 7 million people worldwide acquire a 
healthcare associated infection each year. Despite ag-
gressive monitoring, hand washing campaigns and 
other infection control measures, nosocomial infec-
tions (NI) rates, especially those caused by antibiotic 
resistant pathogens, are unacceptably high worldwide. 
Additional ways to fight these infections need to be de-
veloped. A potential overlooked and neglected source 
of nosocomial pathogens are those found in non-intru-
sive soft and hard surfaces located in clinical settings. 
Soft surfaces, such as patient pyjamas and beddings, 
can be an excellent substrate for bacterial and fungal 
growth under appropriate temperature and humidity 
conditions as those present between patients and the 
bed. Bed making in hospitals releases large quantities 
of microorganisms into the air, which contaminate the 
immediate and non-immediate surroundings. Microbes 
can survive on hard surfaces, such as metal trays, bed 
rails and door knobs, for very prolonged periods of 
time. Thus soft and hard surfaces that are in direct or 
indirect contact with the patients can serve as a source 
of nosocomial pathogens. Recently it has been demon-
strated that copper surfaces and copper oxide contain-
ing textiles have potent intrinsic biocidal properties. 
This manuscript reviews the recent laboratory and clini-

cal studies, which demonstrate that biocidal surfaces 
made of copper or containing copper can reduce the 
microbiological burden and the NI rates.
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INTRODUCTION
A nosocomial, or hospital-acquired, infection is a new 
infection that develops in a patient during hospitalization. 
Nosocomial infections (NI) are a worldwide problem 
that occur both in developed and in developing countries. 
For example, in the United States approximately 2 million 
patients annually contract an infection while being hospi-
talized[1], and it is the fourth among the causes of  death 
in the United States only behind heart disease, cancer 
and stroke[2]; in Europe in 2007 there were about 3 mil-
lion healthcare associated infections (HAI), of  which ap-
proximately 50 000 resulted in death[3]; in Germany alone 
around 500 000 to 600 000 NI occurred during 2006[4]; 
methicillin-resistant Staphylococcus aureus (MRSA) infec-
tions alone are estimated to affect more than 150 000 
patients annually in the European Union[5]; in Australia, 
more than 177 000 NI occur per year[6]; in the province 
of  Quebec, Canada, the rate of  NI is estimated to be 
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around 11%[7]; and the rates of  NI in developing coun-
tries are even higher[8-11]. 

NI can be bacterial, viral, fungal, or even parasitic[12-15]. 
Some of  the most common nosocomial pathogens are 
staphylococci (especially Staphylococcus aureus), Pseudomonas 
aeruginosa (P. aeruginosa), Escherichia coli (E. coli), Clostridium 
difficile (C. difficile), Streptococcus species, Enterobacter spe-
cies, Acinetobacter species, Klebsiella species, influenza 
virus and noroviruses[16-21]. The prevalence rates of  path-
ogens that cause NI and have a high level of  resistance to 
antibiotic treatments, such as multidrug-resistant (MDR) 
P. aeruginosa, extended-spectrum β-lactamase produc-
ing Enterobacteriaceae, MDR Acinetobacter baumannii, 
MRSA, and vancomycin resistant enterococci (VRE), are 
constantly increasing around the globe[22-28], creating a 
serious threat to the spread and treatment of  infectious 
diseases, because the resistant pathogens are significantly 
more difficult to treat (e.g.,[29]). 

Many measures to reduce the risk of  pathogens trans-
mission are sought by health care officials, physicians 
and scientists. These include improvement of  national 
surveillance of  NI, use of  aggressive antibiotic control 
programs to reduce the spread of  antibiotic-resistant 
strains, healthcare staff  education for improved hygiene, 
isolation of  infected patients, ultraviolet light sterilization, 
use of  disposable equipment, development of  patient 
care techniques to reduce risks of  infection, improved 
cleaning techniques, improvement of  cleaning equipment 
and sanitary facilities, increase in nursing and janitorial re-
sources and better nutrition (e.g.,[30-34]). It is estimated that 
by using several of  the above strategies simultaneously 
about one third of  NI may be eliminated[35,36]. These 
measures are not the scope of  this review and are widely 
described elsewhere in the literature (e.g.,[31,37-40]). But it 
is clear that even in clinical settings where all or most of  
these measures are implemented, the rates of  NI are still 
too high, and thus new approaches to further fight these 
infections need to be explored.

