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Abstract
Retinal ischemia is a common clinical entity and, due 
to relatively ineffective treatment, remains a common 
cause of visual impairment and blindness. Generally, 
ischemic syndromes are initially characterized by low 
homeostatic responses which, with time, induce injury 
to the tissue due to cell loss by apoptosis. In this re-
spect, retinal ischemia is a primary cause of neuronal 
death. It can be considered as a sort of final common 
pathway in retinal diseases and results in irreversible 
morphological and functional changes. This review 
summarizes the recent knowledge on the effects of 
ischemia in retinal tissue and points out experimental 
strategies/models performed to gain better compre-
hension of retinal ischemia diseases. In particular, the 
nature of the mechanisms leading to neuronal damage 
(i.e., excess of glutamate release, oxidative stress and 
inflammation) will be outlined as well as the potential 
and most intriguing retinoprotective approaches and 
the possible therapeutic use of naturally occurring 
molecules such as neuropeptides. There is a general 
agreement that a better understanding of the funda-
mental pathophysiology of retinal ischemia will lead to 

better management and improved clinical outcome. In 
this respect, to contrast this pathological state, spe-
cific pharmacological strategies need to be developed 
aimed at the many putative cascades generated during 
ischemia. 

© 2012 Baishideng. All rights reserved.

Key words: Cell death; Glutamate; Hypoxia; Inflam-
mation; Neurodegeneration; Neuropeptides; Oxidative 
stress; Retinopathies

Peer reviewer: Tullio Florio, MD, PhD, Professor of Pharma-
cology, Dipartimento di Oncologia, Biologia e Genetica, Univer-
sita’ di Genova, Viale Benedetto XV, 2, 16132 Genova, Italy

Cervia D, Casini G. Recent advances in cellular and molecular 
aspects of mammalian retinal ischemia. World J Pharmacol 
2012; 1(2): 30-43  Available from: URL: http://www.wjg-
net.com/2220-3192/full/v1/i2/30.htm  DOI: http://dx.doi.
org/10.5497/wjp.v1.i2.30

INTRODUCTION
The mammalian retina is a very thin structure which 
obtains a limited amount of  energy from the vitreous 
humour. When the retinal blood supply is completely 
blocked, the retina can still manage to survive longer than 
expected. However, as a system, the retina is highly vul-
nerable to diseases that affect the exquisitely balanced in-
terplay of  the neural retina and the vasculature that nour-
ishes it. Visual loss occurs when this balance is disturbed. 
Generally, retinal diseases fall within the broad group of  
hypoxic ischemic disorders of  neural tissue.

Ischemic condition
Ischemia means inadequate blood supply (circulation) to 
a local area due to impairment of  the blood vessels to the 
area. Blood flow is either blocked, or the blood flowing 
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to the area has an extremely low oxygen saturation. Since 
all of  the body’s tissues need the supply of  nutrients and 
drainage of  metabolites to maintain function, ischemia 
can result in the shutdown of  the area or significant dam-
age to the area. Generally, ischemia causes a reduction of  
oxygen and glucose delivery, and, as a result, toxic metab-
olites, such as lactic acid, are unable to be removed. Even 
brief  interruptions of  blood flow can cause ischemia, and 
potentially result in a situation called an ischemic cascade, 
where cells with inadequate blood supply start dying and 
releasing toxins that damage neighbouring cells, causing 
them to rupture and release toxins of  their own, creating 
a ripple effect across the area. 

Ischemia should be distinguished from anoxia (a 
complete lack of  oxygen) and hypoxia (a reduction in 
oxygen)[1]. Hypoxia refers to a reduction of  either oxygen 
supply or utilisation. It may develop as a direct conse-
quence of  reduced oxygen supply, reduced ambient oxy-
gen pO2, low haemoglobin or impaired tissue utilisation 
following poisoning of  the mitochondrial cytochrome en-
zymes. On the other hand, ischemia describes a reduction 
in blood supply leading to decreased oxygen delivery but, 
unlike hypoxia alone, there is also limited or no removal 
of  damaging cellular metabolites. Although ischemia and 
hypoxia cause pathologically and clinically distinct pat-
terns of  injury, they usually coexist: ischemia always has 
a component of  hypoxia/anoxia, but hypoxia/anoxia 
does not imply ischemia. Ischemia-related pathologies are 
central to many major diseases and pose a challenge for 
healthcare systems worldwide. Diseases such as myocar-
dial infarction, angina, stroke and ischemic retinopathies 
are common and represent a major cause of  morbidity 
and/or mortality worldwide.

