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Abstract
Genetic interactions are functional crosstalk among dif-
ferent genetic loci that lead to phenotypic changes, 
such as health or viability alterations. A disease or lethal 
phenotype that results from the combined effects of 
gene mutations at different loci is termed a synthetic 
sickness or synthetic lethality, respectively. Studies of 
genetic interaction have provided insight on the rela-
tionships among biochemical processes or pathways. 
Cancer results from genetic interactions and is a major 
focus of current studies in genetic interactions. Various 
basic and translational cancer studies have explored 
the concept of genetic interactions, including studies of 
the mechanistic characterization of genes, drug discov-
ery, biomarker identification and the rational design of 
combination therapies. This review discusses the im-
plications of genetic interactions in the development of 
personalized cancer therapies, the identification of treat-
ment-responsive genes, the delineation of mechanisms 
of chemoresistance and the rational design of combined 
therapeutic strategies to overcome drug resistance.
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INTRODUCTION
Genetic interactions are functional crosstalk among genes 
of  different loci that regulate or compensate for one 
another in many signaling and/or metabolic pathways, 
leading to phenotypic changes, including disease status 
(sickness) or viability alterations (lethality or semilethali-
ty). Unlike the dominance caused by interactions between 
alleles of  the same genetic locus, the interactions of  dif-
ferent genetic loci may lead to unexpected phenotypic 
changes that are different from the effects of  mutations 
in each individual gene. An example of  a typical pheno-
typic change caused by genetic interaction is synthetic 
lethality or synthetic semilethality; in brief, homozygous 
mutations in two genes result in normal viability in living 
organisms when the mutations exist separately but be-
come lethal or semilethal (viability reduced but not com-
pletely abolished) when they occur simultaneously[1].

Because a lethal phenotype can be easily identified, 
synthetic lethality has frequently been used as a research 
tool for identifying interactions among genes. Global 
gene knockout studies in yeast showed that about 20% 
of  genes in Saccharomyces cerevisiae (S. cerevisiae) are essential 
for growth on a rich glucose-containing medium, whereas 
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about 80% of  the approximately 6200 predicted genes 
are nonessential, suggesting that the genome is buffered 
from the lethal effects of  genetic disorders in more than 
4700 genes that may have redundant functions associ-
ated with essential processes[2-4]. Thus far, global synthetic 
lethality analysis in yeast has generated substantial new 
information on genetic interactions that compensate for 
one another in biologically essential processes[5]. Informa-
tion on genetic interactions has been used to predict the 
function of  uncharacterized genes and decipher complex 
regulatory relationships among biochemical processes or 
pathways[5]. The principle of  genetic interactions is also 
being exploited by various investigators to identify genes 
that are crucial to the survival of  certain oncogene-trans-
formed cells[6-9] or genes that sensitize cells to chemother-
apy[10,11] or to find small molecules that selectively induce 
cell death in a subset of  oncogene-transformed cells[12-14]. 
Thus, the principles of  genetic interaction have become 
a research platform for characterizing gene functions, 
discovering novel anticancer agents, identifying molecular 
biomarkers for personalized therapy and designing effec-
tive combination therapies to overcome drug resistance. 
Applications of  genetic interactions in anticancer drug 
discovery were recently reviewed in several articles[15-17]. 
This review will discuss potential applications of  genetic 
interaction in personalized therapy and in the rational de-
sign of  multimodality therapy.