NI may occur via several manners. It is recognized by 
the infection control community that the most important 
and frequent modes of  transmission of  nosocomial path-
ogens are through direct-contact between an infected or 
colonized person (e.g., health worker, visitor or patient) 
and a susceptible host[41-44], and indirectly via contaminat-
ed intrusive medical devices[44-49], from the patient’s own 
flora from one part of  the host’s body to another[50], and 
via airborne particles[21,51-55].

In addition to the above well described modes of  
transmission of  nosocomial pathogens, others[56] and 
we[57] hypothesised that contaminated textiles in hospitals 
might be an important source of  microbes contributing 
to endogenous, indirect-contact, and aerosol transmis-
sion of  nosocomial-related pathogens. Textiles are an 
excellent substrate for bacterial and fungal growth under 
appropriate moisture and temperature conditions, and it 
was shown that bacteria and fungi can survive for pro-
longed periods in hospital fabrics[58,59]. Microbial shedding 
from the body occurs continuously[60]. Microbial shed-

ding is greater in patients[54,61]. Thus a bacterium, when 
shed into a textile fabric between the patient and the bed, 
either on his pyjama, pillowcase, sheet, or mattress, would 
readily proliferate since the moisture and temperature in 
the textile microenvironment would promote its prolif-
eration. Others and we presented data that substantiate 
this premise[62-65]. Importantly, it was found by others 
that bed making releases large quantities of  microorgan-
isms into the atmosphere and the bacteria levels in the 
air fall back to background levels only after approximately 
30 min[52,66-68]. The released bacteria were shown to con-
taminate adjacent surfaces, such as bed sheets, over bed 
tables, and patients’ clothing, and even adjacent rooms via 
the air-conditioning systems. Similar results were reported 
following undressing and redressing of  patients[69]. 

The contribution of  contaminated hard surfaces, such 
as floors, bedrails, bedside tables and door knobs, to NI 
has been demonstrated too (e.g.,[70-80]). Similarly, contami-
nated textiles, such as contaminated sheets and pyjamas, 
in addition to being a source of  aerosol transmission of  
microorganisms, can also directly contaminate the hospi-
tal personnel[56,76,81,82]. Hospital staff, even by using protec-
tive equipment such as gloves, can contaminate them by 
touching the contaminated textiles or contaminated sur-
faces and then transferring the microorganisms to other 
patients directly or indirectly by contaminating other sur-
faces, such as door knobs[76,83]. For example, it was found 
that 65% of  the nurses who performed activities on pa-
tients with MRSA in wounds or urine, contaminated their 
nursing uniforms or gowns with MRSA. This in turn, can 
readily contaminate the clothing and hands of  healthcare 
workers[54,76,83]. High similar contamination of  gloves and 
gowns with MDR Acinetobacter baumannii by healthcare 
workers interacting with colonized patients has also been 
reported[84]. Furthermore, it was found that 42% of  per-
sonnel with no direct contact with patients contaminated 
their gloves by touching contaminated surfaces[76]. 

Thus, we further hypothesized that use of  antimicro-
bial textiles, especially in those that are in close contact 
with the patients, may significantly reduce bioburden in 
clinical settings and consequently reduce the risk of  NI[57]. 
Being all surfaces biocidal in a hospital environment 
would further reduce the risk of  pathogen transmission 
and NI since most common nosocomial pathogens can 
remain viable on surfaces for months[43,85]. Indeed, it has 
been shown that environmental disinfection interrupts 
the transmission of  microbial pathogens[79,80,83,86,87]. How-
ever, there are increasing concerns that routine surface 
disinfection procedures in health care settings are fre-
quently inadequate and possibly counterproductive[88,89]. 
Consequently, the notion that having potent safe biocidal 
non-intrusive hard and soft surfaces in medical settings, 
in direct or indirect contact with patients, capable of  re-
ducing the microbiological burden that would significant-
ly contribute to reduction in transmission of  nosocomial 
pathogens, is gaining recognition by the scientific com-
munity. This review focuses on the studies demonstrating 
that hard and soft surfaces containing copper reduce the 
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microbiological burden in clinical settings and the NI 
rates. 

