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Abstract
The basic consideration in the field of antidepressants 
is that tests to model depression do not exist, as de-
pression etiopathology is unknown. So far, any kind 
of proposed model for depression needs to satisfy 
construct, face and predictive validities. In the present 
editorial, this idea is challenged, based on the fact that 
“old” methods can only reveal therapeutical “me-too” 
drugs and that there is no longer a need of therapeu-
tical “me-too” drugs in the field of antidepressants. 
Since reduction in the number of antidepressant non-
responders is a real medical need, the predictive valid-
ity of animal models will be challenged in the future, as 
the new methods should be based on antidepressant-
insensitive animals. Moreover, antidepressants exert 
similar effects in depressed and non-depressed sub-
jects, but mood normalization is only induced in de-
pressed patients. This implies that the use of normal 
cells and animals only involves pharmacological rather 
than therapeutical actions of drugs. Therefore, the use 
of environmental-induced changes, in the hope that 
these can evidence antidepressant-insensitive animals, 
will predominantly be used in the future. In the choice 
of experimental settings, other factors need to be 
taken into consideration: (1) gender of animals, as de-
pression affects females more than males, (2) natural 

rhythmicity in drug effects; (3) pharmacokinetics; and 
(4) possible biomarker(s) to be measured. There are no 
golden recipes to discover new antidepressants but the 
experimental long-term strategy should very clearly be 
declared before starting the experiments.
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PREMISE
Despite the many results published on various mecha-
nisms of  action elicited by various compounds or herbal 
extracts in preclinical settings, which might suggest new 
potential antidepressant actions, well-established thera-
peutical antidepressant activity of  drugs only derives 
from placebo-controlled, double-blind, randomized 
clinical phase Ⅲ results. Such clinical results also need to 
include long-term antidepressant benefit, where efficacy 
is also retained during maintenance treatment. Based 
on the efficacy of  short- and long-term clinical phase 
Ⅲ trials, regulatory authorities give the authorization to 
commercialize the new medicine. There are several mar-
keted antidepressants: i.e. tricyclics, monoamino-oxidase 
inhibitors and selective or mixed monoamine (serotonin, 
noradrenaline or/and dopamine) reuptake inhibitors. 

REVIEW
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The richness of  such armamentarium is very important 
because physicians may choose a particular drug with 
a more tolerable profile for a particular patient, above 
all when severe comorbidity is present. Electroshock 
therapy is also considered to treat depression[1], mainly in 
drug-resistance cases[2]. In this editorial, only those drugs 
with approved labeling as antidepressants will be consid-
ered as efficacious medicines. In fact, some compounds 
that had shown some efficacy in preclinical and early 
clinical studies may not confirm their activity in larger 
clinical trials, or have been in clinical studies for too 
long, casting some doubts on their therapeutical benefit 
and/or safety window, as in the case of  NK-1 (TAK-637; 
L733060[3]; MK869[4] or GR (mifeprisone), CRH1 
(R121919; ORG34517; and NBI34041, SB723620), V1b 
(SSR149415) antagonists[3]. So, despite the initial scien-
tific excitement, no compound that interferes with the 
stress system and that showed antidepressant-like activity 
in animals, exerted consistent antidepressant activity in 
humans[3]. Furthermore, the 5-HT1A receptor agonists 
gepirone, ipsapirone, flesinoxan and flibanserin[3,5-8], the 
peptide analog of  melanocyte-inhibiting factor nemifit-
ide[9] or the triple monoamine uptake inhibitor NS2359, 
as reported in the NeuroSearch web site[10], never reached 
the market or showed satisfactory antidepressant activity 
in clinical trials. Moreover, no herbal medicines have been 
registered as antidepressants. This does not mean that 
such compounds may not be useful for a particular sub-
population of  depressed subjects but, until their efficacy 
is clearly shown and approved for that particular subpop-
ulation, they are not considered as efficacious antidepres-
sants. This “rigid” way of  thinking is only dictated for the 
sake of  clarity and for the scope of  the present editorial, 
i.e. stimulating the search for new therapeutical strategies. 
What is written in the present editorial only represents 
personal points of  view that may or may not be shared 
by the reader. Furthermore, as most recent publications 
often offer a complete overview of  the literature, such 
papers will be quoted rather than the most well-known 
articles. In DOIng this, there is absolutely no intention to 
underestimate the very important contribution of  some 
researchers who were pioneers in their field.