Structure of the retina
The retina is composed of  five principal neuronal cell 
types, including photoreceptors (the light sensitive cells in 
the retina), bipolar, horizontal, amacrine, and retinal gan-
glion cells (RGCs). A sixth type is that of  interplexiform 
cells, that may be considered an amacrine cell variant. 
The basic circuitry within the retina directs the flow of  
visual information from photoreceptors, through bipolar 
cells, to RGCs, which are the only output neurons and 
with their axons constitute the retinofugal projections to 
the brain. Two horizontal pathways modulate this flow: 
one provided by horizontal cells in the outer retina, the 
other formed by amacrine cells in the inner retina. Hori-
zontal cells are strongly electrically coupled and integrate 
light signals over a large retinal area. They feedback onto 
photoreceptors, and contact bipolar cells. Thus, inputs 
from a large surround region of  the retina influence the 
response of  photoreceptors and bipolar cells, providing 
the bipolar cell with a centre-surround organisation.

The retina is supplied by two arterial systems. While 
the photoreceptors of  the outer retina are supplied by 
the high-flow blood vessels of  the choriocapillaris, the in-
ner retina has an additional intra-retinal circulation (central 
retinal artery)[2]. For instance, the human central retinal 

artery branches into a dense microvascular network with 
multiple capillary plexi that serve the inner retinal neu-
rons and glia[3]. This retinal microvascular network is a 
true end-artery system and downstream from the precap-
illary arteriole the capillary beds form the key circulatory 
interface within the neuropile. Retinal capillary endothelia 
are non-fenestrated and each cell is linked by adherens 
and tight junctions that maintain the highly selective in-
ner blood retinal barrier[4]. In the absence of  a retinal 
lymphatic system, the retinal capillaries have a key role in 
clearing the neuropile of  unwanted metabolites.

Ischemic retina
The retina is one of  the most metabolically demanding 
tissues in the body. The rich capillary networks provide 
an excellent blood supply suiting the high energy demand 
of  the retinal light processing events. When the retinal 
circulation does not meet the requirements of  the retina, 
the retina suffers an ischemic damage. Since the retinal 
blood supply is complex, the reduction of  blood flow in 
certain blood vessels may induce ischemia in certain parts 
of  the retina and not in others. Thus, if  either the cho-
roidal or retinal blood flow are specifically reduced, then 
different parts of  the retina will be affected in different 
way. 

Retinal ischemia is a common clinical entity and, due 
to relatively ineffective treatment, remains a common 
cause of  visual impairment and blindness[1,2]. Indeed, 
ischemia in the retina and optic nerve is assumed to be 
involved in the pathogenesis of  major vision-threatening 
diseases, such as age-related macular degeneration, 
diabetic retinopathy and glaucoma. However, despite 
evidence from a substantial number of  clinical and ex-
perimental studies, the role of  retinal ischemia in these 
diseases is not understood in detail[5]. It should be noted 
that the cause of  the symptoms in various retinal isch-
emic diseases is a mixture of  hypoxia/anoxia rather than 
complete ischemia. Thus, it is tempting to speculate that 
hypoxia occurs in all “retinal ischemic diseases”. 

The pathways leading to retinal ischemia and the po-
tential therapeutic strategies have been reviewed in sev-
eral excellent papers[1,2,6]. Generally, ischemic syndromes 
are initially characterized by lower homeostatic responses 
which, with time, induce injury to the tissue due to cell 
loss by apoptosis. In this respect, retinal ischemia is a 
primary cause of  neuronal death. It can be considered 
as a sort of  final common pathway in retinal diseases 
and results in irreversible morphological and functional 
changes. Ischemia is also the driving force for new ves-
sel formation in the retina. Retinal neovascularisation is a 
major cause of  visual impairment. It is characterized by 
the development of  sprouts from retinal vessels that in 
most cases penetrate the inner limiting membrane grow-
ing into the vitreous and leading to retinal detachment 
and blindness[7]. Retinal neovascularisation is observed 
in ischemic retinopathies such as proliferative diabetic 
retinopathy, retinopathy of  prematurity, central vein oc-
clusion and branch retinal vein occlusion[8].
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The aim of  this article is to present the recent ad-
vances on the effects of  ischemia in retinal tissue and to 
point out experimental strategies/models performed to 
gain better comprehension of  retinal ischemia diseases. 
In particular, we outline the nature of  ischemic retinal 
damage leading to neuronal cell death and the potential 
and most intriguing retinoprotective approaches. 

FEATURES OF ISCHEMIA AND 
EXPERIMENTAL MODELS
The morphological and functional changes occurring 
in retinal ischemia are the consequence of  depleted ad-
enosine triphosphate (ATP) stores, due to deprivation of  
both glucose and oxygen, though transient loss of  these 
substrates is not immediately lethal[1,2,6]. Cell death is the 
result of  an extremely complex cascade of  biochemical 
responses initiated by energy failure. The main factors 
involved in ischemia-induced retinal degeneration are 
thought to be excitatory neurotransmitter release (i.e., 
glutamate), glial dysfunction, Ca2+ overload, formation of  
reactive oxygen species (ROS) and free radicals (oxida-
tive stress), and release of  potentially toxic mediators by 
activated inflammatory cells. These events finally lead to 
death (mostly by apoptosis) of  certain cell populations or 
the entire retina depending on the strength and duration 
of  the ischemic event.