COPPER HAS POTENT BIOCIDAL 
PROPERTIES
Copper and copper compounds have a wide spectrum of  
antibacterial, antifungal and antiviral properties (reviewed 
in[90,91]). The wide range of  microorganisms, including 
gram negative and gram positive bacteria, yeast, fungi and 
enveloped and non-enveloped viruses, that have been 
shown to be killed by copper or copper compounds, are 
summarized in Table 1. Importantly, copper surfaces or 
copper compounds have also been shown to be effica-
cious against hard-to-kill spores[92-98]. 

Copper exerts its toxicity to microorganisms through 
several parallel mechanisms, which eventually may lead 
to the microorganisms’ death even within minutes of  
their exposure to copper[94,99-106]. These include plasma 
membrane permeabilization, membrane lipid peroxida-
tion, alteration of  proteins and inhibition of  their bio-
logical assembly and activity and denaturation of  nucleic 
acids[90,91]. In general, the redox cycling between Cu2+ 
and Cu1+, which can catalyze the production of  highly 
hydroxyl radicals, with subsequent damage to lipids, pro-
teins, DNA and other biomolecules[90,107], makes copper 
further reactive and a particularly effective antimicrobial. 
Interestingly, two different “kill modes”, under dry and 
wet conditions, have been attributed to copper surfac-
es[101,102,104,105].

BIOCIDAL SOFT SURFACES IN THE 
HEALTHCARE ENVIRONMENT
Copper oxide is a non-soluble form of  copper that, simi-
larly to other copper compounds, has potent wide spec-
trum biocidal properties[90]. It has, therefore, been chosen 
as the active copper form to be introduced into textile 
fibres from which woven and non-woven fabrics can be 
produced[64,108,109]. These copper-impregnated products 
possess permanent broad-spectrum anti-bacterial, anti-
fungal and antiviral properties that are not affected by 
washings[64,91,99,108-112] (Table 1). This technology, for ex-
ample, enables the production of  biocidal fabrics (which 
inter alia kill antibiotic resistant bacteria)[64,91,108,109], anti-
fungal socks (which inter alia alleviate symptoms of  
athlete’s foot)[108,113], anti-viral masks and filters (which 
inter alia deactivate HIV-1, Influenza A and other virus-
es)[99,106,110,111], and anti-dust mite mattress-covers (which 
may reduce mite-related allergies)[108,114]. 

As explained in the previous chapter, we hypothesized 
that contaminated beddings may be an important over-
looked source of  nosocomial pathogens and therefore 
the use of  potent biocidal beddings, especially pyjamas 
and sheets, that are in contact with the patients, may sig-
nificantly reduce bioburden in clinical settings and con-
sequently reduce the risk of  NI[57]. Indeed, a pilot study 

with 30 patients, who slept overnight on regular sheets 
and then overnight on sheets containing copper-oxide 
demonstrated a statistically significant lower bacterial 
colonization on the copper-oxide containing sheets than 
on regular-sheets[64], clearly supporting our hypothesis. 

Importantly, the development of  biocidal textiles with 
the purpose of  using them in clinical settings to reduce 
HAI is gaining momentum and other biocidal active 
ingredients have or are being explored. These include 
Cliniweave®[115], organofunctional silane[116], citric acid[117], 
silver[118,119], triclosan[120], quaternary ammonium com-
pounds[121], chitosan and zeolite[122,123]. For biocidal textiles 
to be introduced into the hospital textiles they should 
have wide spectrum antimicrobial, antifungal and anti-
viral properties, be effective against the already existent 
antibiotic resistant microorganisms involved in NI, not 
allow for the development of  microorganisms against 
the active component in them, be efficacious for the life 
of  the material, not be affected by commercial washings, 
not cause skin irritation or sensitization and be safe to 
humans following continuous dermal exposure. Some of  
the above active ingredients have thus been found not 
to be appropriate for use in hospital related applications 
(e.g.,[120,124]). 