BACKGROUND
The field of  antidepressants has been characterized by 
the introduction of  more selective and potent medicine[11] 
into the market, with different side-effects than older an-
tidepressants[12]. However, even if  some drugs appear to 
be therapeutically better than others, it is not established 
that the new antidepressants have improved the number 
of  responders or remitters better than the older medi-
cines[13], the number of  responders and remitters is an 
important medical need in the field of  unipolar depres-
sion[14]. Several scientists have tried to analyze the reasons 
of  such research difficulties in drug discovery. Animal 
models, incapability of  detecting patient subpopulations, 
clinical trial design, unsatisfactory medical end-points, 

lack of  biomarkers, psychological pressure on scientists 
working in pharmaceutical industries, marketing strategies 
and difficulty in establishing public-private R&D partner-
ship have, from time to time, been evoked as causes for 
such failures[15-21]. However, such failure in drug discovery 
is not a peculiar aspect in the field of  antidepressants or 
drugs for the central nervous system (CNS) as it also hap-
pens in other therapeutical areas other than the CNS[22]. 
More recently, genetic polymorphism has also been 
implicated in depression and in reduced antidepressant 
response in patients[23,24]. Various attempts have also been 
made to better define the role of  neuroimaging for both 
drug-treatment and depressive patients[25-30]. Likewise, 
some biomarkers have also been suggested to differenti-
ate drug-sensitive from drug-resistant patients[2]. Despite 
the interesting premises of  genetic and neuroimaging 
findings or of  various biomarkers, there is no universally 
agreed consensus on such indicators for antidepressant-
resistance or for the course of  the mental illness[1,31]. 
However, the real reason is that the etiopathogenesis of  
mood disorders is unknown and modeling what it is un-
known is a challenging task; of  course, this also applies 
for other pathologies. Thus, active searching for impor-
tant biological indicators of  antidepressant-resistance and 
of  depression as mental illness seems to be the only way 
to proceed in this field. 

A further difficulty in the field of  antidepressants (but 
not only in this therapeutical class) is that the results of  
potential antidepressants in clinical trials are not always 
published[13]. Therefore, whether the failure is due to 
weak antidepressant activity or other causes (metabolism, 
side-effects, high placebo response, depressed sub-popu-
lation, loss of  interest by the company, etc.) is difficult to 
ascertain. A further complexity is that antidepressants are 
used, not only to normalize depressed mood, but also to 
treat anxiety disorders[32] and chronic pain[33]. Thus, it ap-
pears that antidepressants induce different therapeutical 
effects and to dissect these in different mechanisms of  
action is complex. 

The present editorial does not review animal models 
or list mechanisms of  action that are involved in pharma-
cological effects of  various potential antidepressants, as 
manuscripts on these topics already exist[18,34-52]. The aim 
of  this editorial is to express a personal point of  view, 
based upon many years of  experience, in order to elicit 
the interest of  researchers and let them think about how 
they use their methodologies. In fact, failure to discover 
new antidepressants may not solely depend on chosen 
animal models or preclinical settings but also on how 
these preclinical methods are used.

As aforementioned, the medical needs in the field of  
antidepressants are, among others[53], an increase in re-
sponse and remission rates[14] and to shorten therapeutical 
onset of  action[54,55]. Nevertheless, very few attempts have 
been made in preclinical settings towards these directions. 
Thus, current preclinical models to screen potential anti-
depressants are vitiated by a tautology, as a model is only 
validated with already known clinically effective drugs. 
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Since it is difficult to think that new antidepressants may 
emerge with old methods, the chance to find innovative 
antidepressants is uniquely based on clinical trials. Re-
searchers should take the courage to embark in alterna-
tive experimental strategies. This manuscript deals with 
this point of  view. 