NETWORKS OF GENETIC INTERACTIONS
The functional interactions among genes are more com-
prehensive than the physical interactions among proteins. 
Studies in yeast have shown that, on average, each gene 
may have more than 40 genetic interactions[18-20], whereas 
yeast proteins may have an average of  8 physical interac-
tions per protein[21]. A study used 74 genes known to be 
involved in genomic integrity in S. cerevisiae to search for 
genetic interactions with those genes resulted in the iden-
tification of  a network of  4956 unique pairs of  genetic 
interactions involving 875 genes[19]. Within this network, 
several novel components and functional modules or 
minipathways were defined that are important for DNA 
integrity, including those involved in DNA replication, 
postreplication repair, homologous recombination and 
oxidative stress response[19]. More recently, several groups 
of  researchers used a gene knockdown approach to 
search for genes that are synthetic lethals to the oncogen-
ic KRAS gene and identified numerous synthetic lethal 
partners with mutant KRAS gene in various human can-
cer cells[6-9]. For example, a genome-wide RNAi screening 
in the isogenic human colon cancer cell line DLD-1 with 
and without oncogenic KRAS led to the identification 
of  368 lethal interaction candidate genes with a stringent 
cutoff  and 1613 genes with relaxed statistical criteria[8]. 
Genes involved in the regulation of  several biological 
processes or pathways, including nucleic acid metabolism, 
ribosome biogenesis, protein neddylation or sumoylation, 
RNA splicing, the cell cycle, mitosis and proteasome 
complexes, were found to be required as additional sup-

port to maintain the Ras oncogenic state[8]. Thus, genetic 
interactions are more complicated and comprehensive 
than physical interactions.

Several models have been proposed to account for 
genetic interactions[21-23], including the components of  
parallel pathways that together regulate an essential bio-
logical function, subunits of  an essential multiprotein 
complex and components of  a single linear essential 
pathway (Figure 1). Synthetic genetic array analysis and 
synthetic lethality analysis by microarray in yeast revealed 
that genetic interactions occurred the most frequently 
between genes with the same mutant phenotype, between 
genes encoding proteins with the same subcellular local-
ization, and between genes involved in similar biological 
processes or bridging bioprocesses[5,18]. Although genetic 
interactions were more frequent than expected between 
genes encoding proteins within the same protein complex 
and among gene pairs encoding homologous proteins, 
relatively few synthetic lethal interactions (only 1%-2%) 
fall into these two categories[18]. Most of  the genetic inter-
actions were identified among functionally related genes 
or among genes that function in parallel or compensating 
pathways[2,5,18,24].

STRATEGIES FOR PERSONALIZED CAN-
CER THERAPY
Activating mutations in oncogenes and growth factor 
receptors are known to play critical roles in tumorigenesis 
and in the malignant evolution of  cancers[25,26]. Several 
oncogenes or growth factor receptors have been suc-
cessfully targeted by small molecule inhibitors and/or 
monoclonal antibodies for cancer treatment. Genetic 
changes, such as gene amplifications or mutations in the 
corresponding genes, have been used as predictive bio-
markers for identifying patients who would benefit from 
a particular treatment[27]. Cancers overexpressing HER2 
were shown to respond favorably to the monoclonal an-
tibody trastuzumab[28,29]. Similarly, the epidermal growth 
factor receptor (EGFR) inhibitors erlotinib and gefitinib 
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Figure 1  Diagram of genetic interactions. A: The essential biological func-
tion E is regulated by pathways A and B. A functional change in either of these 
pathways, such as a mutation in A1 or B1, is insufficient to induce dysfunction 
of E. However, the simultaneous presence of a mutation in A1 and a mutation 
in any of B1, B2 or B3 induces dysfunction of E (or phenotype changes). Thus, 
A1 has genetic interaction with B1, B2 and B3, and vice versa; B: The essential 
biological function E is regulated by pathway A alone, in which A2 is a multipro-
tein complex composed of X, Y and Z, while A3 has homologues of α, β and γ. 
Genetic interaction may exist among X, Y and Z, and among A3α, β and γ. 
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were found to be more effective against EGFR mutant 
cancers[30], whereas imatinib was highly effective against 
cancer cells with BCR-Abl fusion protein[31].