Until recently, only a few trials in clinical settings have 
been performed with biocidal textiles. It was found that 
bioburden was significantly lower on garments worn by 
nurses when the garments were made from a silver and 
copper containing antibacterial fabric[125]. The antibacte-
rial textiles were tested in two hospital units, an oncology 
surgery unit and an intensive care unit. Each garment 
was provided with a piece of  test fabric sewed either on 
the right or left side of  the garment, while the regular 
fabric of  the garment on the other side was used as a 
control. Thirty garments were tested in each unit. They 
were all sterilized, so they would be free of  bacteria at 
the beginning of  the experiment. The nurses wore the 
same number of  garments with the treated area on the 
left side 1 d and on the right side the following day. Both 
active and control sides of  each garment were sampled 
simultaneously and the bioburden determined. The 
number of  colony forming units (CFU) was significantly 
lower on the bioactive patches than on the control areas. 
The mean reduction rate was about 30% for the 60 gar-
ments tested. Reduction of  about 50% of  bioburden 
on sheets containing copper oxide compared to regular 
sheets, when used overnight by general ward patients, was 
demonstrated[64]. Similarly, reduction of  bioburden on 
blankets containing a bound organofunctional silane was 
also reported[116]. Recently in a 16 wk, blinded cross-over 
clinical trial that compared levels of  bacterial contamina-
tion, a significantly fewer MRSA colonies were detected 
on scrubs impregnated with nano-sized particles that in-
crease the surface tension of  the scrubs than on standard 
scrubs (http://www.vestexprotects.com/press/view/8-
Vestagen-Announces-Completion-of-First-Clinical-
Trial-of-Vestex). In contrast, a study that compared the 
contamination rates of  silver containing jackets and pants 
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Table 1  Demonstrated biocidal efficacy of copper

Hard surface Soft surface Other Ref.

Bacteria
   Acinetobacter baumannii1 + +  + [130,164] UR2

   Acinetobacter calcoaceticus/baumannii - -  + [93,94,165]
   Acinetobacter johnsonii + - - [105] 
   Acinetobacter lwoffii - - + [166] 
   Bacillus cereus + - + [101,167-169] 
   Bacillus globigii - - + [92] 
   Bacillus subtilis - + + [165,169-175] 
   Bacillus macerans - - + [176]
   Brachybacterium conglomeratum + - - [105] 
   Brevibacterium - + - UR
   Campylobacter jejuni + - - [129] 
   Citrobacter freundi - - + [165,177] 
   Clostridium difficile + - + [93,97,98] 
   Clostridium tyrobutyricum - - + [95] 
   Corynebacterium xerosis - + - UR
   Deinococcus radiodurans + - - [101] 
   Desulfovibrio desulfuricans - - + [178] 
   Edwardsiella tarda - - + [179] 
   Enterobacter aerogenes - - + [168,180] 
   Enterobacter cloacae + + + [127,128,168,175] 
   Enterococcus sp.1 - - + [93] 
   Enterococcus faecalis1 + + + [64,108,112,136,137,168,180]
   Enterococcus faecium1 + - - [127,128,137,155,181] 
   Enterococcus gallinarum + - - [137] 
   Enterococcus hirae + - - [182] 
   Escherichia coli + + + [64,100,101,105,108,109,112,127,128,133,139,147,155,165,

168-172,181,183-193]
   Klebsiella pneumoniae + + + [112,130,165,193-195] 
   Kocuria marina + - - [105] 
   Kocuria palustris + - - [105] 
   Legionella pneumophila + - + [93,140,159,196-198] 
   Listeria monocytogenes + + + [64,140,180,199,200] 
   Mycobacterium tuberculosis1 + - - [130] 
   Micrococcus luteus + + - [105,127,128] UR
   Morganella morganii - - + [177] 
   Pantoea stewartii + - - [105] 
   Photobacterium leiognathi - + - [112] 
   Proteus mirabilis - - + [194] 
   Proteus vulgaris - - + [168] 
   Pseudomonas aeruginosa + + + [112,127,128,130,144,164,167,168,171,172,175,201,202] 
   Pseudomonas fluorescens + - - [199] 
   Pseudomonas nitroreducens - - + [169] 
   Pseudomonas oleovorans + - - [105] 
   Pseudomonas putita - - + [203] 
   Pseudomonas striata + - - [176] 
   Salmonella spp. + + + [64,129,165,183] 
   Salmonella typhi + - + [141,174,177,190,194,203,204] 
   Salmonella typhimurium + - - [141,142,199,201] 
   Sarcina lutea - - + [167] 
   Serratia marcescens - - + [171] 
   Shewanella putrefaciens + - - [199] 
   Shigella dysenteriae - - + [194] 
   Shigella flexnerii + - + [165,174,177,204] 
   Sphingomonas panni + - - [105] 
   Staphylococcus aureus1 + + + [64,93,94,105,108,109,112,127,128,130,131,134,138,165,167-172,