BEHAVIORAL STATUS OF ANIMALS
Therapeutically, antidepressants normalize impaired 
mood function in depressed patients and only induce 
other (and/or adverse) effects in non-depressed sub-
jects[55-57]. In accord with these findings, and in contrast 
with what is reported for depressed patients, in healthy 
subjects monoamine depletion does not change mood 
parameters[58] and antidepressants, in general, do not 
seem to modulate mood[59,60]. In healthy volunteers, an-
tidepressants may exert pharmacological effects[61,62] that 
are similar to those observed in depressed subjects[63]. 
Thus, the use of  normal animals does not seem appro-
priate for studying the mechanism of  “therapeutical” 
actions of  antidepressants. Nevertheless, antidepressants 
are often given to animals that are considered “normal” 
and reviews are written by using these data[38,64,65]. The 
first question is whether antidepressant-induced effects 
in normal animals may be considered as epiphenomena. 
Unless it becomes clear that “depressive” subjects have 
impairment in the function that is restored by antidepres-
sants, the effects in normal animals may be related to the 
pharmacology of  antidepressants rather than to their 
antidepressive therapeutical properties. This means that, 
from a therapeutical standpoint, all the results coming 
from normal animals or in-vitro assays from unaltered bio-
logical systems are questionable. 

Only animals with “altered” biological systems should 
be used to investigate potential antidepressants; therefore, 
how to define a biological system as “altered” is impor-
tant. Only a portion of  human subjects develop depres-
sion. Thus, those procedures that induce “depression-
like” effects in all animals should be avoided. Moreover, 
antidepressants only partially work clinically. Therefore, 
only those procedures which allow distinguishing antide-
pressant-sensitive and antidepressant-insensitive animals 
should be considered. This leads to another issue, in 
which animals can be considered as “real” controls. If  
normal animals serve as control for “altered” animals, 
in “altered” animals the comparison should be made 
between antidepressant sensitive and insensitive subjects. 
Thus, the new potential antidepressant should be tested 
in antidepressant insensitive animals. Consequently, one 
of  the principles considered important for animal mod-
els, the predictive validity, will not be verified anymore.

As a diagnosis of  depression is based on interviews, 
whether the “alterations” provoked in animals are related 
to human depression is difficult to determine. Neverthe-
less, antidepressants should be administered after the 
behavioral changes and not before[66]. This difference may 
discriminate between antidepressant- and anxiolytic-like 

effects. Such a concept derives from the fact that some 
anxiety disorders, such as generalized anxiety, compulsive-
obsessive disorders or panic attacks, may be more related 
to the difficulty of  coping with stressful situations rather 
than feeling despair or anhedonic. However, this concept 
does not apply to post-traumatic stress disorder (PTSD), 
where there is a clear traumatic precipitating event. In 
PTSD, subjects undergo an intense acute stress. Thus, 
it may be that the use of  repeated stressful procedures 
might be helpful in determining potential antidepressant 
properties. That chronic stress, which lasts for weeks or 
months, is a more of  a reliable predictor for depressive 
symptoms than acute has already been suggested[67,68]. 
Among the various behavioral methods used to detect 
potential antidepressant activity, some of  them, such as 
learned helplessness, chronic mild stress and competition 
within a social milieu, seem more promising than others 
because they are based on repeated stressful conditions[18].

How the test is carried out is an important factor. 
Learned helplessness, for example, may be provoked by 
using stress levels that induce failures in the escaping 
behavior in all animals[69] or only in part of  them[70,71]. 
However, some animals do not develop helplessness, as 
shown by the fact that it is possible to genetically divide 
those who develop helpless from those who do not[48,72-74]. 
Within the frame of  competition within a social milieu, 
the resident-intruder paradigm[42,75-78] and pair-animals 
forced to feed in a limited time[38,78,79] are interesting, be-
cause not all animals develop the same reaction to the 
stimuli. Furthermore, rodents can be divided in to antide-
pressant -sensitive and -insensitive animals[39,54,79].

Other animal paradigms that are commonly used, 
such as the forced swimming test, the tail suspension test, 
maternal separation, olfactory bulbectomy and operant 
responses, appear more problematic in the sense that all 
the animals apparently develop similar behavioral changes 
and the stress is not delivered chronically, except for bul-
bectomy where rats may be lesioned from the very begin-
ning[18].