Therapeutic benefits can also be obtained by target-
ing oncogenes and tumor suppressor genes indirectly 
through genetic lethal interactions. Functional altera-
tions in some oncogenes or tumor suppressor genes may 
render the mutant cells more susceptible to a functional 
change in another gene. Therefore, the mutant cells 
can be eliminated through pharmaceutical intervention 
that leads to synthetic lethality. Selective cytotoxicity of  
poly (ADP-ribose) polymerase 1 (PARP1) inhibitors in 
BRCA1 and BRCA2 mutant cancer cells is mediated 
through genetic interaction between PARP1 and BRCAs. 
PARP1 is required for DNA single-strand break (SSB) 
repair because PARP1-/- mice have defective DNA SSB 
repair and increased homologous recombination, sister 
chromatid exchange and chromosome instability[32,33]. 
On the other hand, BRCA1 and BRCA2, whose loss-of-
function mutations predispose carriers to breast, ovarian 
and other types of  cancers[34,35], are required for homolo-
gous recombination of  DNA double-strand break (DSB) 
repair[36,37]. PARP1 may not be directly involved in DSB 
repair and homologous recombination since PARP1-/- 
embryonic stem cells and embryonic fibroblasts exhibited 
normal repair of  DNA DSBs[32]. Nevertheless, concur-
rent blockage of  DNA DSB repair, resulting from a 
mutation in BRCA genes and DNA SSB repair due to 
PARP1 inhibition, is fatal to a cell[38,39]. As a result, BRCA 
mutant cells are 1000 times more sensitive to PARP1 than 
are BRCA wild-type cells[39]. Clinical trials also showed 
that cancer patients with BRCA1 or BRCA2 mutations 
responded favorably to an orally active PARP1 inhibitor, 
olaparib (AZD2281)[40-43].

Functional changes in several genes involved in DNA 
DSB repair pathways, such as ATM[44], RAD54[45] and 
BRIT1[46] genes, have been found to be highly associated 
with susceptibility to radiotherapy and the DNA cross-
linking agent mitomycin C, suggesting that mutations in 
those genes may be used as biomarkers of  susceptibility 
to radiotherapy or DNA-damaging chemotherapeutic 
agents. The ATM gene encodes the ataxia telangiectasia 
mutated (ATM) protein kinase that is rapidly activated 
when DNA DSBs occur in eukaryotic cells[47]. Activated 
ATM phosphorylates a variety of  proteins involved in 
cell cycle checkpoint control, apoptosis and DNA repair 
pathways, including p53, CHK2, BRCA1, H2AX and 
FANCD2[47,48]. A recent study indicated that interactions 
of  ATM and p53, two commonly mutated tumor sup-
pressor genes, should be explored to determine their 
ability to predict clinical response to genotoxic chemo-
therapies[49]. In p53-deficient tumor cells, inactivation of  
ATM or of  its downstream molecule CHK2 was suf-
ficient to sensitize the cells to the genotoxic chemothera-
peutic agents cisplatin and doxorubicin[49]. Interestingly, 
inhibition of  ATM or of  CHK2 resulted in a substantial 
survival benefit in p53 wild-type cells. Several clinical 
trials of  CHK1/CHK2 inhibitors in combination with 

genotoxic agents for cancer treatment are currently under 
way[50]. The p53 inactivation that occurs in about 50% of  
human cancers because of  genetic mutations[51] may serve 
as a biomarker for the efficacy of  combination therapies 
containing cisplatin and doxorubicin plus inhibitors of  
ATM and CHK2.

Another indirect approach is targeting a downstream 
component in a single linear essential pathway. Evidence 
has shown that BRAF mutant cancer cells can be selec-
tively killed by inhibitors of  mitogen-activated protein 
(MAP) kinase (MEK), a substrate of  Raf  protein ki-
nases[52]. The RAS/RAF/MEK/Erk pathway is one of  
the critical signal transduction cascades of  most growth 
factor receptors and is pivotal in oncogenesis[53,54]. RAF 
kinases are activated by RAS upon the stimulation of  ex-
tracellular ligands, such as growth factors, cytokines and 
hormones. Activated RAF phosphorylates and activates 
the dual-specificity protein kinase MEK, which in turn 
phosphorylates both tyrosine (Tyr185) and threonine 
(Thr183) residues of  extracellular-signal-regulated kinase 
(ERK) proteins[55], leading to activation of  ERK1/ERK2. 
Various constitutively active mutations of  the BRAF 
gene have been identified in human cancers, including 
60%-70% of  malignant melanomas, 36%-50% of  thyroid 
cancers, 5%-22% of  colorectal cancers, 30% of  serous 
ovarian cancers and lower percentages of  other can-
cers[56]. The strong dependence of  BRAF mutant tumors 
on MEK activity may provide a personalized therapeutic 
strategy for patients with this type of  cancer[52].