A search of  the PubMed database yields more than 
1000 papers published in the last 10 years related to isch-
emia in the retina of  mammals, including humans, rats, 
mice, rabbits and pigs. Although caution is warranted in 
drawing general conclusions from any single method-
ological approach, the study of  the ischemic insult might 
itself  provide important insights in human pathophysiol-
ogy of  ischemia-related diseases. Besides the common 
clinical implications of  understanding retinal ischemia, 
such a model is also considered a suitable and reliable ex-
perimental setting to study (neuro) apoptotic mechanisms 
as well as for predicting (neuro) cytotoxicity/(neuro) cy-
toprotection mechanisms in the nervous system. 

In vivo ischemia-reperfusion injury
Acute and transient ischemia can be induced by elevating 
(40-120 min) the intraocular pressure to ca. 120 mmHg 
followed by a reperfusion (“return-to-control” condi-
tions) period lasting between 2 h and 60 d. This is called 
ischemia-reperfusion injury, which causes an inflamma-
tory and neurodegenerative response in the intact retina. 
This procedure models the neuronal damage observed 
in diseases with transient vessel occlusions and seems to 
replicate vascular abnormalities observed in the diabetic 
retinopathy and glaucoma[9]. Ischemia classically induces 
an increase of  glutamate levels (see below) as well as 
the loss of  retinal neurons indicated by decreased thick-
nesses of  the ganglion cell layer (GCL) and inner nuclear 
layer (INL), while apoptotic neurons can be detected in 
all nuclear retinal layers[10-15]. In contrast, the thickness 

of  the inner plexiform layer (IPL) to the inner limiting 
membrane results significantly increased due to edema[16]. 
RGCs show an elevated expression of  growth associ-
ated protein 43 after ischemia-inflicted damage, thus 
suggesting a temporal window during which RGCs may 
remodel their neuronal network in the damaged retina[17]. 
The amounts of  reduction in RGCs, visually evoked po-
tentials, scotopic and photopic electroretinogram (ERG) 
functions differ as the duration of  ischemia increases[18]. 
ERG experiments showed that a- and b-wave ampli-
tudes are also reduced[11,12,15,19]. It has been suggested 
that Zn2+, which is abundant in neurons, accumulates 
following an ischemic insult and may be responsible 
for retinal degeneration by the induction of  abnormal 
cyclooxygenase (COX)-2 expression[20]. After ischemia-
reperfusion injury, ROS production increases[21] as well 
as the levels of  tumor necrosis factor (TNF)-α and its 
receptors (TNF-R1 and TNF-R2)[10,22-24]. The levels of  
protein kinase C (PKC) are reduced and the expression 
of  phosphorilated extracellular-regulated kinase 1/2 are 
increased in the neuroretina, although other mitogen-
activated protein kinases (protein and/or mRNA levels) 
were found to be differentially altered in both the neu-
roretina and retinal arteries[24,25]. In addition, increased 
levels of  calcineurin or matrix metalloproteinases and 
decreased levels of  phospho-Akt/PKB or phospho-Bad 
have been reported[23,26,27]. Interestingly, although both 
protein and mRNA levels of  genes expressed by distinct 
subpopulations of  amacrine cells are reduced, transcript 
levels are reported to be less attenuated than protein 
levels[28]. In addition, heterogeneous populations of  resi-
dent microglia/macrophages in the inner retina result 
activated early after ischemia-reperfusion injury, even be-
fore dropout of  the photoreceptor cells, and exhibit dif-
ferent antigenic expression which are further altered in 
the recovery phase[29,30]. The cytokine osteopontin is ex-
clusively expressed by RGCs in the physiological retina, 
but in response to retinal ischemic neurodegeneration is 
synthesized de novo by endogenous, activated microglia[31]. 
Concerning the retinal glia, some Müller glial cells die by 
apoptosis, and clusterin produced and released by Müller 
cells may play an important pathogenetic role[14,32]. Inter-
estingly, glial cells in the post-ischemic retina, but not in 
control retina, swell upon hypotonic stress. Swelling of  
control cells could be evoked when their K+ channels 
are blocked. After transient ischemia, glial cells strongly 
downregulate their K+ conductance and differentially 
modulate K+ channel expression[33-35]. An involvement of  
water channel aquaporins has been also suggested[12,36].