READ-OUTS
The issue is not to reproduce the same symptomatology 
of  depressed subjects in animals, but to interpret the 
animal behavior. For example, in the learned helpless-
ness procedure, there is discussion whether it is better 
to consider as read-out the so-called “fixed ratio 1” or 
FR1, the escape from the compartment where there is 
the electrical shock to another one devoid of  danger[80-83], 
or the so-called “fixed ratio 2” or FR2, which requires 
passing through the doorway twice in order to turn off  
the shock[84-86]. FR2 should better reproduce the wish to 
avoid a frustrating situation, whereas FR1 seems more 
difficult to interpret[87,88], even if  it is easier to obtain.

Anhedonia, namely lack of  pleasure, is a frequent 
symptom in depressed patients. Typically, in animals, 
anhedonia is assessed by measuring intracranial electric 
self-stimulation or sucrose-intake in chronic stressed ani-
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mals[18]. Despite the fact that not all the stressed animals 
reduce their intake of  a sweet solution[88], it seems that 
the reduction in sucrose-intake may not only depend on 
reduced motivation[77,89]. This point deserves further criti-
cal discussion[90].

Interestingly, young animals seem to be resistant to 
chronic mild stress-induced anhedonia in contrast to 
adult rats[91], indicating an age-dependant effect of  chron-
ic stress.

All read-outs are based on animal movements, such 
as escaping, swimming, consummatory behavior, aggres-
siveness and vocalization. Generally, researchers measure 
“normal” motor activity to support the notion that the 
observed effects do not depend on changes in capability 
to move. This experimental procedure may induce mis-
leading interpretation. Animals may have normal motor 
activity but can change it depending on the test procedure 
used. For example, flibanserin, a potential antidepressant 
that did not match the expected outcome in clinical tri-
als[3], reduced spontaneous motor activity in rats[92] but 
did not change, even at a higher dose, swimming speed 
in the Morris water maze[92] or inter trial crossings in the 
learned helplessness test[93]. Flibanserin reduced motor 
activity in the light-dark test in mice[92] but did not change 
it in an open-field, even at a higher dose[94]. However, 
how changes in motor activity may affect the behavior in 
so-called animal models for depression is difficult to as-
certain, as a compound’s effect may be test-dependent[92]. 
So, the effects on motor activity should be interpreted 
with caution in the therapeutical sense.

As aforementioned, when the results of  a new com-
pound are presented, information on its pharmacokinet-
ic/metabolic profile should always be provided, together 
with its effects on gross animal behavior[95,96].

Differential responses of  both sexes to antidepressants 
should also be taken into account. This has already been 
reported in the pharmacokinetics and pharmacodynamics 
(time to response, efficacy and side effects) of  antidepres-
sants in depressed patients[97,98]. In animals, Dalla et al[99] 
reviewed this field and concluded that females are more 
sensitive than males in the chronic mild stress and forced 
swimming test[100], but they are not as susceptible as males 
in the learned helplessness model. Sex differences may also 
be observed in Flinders rats, not only for their serotonergic 
tone, but also in response to antidepressants, as these drugs 
tend to alleviate sex differences[99]. Immunomodulation, 
neurochemical and behavioral responses point to the im-
portant role of  the immune system in the pathophysiology 
of  depression[99,101,102] and it is possible that the actions of  
estrogens in the brain may affect the serotonergic system 
in a sexually dimorphic manner[100]. Pharmacokinetics/
metabolic profile between sexes should, however, always 
be considered before reaching a conclusion on sexual di-
morphism[103].

Another aspect to consider is the possible biologi-
cal rhythmicity in the animal’s behavior and/or drug 
effect[104-112]. On the other hand, this phenomenon has 
also been observed in antidepressant-treated patients[113]. 

Thus, to be sure that the read-outs are consistent and re-
producible, experiments should be repeated throughout 
the year and in both males and females. For example, by 
using the forced swimming test, DBA/2 mice were re-
ported to be sensitive[114,115] or insensitive[116,117] to selective 
serotonin reuptake inhibitors. Whether these contrasting 
results were due to testing in different periods of  the 
year still remains to be elucidated. Similar considerations 
hold for the strain C57BL mice in the tail suspension 
test, where it was found that they were highly citalopram-
sensitive[118] or almost citalopram-insensitive[119]. 