175,181,184,199,200,205,206]
   Staphylococcus epidermidis + + + [105,168,191,195,207] UR
   Staphylococcus haemolyticus + - - [105] 
   Staphylococcus hominis + - - [105] 
   Staphylococcus warnerii + - - [105] 
   Stenotrophomonas maltophilia - - + [164] 
   Streptococcus faecalis - + - [175] 
   Streptococcus pyogenes - - + [168] 
   Streptococcus sp. - - + [165,208]
   Vibrio cholerae1 + - + [141,190,209] 
   Yersinia pseudotuberculosis - - + [180] 
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   Xanthomonas compestris - - + [202] 
Fungi/Yeast 
   Alternaria brassicae - - + [202] 
   Aspergillus bransilensis - + - UR
   Aspergillus carbonarius - - + [210] 
   Aspergillus flavus + - + [96,172,203,204] 
   Aspergillus fumigatus + - + [96,211] 
   Aspergillus niger + + + [96,114,172,202,211-214]
   Aspergillus oryzae - - + [212] 
   Candida albicans + + + [64,96,104,108,109,112-114,130,168,169,173,193,204,211,214,215] 
   Candida glabrata - - + [168,180,194,204]
   Candida krusei - - + [168] 
   Candida parapsilosis - - + [168] 
   Candida tropicalis - - + [168,180] 
   Cronobacter sakazakii - - + [216] 
   Cryptococcus neoformans - - + [211] 
   Culvularia lunata - - + [195] 
   Epidermophyton floccosum - - + [211] 
   Fusarium culmonium + - - [96] 
   Fusarium oxysporium + - + [96,202] 
   Fusarium solani + - + [96,195,204] 
   Microsporum canis - - + [204,211] 
   Myrothecium verrucaria - - + [212] 
   Penicillium chrysogenum + - - [96] 
   Pleurotus ostreatus - - + [185] 
   Pycnoporus cinnabarinus - - + [185] 
   Rhizoctonia bataicola - - + [195,203] 
   Rhizoctonia solani - - + [213] 
   Rhizopus stolonifer - - + [203] 
   Saccharomyces cerevisiae + - + [103,104,169,217] 
   Torulopsis pintolopesii - - + [215] 
   Trichoderma viride - - + [212] 
   Trichophyton longifusus - - + [204] 
   Trichophyton mentagrophytes - + + [113,114,194,212]
   Tricophyton rubrum - + + [113,211]
   Tricophyton schoenleinii - - + [194] 
Virus
   Avian influenza - + + [111,205] 
   Adenovirus type 1 + + - [99,218] 
   Bacteriophages - - + [219-223]
   Coxsackie virus types B2 and B4 + - - [218] 
   Cytomegalovirus - + - [99] 
   Echovirus 4 + - - [218] 
   Herpes simplex virus - - + [219,220] 
   Human immunodeficiency virus - + + [99,108,110,224] 
   Infectious bronchitis virus - - + [225]
   Influenza A + + - [99,111,135] 
   Junin virus - - + [220]
   Measles - + - [99] 
   Parainfluenza 3 - + - [99] 
   Poliovirus + - + [222,226]
   Pichinde - + - [99] 
   Punta Toro - + - [99] 
   Respiratory syncytial virus - + - [99] 
   Rhinovirus 2 - + - [99] 
   Simian rotavirus SA11 + - - [218] 
   Vaccinia - + - [99] 
   West nile virus - + - [108]
   Yellow fever - + - [99] 

1Tested also against antibiotic resistant pathogens; 2Unpublished data.

and of  standard textile clothing used by 10 emergency 
workers did not find any significant difference in the ex-
tent of  microbial contamination between the textiles[119]. 
It may be that a larger sample size was required to prove 
the silver containing fabric efficacy. It should be taken 
into consideration that in contrary to in vitro conditions, 

a continual re-inoculation with pathogens occurs during 
real-life health care scenarios. In addition, the killing of  
the microorganisms is not on contact, as it takes time for 
the biocidal textiles to kill the exposed microorganisms. 
Thus, obtaining sterile hospital or health-care associated 
fabrics by biocidal textiles in a healthcare environment 
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cannot be expected. Obviously, trials demonstrating that 
the use of  biocidal textiles does not only reduce biobur-
den in clinical settings, but also reduces NI rates, still 
need to be conducted.