Ischemic pre-conditioning, in which a brief  (min-
utes) ischemic episode and recovery period precede the 
ischemia-reperfusion procedure, has been reported to 
effectively prevent subsequent retina neurodegenera-
tion[11,37]. The ischemic pre-conditioning model has been 
recently used to demonstrate that neurodegeneration 
and vascular dysfunction in response to retinal ischemia-
reperfusion may be functionally separated, thus suggest-
ing that diseases that include an ischemic retinal response 
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may require combination therapies for protection of  
both vascular and neural function[11]. The activation of  
translational activity seems to be a mediator of  ischemia-
associated damage in the retina, and ischemic pre-condi-
tioning may prevent activation of  this mechanism[38,39]. In 
particular, an altered expression of  genes implicated in 
the immune response and in apoptosis may be involved 
in ischemic pre-conditioning. Recently, neuroprotec-
tion by retinal ischemic post-conditioning, i.e., transient 
ischemia after more lengthy, damaging ischemia, has 
been also described[40-42]. Post-conditioning significantly 
protects retinal function and histology from ischemia-
reperfusion injury through a mechanism that involves de 
novo synthesis of  proteins[42]. One possible explanation of  
the effectiveness of  ischemic post-conditioning is that it 
augments intrinsic neuroprotective mechanisms initiated 
during ischemia. Increasing duration of  the damaging 
ischemic insult may therefore impact the effectiveness of  
ischemic post-conditioning. Ischemic pre-conditioning, 
in contrast, sets in motion a series of  neuroprotective 
events prior to the onset of  ischemia. Thus, ischemic 
pre-conditioning and ischemic post-conditioning may 
operate by different mechanisms. In this respect, many 
different factors have been shown to play a role in the 
neuroprotection and neural function of  ischemic pre- 
and/or post-conditioning. Among them, adenosine A1 
and A2a receptors, ROS, nitric oxide, p38α, mitogen-ac-
tivated protein kinase phosphatase-1, PKC α and γ, Akt 
subtypes, iron and autophagic signals[43-54]. These reports 
indicate the presence of  robust and redundant signalling 
systems which concur in the development of  ischemic 
pre-/post-conditioning. 

Other in vivo models
Ischemic optic neuropathy is a common disorder caused 
by disruption of  the arterial blood supply to the optic 
nerve which can result in significant loss of  visual acuity 
and/or visual field. An ischemic optic nerve injury may 
be produced by intravenous injection of  Rose Bengal dye 
followed by argon green laser application to the retinal 
arteries overlying the optic nerve, causing a coagulopathy 
within the blood vessels and disruption of  optic nerve 
and retinal perfusion[55,56]. After this ischemic injury, oli-
godendrocytes, as well as RGCs, undergo progressive 
stress, with dysfunction and apoptosis. Similar results 
have been obtained by crushing one optic nerve for few 
seconds after a partial orbitotomy[57]. An endothelin-1 
(ET-1)-induced chronic optic nerve ischemia model 
was obtained by delivering ET-1 at a constant rate for 
weeks[58]. In primates, chronic optic nerve ischemia causes 
demonstrable and localized damage of  the optic nerve, 
without intraocular pressure elevation. There is preferen-
tial loss of  large RGC axons in animals with significant 
axonal loss. These results suggest that ischemia-induced 
focal axonal loss is similar to human glaucoma and may 
represent a differential regional vulnerability[59].

Different approaches to induce retinal ischemia through 
the modulation of  retinal blood flow have been also used. 

For instance, the occlusion of  small retinal arteriolar 
branches by argon laser coagulation to induce focal isch-
emic insults induced protein changes in the cytoskeleton 
of  RGCs, implying that the local environment plays an 
important role in modulating axonal structure and func-
tion[60]. In addition, typical signs of  ischemia manifested 
in these retinas include development of  stable retinal 
edema, decrease in the b/a ratio of  the ERG b and a-wave 
amplitudes, pronounced disorders in the retinal microcir-
culation system, cell death of  the inner layers[61]. Eyes un-
der the experimental branch retinal vein occlusion display 
signs of  retinal damage and ischemia on ophthalmoscopy, 
fundus photography, and fluorescence angiography[62]. In 
addition, after ischemic damage by permanent bilateral 
common carotid artery occlusion, a severe degenera-
tion of  all retinal layers has been reported. In particular, 
there is a reduction in retinal thickness and a robust 
loss of  cells in the GCL[63]. In addition, the intensity of  
immunostaining for vesicular glutamate transporter 1, 
γ-aminobutyric acid transporter, and PKCα, but not 
that for glial fibrillary acidic protein, results dramatically 
decreased[64]. Recently, it has been reported that retinal 
ischemia induced by elevating intraocular pressure mostly 
affects Müller glial cells, whereas retinal ischemia induced 
by middle cerebral artery occlusion induces only a small-
scaled axonal transport disturbance[65]. Another model 
of  retinal ischemia has been obtained by clamping the 
ocular perfusion pressure in the left eye to 5 mmHg for 
few hours[66]. In these conditions, multifocal ERG shows 
a decrease in retinal functions and no signs of  recovery 
were found within the 6-wk observation period. Quan-
titative histology reveals a highly significant reduction in 
the number of  RGCs, amacrine cells and horizontal cells 
after the ischemic insult. Similarly, the transient ligature 
of  the ophthalmic vessels has been shown to induce de-
generation of  the inner retinal layers and the retinotectal 
projection, 3 mo after the insult[67]. As expected, microar-
ray analysis has revealed that the central retinal artery li-
gation-induced retinal ischemia, followed by reperfusion, 
is characterized by a time-dependent modulation of  dif-
ferent gene families, as for instance transcription-related 
genes, protein kinase-related genes, and apoptosis-related 
genes[68]. 