TRANSLATIONAL MEDICINE
Animal models may serve to provide some informa-
tion on the possible therapeutical usefulness of  new 
compounds. Once a Pharma Company is convinced to 
proceed in clinic with a compound, it is necessary to be 
sure that the administered dose in humans is the appro-
priate one. Clinical phase Ⅰ gives information on toler-
ability and pharmacokinetics/metabolic profile of  the 
new medicine in healthy volunteers. Clinical phase Ⅱ is 
aimed at evaluating the therapeutic benefit of  the new 
drug in patients. The problem is how to be sure that the 
drug plasma levels guarantee the desired pharmacologi-
cal/therapeutical action in depressed subjects, above all 
if  comorbidity or pathologies that may interfere with 
metabolism of  the compound are present (i.e. renal or 
hepatic malfunctioning). With the lack of  biomarker(s), 
clinical trials are run without any idea about the goodness 
of  the dose. Thus, whether a clinical trial failed because 
of  no satisfactory clinical outcome or for other reasons 
is often unknown. The biological marker(s) should be 
checked in ill subjects and not in healthy volunteers. In 
fact, neurotransmitter brain concentrations or receptor 
function status may change in the pathological brain[120-124] 
and, therefore, an image of  the brain or other parameters 
in healthy volunteers may not provide the right informa-
tion. 

Despite the high interest elicited by brain-derived 
neurotrophic factor (BDNF), which is decreased in 
serum and leucocytes of  depressed patients prior to an-
tidepressant treatment and increased after 12 wk of  es-
citalopram administrations[125], BDNF was also found to 
be increased in other neuropsychiatric disorders, such as 
schizophrenia, panic disorder, eating disorders, Alzheim-
er’s and Huntington’s disease[126]. Thus, BDNF may be 
an indicator of  some brain vulnerability rather a specific 
biomarker for depression and antidepressant-sensitivity. 
Additionally, there is no apparent correlation between 
BDNF changes and depressive symptoms[127]. Moreover, 
BDNF is also increased by amitriptyline in whole blood 
cell culture from volunteers who are healthy and not 
ill[128]. The analysis of  this biomarker is made more dif-
ficult, because the effect of  the stress on this parameter 
in animals is age-dependent[91]. Nevertheless, there are 
many suggestions of  possible biomarkers derived from 
depressed patients[129-134] or “altered” animals[3,135-137], but 
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so far none of  them has completely been recognized as 
indicative of  depression. Of  course, this does not ham-
per having a biomarker that could be useful to assess the 
pharmacological, not necessarily the therapeutical, activ-
ity of  the new medicine. 

As far as “pharmacological” activity is concerned, 
there are no well documented reports. However, the in-
terested reader should read the two very recent reviews 
on this topic: Leuchter et al[138] and Ward et al[139]. The first 
one describes what is interesting in examining the struc-
ture and function of  the brain and genomic, proteomes 
and metabolomic measures. In contrast, Ward and Ira-
zoqui[138] focused their attention on what antidepressants 
do not control or cure depressive symptoms. However, 
as one can see, none of  them have the right to be conclu-
sive.

CONCLUSION
The current available models are simply experimental 
paradigms sensitive to current antidepressants, which 
were initially discovered by serendipity. While the scien-
tific information on the pharmacological mechanism(s) 
of  action of  antidepressants is always important, the 
strategy to find therapeutically valid antidepressants must 
drastically change. Since the first animal models were 
proposed, there has been intense discussion about the 
criteria that models should have to be considered as suit-
able animal models[49]. However, despite this, all animal 
models are generally equally used and preference is given 
to those that are easier to be performed. 

The current methodology has permitted discovery of  
the mechanism(s) of  action of  existing antidepressants, 
such as monoamine uptake blockade and monoamino 
oxidase inhibition. The methods used so far might also 
be useful to study how to reduce the therapeutic delay 
in treating depression[93,139], even if  there is clinical dif-
ficulty in assessing fast antidepressant action. However, 
the weaknesses of  the actual way of  working in the field 
of  antidepressants appear clear. Whereas on the one 
hand, “altered” animals are used as behavioral models to 
test the antidepressant-like potential, on the other hand, 
normal animals are generally used to evaluate neuro-
chemical, electrophysiological, biochemical and molecular 
mechanism(s) of  action of  known antidepressants. More-
over, susceptible animals may be used in behavioral stud-
ies, whereas all the animals are used in non-behavioral 
experiments. Thus, there are two variables: “alteration” 
vs “normality” status, and “susceptible” vs “all” animals. 
Therefore, to reconcile all the results in order to formu-
late a working hypothesis is really a tough job. 