BIOCIDAL HARD SURFACES IN THE 
HEALTHCARE ENVIRONMENT
On February 2008 the USA Environmental Protection 
Agency (EPA) permitted the USA Copper Association 
to make public health claims and state that copper alloy 
products kill 99.9% of  disease causing bacteria within 2 
h and continue to do so when re-exposed[126]. This ap-
proval has now been given to 355 different copper alloys 
(including brass and bronze) following many years of  
independent laboratory testing based on rigorous EPA 
approved protocols. Copper is the only hard surface 
metal that has received approval by the EPA to make 
antimicrobial public health claims. In addition to the 
tests conducted by the USA Copper Association in order 
to obtain the approval for the registered health claims, 
the biocidal properties of  copper surfaces was demon-
strated by many others as well[96-98,100-102,104,105,127-142]. As can 
be seen in Table 1, copper surfaces can be regarded as 
a wide spectrum biocidal surface, as it has been found 
to be efficacious against a wide array of  gram positive 
and negative bacteria, fungi and viruses. The biocidal 
efficacy of  copper surfaces increases with the copper 
concentration[97,101,104,127,128,130,133,134,137,139], exposure peri-
ods[96-98,100-102,104,127-130,133-135,137,139,140,143], humidity[127,128,131,136] 
and temperature[98,129,131,133,144]. The higher the microorgan-
ism inoculum load is the longer it takes to reach complete 
elimination of  the exposed microorganisms[133,134,137]. In 
contrast to stainless steel, which is the metal most widely 
used in hospital care environments, copper surfaces are 
highly reactive, and thus residual soil and build-up of  
microbial cells is more likely to occur in copper surfaces 
than on stainless steel[145]. Different cleaning solutions or 
products may have different effects on the continual effi-
cacy of  the copper surfaces[145] and thus the right cleaning 
and appropriate cleaning protocols of  copper surfaces 
need to be developed[102]. 

Importantly, the significant contribution of  copper 
surfaces to the reduction of  bioburden in clinical settings 
has recently been demonstrated[132,146,147]. One trial was 
conducted in the United Kingdom[146], one in South Af-
rica[147] and one in Germany[132]. 

In the United Kingdom study[146] the efficacy of  cop-
per surfaces to reduce bioburden was examined in a busy 
acute medical ward, which included gastroenterology pa-
tients, and a cross-over model was utilized. A toilet seat, 
tap handles and a ward entrance door push plate each 
containing copper (60%-70% copper content) were sam-
pled for the presence of  microorganisms and compared 
to equivalent standard, non-copper-containing items in 
the same ward. The items were installed at least 6 mo 
prior to the commencement of  the study to allow both 
healthcare workers and staff  to become accustomed to 

the copper containing items. The hospital staff  followed 
their standard cleaning routines, which included disinfec-
tion of  both the control and test fixtures approximately 
every 2 h. The items were sampled once weekly for 10 
wk at 07:00 and at 17:00 to determine the number of  
microorganisms present following quite and busy time 
periods, respectively. The following specific indicator 
bacteria were quantified: methicillin-sensitive Staphylococcus 
aureus (MSSA), MRSA, VRE, C. difficile and E. coli. After 
5 wk, the copper-containing and non-copper-containing 
items were interchanged to exclude any possibility of  bias 
according to preferential use of  any particular item based 
on location. Median numbers of  microorganisms har-
bored by the copper-containing items were between 90% 
and 100% lower than their control equivalents at both 
sampling time-points, the microbial loads being highly 
statistically significantly different between the matched 
tested items (P values ranging from < 0.05 to < 0.0001). 
Three of  the indicator microorganisms (MSSA, VRE and 
E. coli) were only isolated from control items. MRSA and 
C. difficile were not isolated during this study. 