Ex vivo models
The advantage of  ex vivo models is the option to make di-
rect observations and measurements of  cellular responses 
to chemicals in a defined extracellular environment. In 
addition, in these models blood flow effects are excluded. 
Classically, an ischemic condition may be obtained in reti-
nal slices by perfusion with oxygen deprived/low glucose 
solution. In these conditions, ischemic retinal damage has 
been found to be dependent on the Ca2+ concentration in 
the perfusion medium[69]. 

The first model of  the ischemic mouse retina has been 
obtained by incubating retinas in N2-saturated PBS con-
taining iodoacetic acid[70]. These retinas showed a marked 
apoptotic cell death and immunohistochemical analyses 
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demonstrated that different retinal cell populations re-
spond differently to the ischemic insult. Consistent with 
a role of  glutamate excitotoxicity in ischemia-induced 
neuronal death, retinal glutamate release was observed to 
increase under ischemic conditions. In addition, among 
G protein-coupled receptor kinases (GRKs) and regula-
tors of  G protein signalling (RGSs), GRK1 and RGS1 
expressions have been reported to increase in the ex vivo 
ischemic retina[71].

In rats, retinal explants have been subjected to chemi-
cal ischemia by incubation with PBS containing iodoace-
tic acid and sodium cyanide. In this model, ischemia has 
been shown to cause diffuse apoptotic cell death and to 
abolish choline acetyltransferase, tyrosine hydroxylase 
and neuronal nitric oxide synthase (nNOS) immunoreac-
tivities in the INL, IPL and GCL. It also abolished PKC 
immunoreactivity in rod bipolar cells and terminals, but 
did not damage RGCs immunolabeled with antibodies 
directed to microtubule-associated protein-1[72].

PERSPECTIVES ON ANTI-ISCHEMIC 
TREATMENTS
As summarised above, several distinct factors are in-
volved in the degenerative events promoted in the retina 
by an ischemic condition. The mechanisms leading to 
neuronal damage and the interplay among these factors 
are extremely complex. A comprehensive review by Os-
borne and colleagues[1] has elucidated the state of  the art 
at the beginning of  the new millennium. In the following 
paragraphs, we will consider the most recent advances in 
the research of  agents that may interfere with the main 
events associated with retinal ischemia (i.e., excess of  glu-
tamate release, oxidative stress and inflammation), and in 
the possible therapeutic use of  naturally occurring mol-
ecules such as neuropeptides.

Glutamate
Glutamate is the major excitatory neurotransmitter in 
the retina and it mediates the flow of  visual information 
through the “vertical” retinal pathway, being released by 
photoreceptors, bipolar cells and RGCs, although it is also 
in a subset of  amacrine cells. It has long been known that 
glutamate administration to retinal tissue in vitro leads to 
histological damage. A vast quantity of  data demonstrates 
that the process of  glutamate excitotoxicity occurs dur-
ing retinal ischemia and that this process plays a funda-
mental role in the pathogenesis of  ischemic retinopathy. 
Excitotoxicity in retinal ischemia is mainly mediated by 
metabotropic N-methyl-D-aspartate (NMDA) receptors 
and extensive evidence has established the protective role 
of  different NMDA antagonists, as for instance, MK801, 
dextrometorphan, and sulfasalazine[1], in retinal ischemia. 
In addition, there is also a quantity of  experimental data 
demonstrating a role for non-NMDA [2-amino-3-(5-
methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA)/
kainate] ionotropic receptor activation in retinal ischemic 

injury[1]. Therefore, activation of  both NMDA and non-
NMDA glutamate receptors is likely to occur during or 
subsequent to retinal ischemia, and over-stimulation of  
both receptor types can induce pathological changes[1].