Overexpression of  the MYC oncogene was reported 
to upregulate the expression of  the tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL) death 
receptor DR5, thereby sensitizing tumor cells to TRAIL-
induced apoptosis[57]. An analysis of  the knockdown of  
510 genes encoding known and predicted kinases, pro-
teins with known functions in TRAIL-mediated signal-
ing pathways, or proteins with unknown functions also 
revealed that siRNA against PAK1 and AKT1 strongly 
enhanced TRAIL activity, whereas siRNA against MYC 
or the WNT transducer TCF4 inhibited TRAIL-induced 
apoptosis, indicating that the MYC and WNT pathways 
are required for TRAIL-mediated apoptosis[58]. On the 
other hand, deficiency of  the tumor suppressor gene ade-
nomatous polyposis coli (APC) was found to cause accu-
mulation of  β-catenin in the nucleus, which interacts with 
TCF4 and promotes TCF4’s binding to c-MYC promoter 
and overexpression of  c-MYC[59]. Deletion of  the MYC 
gene rescued the phenotypes caused by deletion of  the 
APC gene, despite the presence of  high levels of  nuclear 
β-catenin[60]. Thus, MYC overexpression is a critical com-
ponent in the malignancy of  APC-defective cancers. A 
recent study showed that the combination of  TRAIL and 
all-trans-retinyl acetate, another death receptors inducer, 
significantly enhanced apoptosis induction in APC gene-
defective tumor cells and premalignant cells[61], indicating 
that this combination can be useful for chemoprevention 
and personalized therapy in patients with APC-defective 
cancers.
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SYSTEMATIC ANALYSIS OF GENES 
ASSOCIATED WITH TREATMENT RE-
SPONSE
Genetic interaction has been exploited as a research tool 
to identify genes or biomarkers associated with treatment 
responses. Studies of  the Food and Drug Administra-
tion (FDA)-approved anticancer agents in a panel of  
yeast mutants revealed that the DNA cross-linking agent 
cisplatin displayed high specificity for mutants defective 
in postreplication repair, whereas the topoisomerase II 
inhibitor mitoxantrone was highly specific for defects in 
DNA DSB repair[62]. Because many human disease-relat-
ed genes are conserved with their yeast counterparts[63,64], 
yeast has been exploited for mechanistic study of  clini-
cally relevant compounds[65,66]. A genome-wide screen of  
yeast heterozygotes with therapeutic compounds could 
reveal not only the possible targets but also synthetic le-
thal partners of  the tested compounds[67]. For example, 
heterozygotes of  TRX2, a nonessential gene involved in 
antioxidative stress, were found to be sensitive to campto-
thecin, whereas heterozygotes of  genes involved in exo-
some rRNA processing were identified as possible lethal 
partners with 5-fluorouracil[67]. An analysis of  more than 
1000 structurally diverse compounds, including drugs ap-
proved by the FDA and the World Health Organization, 
in yeast whole-genome heterozygous and homozygous 
deletion collections showed that genes involved in endo-
somal transport, vacuolar degradation, aromatic amino 
acid biosynthesis or encoding of  some transcription fac-
tors may function as multidrug-resistance genes because 
their deletion renders yeast sensitive to multiple drug 
treatments[68]. Nevertheless, information obtained from 
yeast studies needs to be validated in human cell systems 
before the results can be translated into clinical applica-
tions.