In the South Africa study[147], a comparative controlled 
study was conducted at a busy walk-in primary healthcare 
clinic in a rural region. Two similar adjacent consulting 
rooms were chosen. One was fitted with copper sheets 
(99.9% pure copper) on desk and trolleys that were in 
constant contact with staff  and patients and on top of  
cupboards and windowsills where contact was less fre-
quent. The other room remained with its original surfaces 
that did not include any copper surfaces. Cleaning proce-
dures were the same for both rooms and no disinfectants 
were used. Samples for microbiological determinations 
were taken from 5 equivalent touch surfaces from each 
room. Sampling was undertaken for a period of  4 and a 
half  days every 6 wk by the same person for a period of  
6 mo. Samples were taken before cleaning (at 7 am), post 
cleaning but pre consultation (at 8 am) and post consul-
tation (at 4 pm). The temperature and humidity in both 
sampling rooms were comparable during the study period 
covered - winter, spring and summer. The average num-
ber of  consultations in each room during each sampling 
series during the 6 mo study was similar (65 study and 
68 control room). Statistically significantly lower overall 
mean total CFU for all copper surfaces, including those 
in constant contact with staff  and patients and those with 
less frequent contact, were found (P < 0.001), being the 
mean reduction 71%.

In the German study[132], an oncological/pneumologi-
cal and a geriatric ward was used to test the efficacy of  
copper surfaces in reducing bioburden. All touch sur-
faces in patient bed rooms, rest rooms and staff  rooms 
were replaced with new surfaces composed of  metallic 
copper-containing alloys, while matched rooms, where 
no changes were made in the touch surfaces, served as 
controls rooms. All surfaces were routinely cleaned each 
morning with a disinfectant. The trial lasted 32 wk, 16 in 
the summer and 16 in the winter. During both test peri-
ods of  16 wk, the total number of  CFU on metallic cop-
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per-containing surfaces was 63% of  that on the control 
surfaces (P < 0.001). When analyzing per surface area, 
the differences were significant for door knobs, which 
had the highest overall microbial load. Bacterial loads in 
push plates and light switches were similar between the 
test and control samples. Interestingly, after disinfection 
of  the copper and control surfaces, microbial repopula-
tion of  the surfaces was significantly delayed on copper 
alloys (P < 0.05).

In addition to the above studies, a clinical study was 
undertaken to compare the surface microbial contamina-
tion associated with pens constructed of  either a copper 
alloy or stainless steel used by nurses on intensive care 
units. A significantly lower level of  microbial contamina-
tion was found on the copper alloy pens[148]. 

Another study, conducted in the UK, investigated 
the efficacy of  using biocidal hard surfaces impregnated 
with a silver based technology in reducing microbial con-
tamination in a real-life hospital environment[149]. Two 
outpatient units were included in the 18 mo study. One 
unit was refurbished with the silver containing products, 
which included door knobs, blinds, tiles, sack holders and 
light switches. The other unit contained untreated items 
and served as a control. Both units were similar in terms 
of  volume of  people and layout and were subjected to 
similar standard cleaning practice. Both units were al-
lowed to function for 12 mo before microbiological 
swabbing commenced. Swabs were collected over a 5-mo 
period from both units. The CFU counts in the unit 
containing the silver impregnated products were between 
62% to 98% lower than the matched unit. CFU counts 
from the silver-treated materials were between 70% (fab-
rics) to 99% (laminates) lower than untreated equivalents. 
In addition, the bacterial contamination on untreated 
products in the ward containing the silver-impregnated 
products was on average 43.5% lower compared with un-
treated matched products in the control unit. 

The above described trials clearly demonstrate that 
biocidal hard surfaces found in heath-care settings offer 
the potential to significantly reduce the number of  mi-
croorganisms in the clinical environment and thus reduce 
the risk of  HAI. However, the use of  biocidal surfaces 
should not act as a replacement for cleaning in clinical 
areas, but as an adjunct in the fight against HAI.

IS MICROBIAL RESISTANCE TO COPPER 
A CONCERN?
Bacterial resistance is a major concern in infection con-
trol, as exemplified by the highly antibiotic resistant bac-
teria (with up to 2200-fold decreased sensitivity to the 
antibiotic (e.g.,[150]) that have evolved in less than 50 years 
of  antibiotic usage, making infected patient treatment 
extremely difficult (e.g.,[29]). Thus, the possibility of  devel-
opment of  resistance to biocides is a real concern[151,152]. 
Importantly, as opposed to antibiotics, in spite of  copper 
being a part of  the earth for millions of  years, and being 