Glutamate levels: In the ischemia-reperfusion in vivo rat 
model, glutamate levels have been directly measured us-
ing a microdialysis probe placed into the retinal tissue 
in conditions of  high intraocular pressure. This method 
revealed a 90% increase of  glutamate levels which was 
reversed by a pre-treatment with the NMDA antagonist 
MK801. In addition, the same antagonist as well as an 
antagonist of  non-NMDA receptors (i.e., GYKI52466) 
significantly reduced RGC death, thus confirming the no-
tion that retinal ischemia results in increased intraretinal 
levels of  glutamate with consequent excessive activation 
of  NMDA and non-NMDA receptors leading to excito-
toxic, glutamate-mediated, RGC death[73]. Another study 
suggests that in the ischemic retina glutamate is released 
by both amacrine and bipolar cells in the inner nuclear 
layer[74].

Glutamate and apoptosis: One interesting question con-
cerns the relationships between glutamate excitotoxicity 
and apoptotic cell death in the ischemic retina. Optic at-
rophy 1 (OPA1) is a mitochondrial inner membrane GT-
Pase whose release participates in the rapid and complete 
release of  cytochrome C in apoptotic cell death[75]. OPA1 
has been shown to be released from mitochondria after 
ischemia induced by increased intraocular pressure. This 
event is inhibited by MK801, suggesting that NMDA 
over-activation leads to a distinct mitochondria-mediated 
cell death pathway in ischemic retinas[76]. In addition, it 
has been reported that the protective effect on RGCs in 
the ischemic retina exerted by an antagonist of  the gly-
cine site-specific NMDA receptor is concomitant with a 
reduction of  the expressions of  Bax, Ca2+/calmodulin-
dependent protein kinase Ⅱ, cytochrome C oxidase, cas-
pase-3, and glutamate [NMDA] receptor subunit zeta-1 
and with an increase of  the Bcl-2/Bax ratio, suggesting 
that this antagonist might act through inhibition of  apop-
totic signalling[77].

Another link between ischemia-induced glutamate 
excitotoxicity and retinal cell death is provided by Ca2+ 
channel activation. Indeed, it has convincingly been 
shown that several blockers of  Na+/Ca2+ channels and 
intracellular Ca2+-sensitive receptors exert neuropro-
tective effects on retinal ischemia[15,78,79]. In this line, 
calbindin D28k, calretinin, and parvalbumin, members 
of  the EF-hand Ca2+-binding protein family, may play 
important neuroprotective roles against ischemia due to 
their ability to buffer Ca2+[80,81]. In addition, it has been 
reported that the Na+/Ca2+ exchanger (NCX), which 
can cause Ca2+ overload in pathological conditions with 
consequent neuronal cell death, may play a role in retinal 
cell death induced by NMDA and ischemia-reperfusion. 
Indeed, NCX1(+/-) mice possess significant protection 
against retinal damage induced by intravitreal injection of  
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NMDA, while SEA0400, a selective NCX inhibitor, sig-
nificantly reduces NMDA- or high intraocular pressure-
induced retinal cell death in mice and cell damage in 
oxygen-glucose deprived RGCs[82]. Finally, spider toxins 
acting as Ca2+ channel blockers have been reported to re-
duce glutamate content and cell death in oxygen-glucose 
deprived retinal slices[83].

Glutamate receptor modulation and expression: Modu-
lation of  the NMDA receptor may result in important 
neuroprotective effects. This is the case of  the α2-
adrenergic receptor agonist brimonidine, which has been 
reported to modulate NMDA receptor function through 
a reduction of  intracellular cyclic adenosine monophos-
phate production and to protect RGCs in rat glaucoma 
and rabbit retinal NMDA excitotoxicity models[84]. In ad-
dition, brimonidine has also been observed to reduce the 
effects of  ischemic optic neuropathy[55] or of  ischemia-
reperfusion injury in rats[85].

AMPA-type glutamate receptor (GluR) subunits have 
been observed to be altered in the ischemic retina. In 
particular, retinal ischemia-reperfusion leads to differen-
tial changes in the expression of  the different AMPA-
type GluR subunits, which may affect excitatory synaptic 
transmission in the inner retina[86]. Shortly after ischemia-
reperfusion, immunolabeling of  GluR1, -2/3, and -4 is 
strongly decreased, whereas the corresponding mRNA 
levels are not affected, indicating degradation at the pro-
tein level. In contrast, the GluR2 protein appears to be 
relatively stable under post-ischemia conditions[87].