The advent of  gene knockdown technology allows us 
to perform systematic analysis of  genes associated with 
treatment response in human cancer cells. Whitehurst  
et al[10] used a library of  more than 84 000 chemically syn-
thesized siRNAs targeting 21 127 unique human genes 
to screen for gene targets that specifically reduce cell vi-
ability in the presence of  an otherwise sublethal dose of  
paclitaxel in the human non-small cell lung cancer line 
NCI-H1155. Their study identified a set of  87 candidate 
genes whose knockdown sensitized cells to paclitaxel and 
some of  the genes increased the sensitization of  lung 
cancer cells to paclitaxel by more than 1000 times. Multi-
ple genes encoding core components of  the proteasome, 
proteins involved in the function of  microtubules, post-
translational modification and cell adhesion, or cancer/
testis antigens were found to be associated with the sen-
sitivity of  paclitaxel[10]. A similar approach has been used 
by Astsaturov et al[11] for identification of  genes associated 
with response to EGFR inhibitors. Analysis of  a siRNA 
library targeting 638 genes encoding proteins with evi-
dence of  functional interaction with the EGFR signaling 

network, including those transcriptionally responsive to 
inhibition or stimulation of  EGFR, led Astsaturov et al[11]  
to identify 61 genes whose knockdown sensitized the 
A431 cervical adenocarcinoma cell line to the EGFR 
inhibitors erlotinib or cetuximab[11]. Most of  those genes 
encode proteins connected in a physically interacting 
network, including kinases and phosphatases. Neverthe-
less, a further test in 7 other cell lines for sensitization to 
erlotinib or cetuximab showed that none of  the tested 
genes sensitized all cell lines, although several of  them 
sensitized 3-5 of  the cell lines[11], suggesting that genetic 
interactions are highly dependent on cell context.

MECHANISMS OF RESISTANCE AND 
RATIONAL DESIGN OF COMBINATION 
THERAPY
Genetic interactions could be the underlying mechanisms 
of  resistance to targeted cancer therapies. The same 
concept may allow us to develop strategies to overcome 
this resistance. Mutation analyses of  primary cancers for 
genes encoding kinases or genes with known associa-
tions with cancers have revealed that an individual tumor 
may harbor 50 or more mutations in such genes[25,69-71]. 
Several important signaling pathways might cooperatively 
be involved in the oncogenesis and malignant evolution 
of  cancers[25,69-72]. Thus, cancer itself  is a result of  genetic 
interactions. Tumor cells, xenograft tumors and primary 
tumors may carry multiple concomitantly activated on-
cogenes or inactivated tumor suppressor genes. As a re-
sult, interrupting a single pathway is often insufficient to 
induce cell death in most cancer cells because redundant 
input from various pathways drives and maintains down-
stream signaling; thus, single-agent therapies have limited 
efficacy[73,74]. Consequently, combinations of  targeted 
agents are frequently required for effective anticancer 
therapy or for overcoming drug resistance[73]. Numerous 
combination regimens of  targeted agents are currently 
being investigated at either the preclinical or clinical lev-
el[74,75]. The information about networks of  genetic inter-
actions may facilitate the rational design of  combinatorial 
therapy to enhance therapeutic efficacy.

The SRC oncogene encodes a nonreceptor tyrosine 
kinase that interacts with multiple receptor tyrosine kinas-
es (RTKs), including EGFR, vascular endothelial grow 
factor receptor (VEGFR), platelet-derived growth factor 
receptor (PDGFR), fibroblast growth factor receptor, 
insulin-like growth factor 1 receptor, hepatocyte growth 
factor receptor and others[76,77]. Recruiting SRC to recep-
tor tyrosine kinases activates SRC and triggers a cascade 
of  downstream signaling promoting cell proliferation, 
survival and invasion, as well as angiogenesis. Moreover, 
SRC can interact synergistically with RTKs by phos-
phorylating RTKS and modulating their activities[78-80]. 
Increased SRC activity is associated with resistance to 
conventional anticancer agents, such as cisplatin[81] and 
gemcitabine[82], and targeted anticancer agents, such as 
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gefinitib[83] and trastuzumab[84]. Simultaneous targeting of  
SRC and Her2 sensitizes multiple trastuzumab-resistant 
breast cancer cells to trastuzumab in vitro and in vivo[84]. 
Inhibiting SRC also sensitized KRAS mutant colorectal 
tumors to cetuximab[85]. Combined inhibition of  SRC 
and EGFR sensitized pancreatic tumor cells to gem-
citabine[86]. These results demonstrated that combination 
therapy consisting of  SRC and RTKs inhibitors could be 
an effective strategy for overcoming resistances to a vari-
ety of  anticancer agents.