used by humans from the beginning of  the civilization, 
no microorganisms that are highly resistant to copper 
have been found, but only microorganisms with reduced 
copper sensitivity (increased copper tolerance). For ex-
ample, Enterococci bacteria isolated from the gut of  pigs, 
which were fed for many months with high concentra-
tions of  copper in their diet, were 7 fold less susceptible 
to copper than Enterococci bacteria isolated from pigs 
not fed with copper[153,154]. The increased tolerance to 
copper is achieved by the induction of  an efflux pump in 
the tolerant bacteria[154]. Outstandingly, the Enterococci 
and E. coli tolerant bacteria isolated from pig farms fol-
lowing the use of  copper sulfate as feed supplement were 
rapidly killed when spread in a thin, moist layer on copper 
alloys with 85% or greater copper content or under dry 
conditions[155]. Tolerance, but not resistance, was found in 
nitrifying soil microorganisms exposed to Cu for nearly 
80 years under field conditions[156]. Similarly, the spray of  
copper-containing compounds for years on vegetable and 
fruit crops to limit the spread of  plant pathogenic bacte-
ria and fungi, has favored the spread of  copper tolerant 
genes among saprophytic and plant pathogenic bacte-
ria[157]. The increased tolerance to copper was found to 
be associated with the amount of  soluble copper and not 
with the total amount of  copper[158]. Thus, even in soils 
where the concentration of  copper was very high, but in 
a non-soluble form, no increase in tolerance to copper 
was observed[158]. The copper active ingredient used in 
the biocidal textiles is copper oxide, a non-soluble form 
of  copper. Importantly, no resistant bacteria evolved 
in vitro when consecutively exposed to repeated fabrics 
containing 1% copper oxide[112]. Interestingly, bacteria 
were isolated from copper-containing surfaces and some 
exhibited prolonged (1 to 3 d) survival on dry but not on 
moist copper surfaces[105]. None of  these isolates strains 
was copper resistant in culture[105]. Survival on copper-
containing surfaces appeared to be the consequence of  
either endospore formation, survival on patches of  dirt, 
or a special ability to endure a dry metallic copper sur-
face. 

The reason why no resistance to copper, but only tol-
erance, is found in microorganisms exposed to constant 
relatively high doses of  copper, may be because copper 
exerts its biocidal/antimicrobial activity not through one 
mechanism (as most antibiotics), but through several par-
allel non-specific mechanisms[90,91]. As briefly mentioned 
previously, these mechanisms include: (1) denaturation 
of  nucleic acids by binding to and/or disordering helical 
structures and/or by cross-linking between and within 
nucleic acid strands; (2) alteration of  proteins and inhibi-
tion of  their biological assembly and activity; (3) plasma 
membrane permeabilization; and (4) membrane lipid per-
oxidation. Furthermore, widespread appearance of  bacte-
ria tolerant or resistant to copper contact killing appears 
unlikely as plasmid DNA is completely degraded after 
cell death by contact killing, preventing the transfer of  re-
sistance determinants between organisms[137] and copper 
contact killing is very rapid precluding the acquisition of  
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resistance during cell division[102]. 
Thus, even though some organisms have mechanisms 

of  tolerance to excess copper as described above, in gen-
eral, all microorganisms cannot cope when exposed to 
high concentrations of  copper and are irreversibly dam-
aged. As a result, despite having been present throughout 
human history, and despite repeated historic use of  cop-
per as an antimicrobial agent over the centuries, copper 
was and remains a broad-spectrum biocidal/antimicrobial 
compound and yet no bacteria fully resistant to copper 
have been discovered.

CONCLUSION
Similar to the efficient control of  Legionella infections 
and the reduction of  molds and yeasts that has been 
achieved in hospital systems by simply incorporating cop-
per-silver ionization devices into the hospital water dis-
tribution systems[159-161], the use of  soft and hard surfaces 
containing biocidal copper in products such as those de-
scribed in Figure 1, may play an important role in reduc-
tion of  NI in hospital care environments. Furthermore, as 
NI are now spreading out from the hospital environment 
into the community (e.g.,[162,163]), the use of  textiles, such as 
those impregnated with copper oxide, and hard surfaces 
containing a high percentage of  copper, may not only 
significantly contribute to the reduction of  HAI, but may 
also confer protection when used in homes for the elderly 
and in other environments where immune compromised 
individuals are at high risk of  contracting infections. 
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