Glutamate transporters: Excess in extracellular gluta-
mate leading to excitotoxicity in the ischemic retina is 
likely to be due to failure of  glutamate transporters. It is 
well known that glutamate transport, mainly via glutamate 
aspartate transporter (GLAST) and glutamate transporter 
1 (GLT-1), is a cardinal mechanism for maintaining gluta-
mate homeostasis in normal and pathological conditions. 
A central question in retinal ischemia is therefore whether 
glutamate transporters can remove glutamate from the 
extracellular space under ischemic conditions. Concern-
ing glutamate transporter localization, it is not altered 
after the insult, despite severe retinal degeneration[88]. In 
a rat glaucoma model, a significant increase of  GLT-1 
in the ischemic retina was reported, while GLAST, ex-
pressed in Müller cells, remained stable[89]. In any case, 
glutamate transporter function is severely impaired after 
ischemia, but a limited glutamate removal from the extra-
cellular space has been shown to persist during simulated 
ischemia[90], suggesting that pharmacological enhance-
ment of  glutamate transporter activity may reduce tis-
sue damage resulting from toxic extracellular glutamate 
concentrations. Trimetazidine, an anti-ischemic metabolic 
agent which is recognized as an efficient drug against 
ischemic injuries, was found to inhibit the extracellular 
glutamate accumulation in rat retina. It can also reverse 
the ischemia-induced inhibition of  glutamate transport 
in rat Müller cells and, likely due to this positive action 

on the glial glutamate transporter, it protects the retina 
against excitotoxic damage[91].

Oxidative stress
Glucose/oxygen deprivation and excessive glutamate re-
lease result in the formation of  free radicals, which have 
been proposed as important mediators in retinal damage 
caused by ischemia. The detrimental effects of  ROS can 
be appreciated by considering the retinal injury following 
reperfusion after ischemia. It may appear paradoxical that 
recovery of  blood flow results in retinal damage, how-
ever a quantity of  oxygen-derived and other free radicals 
are formed when reduced compounds, which accumulate 
during ischemia, are reoxidized. A free radical burst then 
characterises the early stage of  reperfusion, and it over-
whelms normal cellular antioxidant defence mechanisms, 
causing oxidative stress and retinal injury. Not only the 
mitochondria of  neuronal cells generate free radicals, but 
also activation of  glial cells and infiltrating leukocytes 
release inflammatory mediators, such as arachidonic acid, 
nitric oxide and cytokines, which all play major roles 
in the formation of  free radicals following ischemia[1]. 
However, the question as to whether the post-ischemia 
increase in nitric oxide production is beneficial or det-
rimental to the retina has proved difficult to answer. In 
this respect, increased nitric oxide levels are reported to 
participate in protective effects of  some compounds but 
also to induce retinal damage [mainly trough inducible ni-
tric oxide synthase (iNOS) activation][1] (see also below), 
suggesting that activation of  nitric oxide synthase (NOS) 
causes cell death or the opposite. This is partly due to the 
lack of  specificity of  the majority of  pharmacological 
tools employed to date, partly due to the variety of  differ-
ent experimental protocols, and partly to the complexity 
of  the nitric oxide system in the retina[1]. Thus, a critical 
evaluation of  the role of  nitric oxide in retinal ischemical 
damage is still to come and further work is clearly neces-
sary to sort this out.

Antioxidant enzymes: An evaluation of  the expres-
sion and protein levels of  antioxidant enzymes in the rat 
retina exposed to oxidative stress induced by ischemia-re-
perfusion injury indicated a very modest, if  any, response 
to oxidative stress[92]. However, delivery of  antioxidant 
enzyme genes through administration of  plasmids en-
coding superoxide dismutase 2 or chloramphenicol acet-
yltransferase significantly reduced levels of  superoxide 
ion, H2O2, and 4-hydroxynonenal as well as the ischemia-
reperfusion-induced apoptosis of  retinal vascular cell and 
retinal capillary degeneration[93].

Antioxidant molecules: Ischemia-reperfusion induces 
a decrease in glutathione levels[94]. Not surprisingly, the 
administration of  antioxidant agents has been found to 
significantly protect retinal neuronal elements from the 
effects of  ischemia-induced oxidative stress. This is the 
case of  lutein, which has been reported to inhibit the 
increase of  nNOS and COX-2 expression levels[95] and 
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to protect both outer and inner retinal neurons from 
ischemic damage[96]. Together with lutein, three other 
commonly used antioxidants (vitamin E or α tocopherol, 
fenugreek or Trigonella foenum-graecum and germander or 
Teucrium multicaule) have been reported to exert protec-
tion against in vivo retinal ischemia-reperfusion injury in 
rats[97]. In general, multiple vitamin E forms have been 
demonstrated to be effective in preventing retinal injury 
following ischemia-reperfusion[94,98]. Recent data show 
that nicotinamide attenuates injury to the retina caused 
by ischemia-reperfusion probably acting as a an anti-
oxidant[99]. Similarly, antioxidant protective mechanisms 
may underlie the protection against ischemia-reperfusion 
induced morphological changes and lipid peroxidation 
provided by fibroblast growth factor whose biostability is 
improved by modification with polyethylene glycol[100].