Both EGFR and hepatocyte growth factor receptor 
(MET)[87,88] play important roles in carcinogenesis[89,90]. 
Once activated by their ligands, EGF and hepatocyte 
growth factor, respectively, EGFR and MET activate 
common downstream pathways, including the PI3K/
AKT, RAS/RAF/MAPK and SRC/JAK/STAT path-
ways (Figure 2). Therefore, elevated activity of  MET 
may negate the effects of  anti-EGFR therapeutic agents. 
Indeed, focal amplification of  MET in EGFR-inhibitor-
sensitive lung cancer cell lines rendered the cells resistant 
to anti-EGFR treatment by maintaining ERBB3/PI3K/
AKT activity[91]. MET amplification was observed in lung 
cancer specimens that had developed resistance to gefi-
tinib or erlotinib and in untreated tumors[91,92]. Treatment 
of  resistant cells with a tyrosine kinase inhibitor for either 
MET or EGFR could not induce cytotoxicity in resistant 
cells, whereas combined targeting of  MET and EGFR 
resulted in substantial growth inhibition of  resistant cells 
and complete suppression of  ERBB3/PI3K/AKT activ-
ity[91,92]. Such a therapeutic combination strategy over-
came resistance to the EGFR inhibitor erlotinib in an 
EGFR mutant lung cancer tumor model, both in vitro and 
in vivo[93].

Crosstalk among downstream pathways of  growth 
factors is also common. The RAS/RAF/MEK/ERK 
and PI3K/AKT pathways crosstalk and regulate many 
common downstream targets (Figure 2), such as fork-
head transcription factors[94-96], the TSC2/mTOR com-
plex[97-101], BAD[102-104] and caspase-9[105,106]. It is expected 
that high levels of  PI3K/AKT activity can negate antitu-
mor activity induced by MEK/ERK inhibition. Indeed, 
inhibition of  MEK/ERK is sufficient to suppress cell 
growth or induce apoptosis in cells with low levels of  
AKT activity but is ineffective in cells with high levels 
of  AKT activity[107]. Combination treatment with MEK 
and AKT inhibitors was more effective than either single 
agent alone in human non-small cell lung cancer models 
in vitro and in vivo[108].

CONCLUSION
Genetic interaction is likely to be involved in every bio-
logical process and has been used as a research platform 
in various areas of  biomedical research. It will continue 
to be a powerful research tool for both basic and trans-
lational studies. Knowledge of  the networks of  genetic 
interactions is expected to be translated into clinical ap-
plications, in particular for the treatment of  cancers.

Note that genetic interactions may be highly depen-
dent on cell context. For a particular gene, genetic inter-
action may vary in different cell lines. Therefore, it is not 
unexpected that different candidate genes were obtained 
when the same oncogenic KRAS gene was used to query 
its genetic lethal interactions in various cell lines[6-9], or 
that a candidate gene identified in one cell line may not 
necessarily be applicable to another cell line[11]. Therefore, 
individualized therapeutic interventions will be required 
for patients with cancer, even though their cancers may 
harbor the same oncogene or tumor suppressor gene mu-
tations. Nevertheless, it is possible that certain key nodes 
may exist in the networks of  genetic interactions that will 
allow us to develop a common strategy to overcome re-
sistance derived from different genetic interactions[84].
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