The rationale should be based theoretically on the 
background knowledge and then verified in antidepres-
sant-insensitive animals for that particular model. The 
construction of  a theoretical hypothesis is essential 
to have an idea of  possible biomarkers or their surro-
gates. Entering clinical phases without having biologi-
cal marker(s) to investigate, in order to assess whether 

compound plasma levels may be sufficient to trigger the 
desired pharmacological/therapeutical effects, seems to 
be destined to fail.

As previously written, it is difficult to model what is 
unknown. However, there are already some published be-
havioral approaches that seem more promising than oth-
ers. One has recently been published by Carboni et al[135], 
using Flinders rats. As expected, the immobility time in the 
forced swimming test of  the rats belonging to the Flinders 
Sensitive Line (FSL) was higher than those belonging to 
the Flinders Resistant Line. Both the antidepressants es-
citalopram and nortriptyline decreased immobility time 
in “normal” FSL rats, but not in FSL rats that underwent 
repeated maternal separation at postnatal age. This appears 
to be an example on how a behavioral manipulation makes 
animals resistant to drug treatment. Moreover, gene-
environment interactions revealed changes in peripheral 
levels of  analytes that are involved in inflammation and the 
regulation of  metabolic pathways.

Prediction of  clinical efficacy of  new antidepressant 
compounds is not easy and needs a very high level of  
expertise. The process for potential innovative antide-
pressants should go through the following steps: (1) have 
a clear “construct” criterion; (2) selection of  antidepres-
sant-insensitive animals by using “old” methods (i.e. 
escape deficits in the learned helplessness test; sucrose 
intake in the chronic mild stress; social defeat); (3) to test 
the compounds after and not before behavioral “altera-
tions”; (4) to verify that insensitivity does not depend on 
biological rhythms or pharmacokinetics/metabolic pro-
file; (5) to use both females and males; and (6) to identify 
biomarker(s). If  such a procedure is not followed, an-
other therapeutical me-too antidepressant is certain to be 
found. 

In order to discover the antidepressant of  the future, 
the problem of  non-responders needs to be addressed. 
It is also necessary to take into consideration that it is 
difficult to have a unique animal model for depression, 
as all pieces of  evidence “argue against a unified hypoth-
esis of  depression”[101]. Experimentally, it means that all 
antidepressant-sensitive animals should be discarded[140]. 
Thus, the alternative is the use of  behavioral methods to 
identify antidepressant-insensitive animals and electro-
physiological, neurochemical, biochemical and molecular 
studies should be performed in these animals. In-vitro 
studies should also be performed by using cells from 
“altered” animals. In this way, the concept of  predictive 
validity cannot be applied for future research anymore. 

The definition of  “antidepressant-insensitive” should 
depend on scientifically-based evidence. Thus, one should 
be sure that the insensitivity does not depend on phar-
macokinetic/metabolic profile of  the drug or particular 
seasonal effects. This implies replication of  a particular 
test throughout the year with concomitant plasma level 
assay. However, nobody has the golden recipe to discover 
original antidepressants, but after 50 years, where only 
me-too antidepressants in the therapeutical sense were 
introduced in the market, it is time to change. The first 
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change should be to not use any more normal animals or 
normal cells. For example, there is a wonderful review on 
the effects on brain dopamine after antidepressant and 
drug treatment in normal animals[38]. However, whether 
such a review may increase the insight in the therapeuti-
cal effects of  antidepressants is questionable, even if  the 
hypothesis that the authors put forward on dopamine D1 
receptors is fascinating. In fact, almost all data refer to 
normal animals. Thus, the hypothesis that antidepressants 
may enhance dopaminergic D1 sensitivity should be sup-
ported by data originated in “altered” animals.

Finally, the problem is how to screen for new antide-
pressants. Of  course, the experiments should be random-
ized and the observations performed by observers who 
are unaware of  the treatment. The question is whether it 
is worth spending such a long time for such a process. It 
is personal opinion of  the author of  this editorial that it 
is necessary, if  we want to embark a new era in the field 
of  antidepressants.
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