An important group of  antioxidant molecules with 
a positive effect against retinal ischemia is that of  fla-
vonoids[101,102]. The antioxidant epigallocatechin gallate 
(EGCG), a catechin-based flavonoid derived from green 
tea, stimulates glutathione (GSH) levels[103] and protects 
retinal neurons in vivo from ischemia-reperfusion and in 
vitro from oxidative stress by H2O2

[103,104]. It has been re-
ported that EGCG is effective in protecting RGCs from 
ischemia-reperfusion challenge by ameliorating retinal 
nitrosative stress and by regulating cell death through 
apoptotic pathways[105]. In addition, orally administered 
EGCG attenuates injury to the retina caused by isch-
emia-reperfusion where caspases are activated[106]. Finally, 
the isoflavone genistein has been reported to blunt the 
effects of  ischemia to the retina[107], while the flavonoid 
baicalin counteracts ischemic and oxidative insults to reti-
nal cells and lipid peroxidation to membranes of  nerve 
cells[108].

Radical scavengers: In addition to antioxidant mol-
ecules, agents acting as radical scavengers exert important 
protective actions against ischemia. Ferulic acid signifi-
cantly attenuates retinal ischemia-reperfusion induced 
alterations by acting as a hydroxyl radical scavenger[109], 
while edaravone protects the retina from ischemia-
reperfusion injury in rats by reducing oxidative stress and 
inhibiting apoptosis of  retinal neurons[110]. The radical-
scavenging activity of  docosahexaenoic acid may also be 
protective against oxidative stress-induced cell damage in 
RGCs[111].

Other molecules: A variety of  other molecules display-
ing protective effects against ischemia-induced oxida-
tive stress in the retina, but which cannot be classified 
as known antioxidants or radical scavengers has been 
investigated in recent years. For instance, retinal lipid 
peroxidation, induced by ischemia-reperfusion[94], may be 
attenuated by the anti-ischemic metabolic agent trimeta-
zidine[112]. Aldose reductase, the first and rate-limiting 
enzyme in the polyol pathway, contributes to retinal 
ischemic injury through increased edema and free radical 
accumulation[113]. The aldose reductase inhibitor fidarestat 

significantly counteracts cell death and sorbitol pathway 
intermediate accumulation in ischemic retinas[114]. Coen-
zyme Q10, an essential cofactor of  the electron transport 
chain, affords neuroprotection[115] probably preventing 
the formation of  the mitochondrial permeability transi-
tion pore[116]. D-allose, a rare sugar, may protect neurons 
in the ischemic retina by decreasing extracellular gluta-
mate and attenuating oxidative stress[117]. The transcrip-
tion factor nuclear factor (erythroid-derived 2)-like 2 is 
a master regulator of  the antioxidant response, and it is 
implicated in cytoprotective mechanisms in the retina in 
response to ischemia-reperfusion injury[118]. Agmatine is 
an endogenous polyamine that is widely distributed in the 
brain and other tissues. It binds with high affinity to α2-
adrenoceptors and inhibits NMDA receptors and NOS 
in the brain. Agmatine exerts a significant neuroprotec-
tive effect on guinea pig retinas after transient ischemia-
reperfusion insult[119]. H2S at low concentration is neu-
roprotective against oxidative stress. ACS67, a hydrogen 
sulfide-releasing derivative of  latanoprost acid, acts as an 
H2S donor and stimulates GSH levels and significantly 
attenuates H2O2-induced toxicity to RGCs in culture[103]. 
Plant derivatives have also been shown to blunt the ef-
fects of  retinal ischemia. Recent data report that Polygo-
num Bistorta L. n-butyl Alcohol has a therapeutic effect 
on retinal ischemia-reperfusion injury by increasing the 
activities of  NOS terminator and endothelial NOS, de-
creasing the activity of  iNOS, elevating the content of  ni-
tric oxide and enhancing retinal anti-oxidative activity[120]. 
In addition, Lycium barbarum polysaccharides, extracted 
from wolfberries, are good for “eye health” according to 
Chinese medicine. Pre-treatment with polysaccharides for 
1 wk effectively protected the retina from neuronal death, 
apoptosis, glial cell activation, aquaporin water channel 
up-regulation, disruption of  the blood-retina barrier and 
oxidative stress[121]. Finally, caffeic acid phenethyl ester 
can protect the rat retina from ischemia-reperfusion in-
jury by enhancing the anti-oxidative ability and inhibiting 
the apoptosis of  retinal cells[122].

Inflammation
It is widely accepted that acute inflammatory responses 
contribute to ischemic brain injury, especially following 
reperfusion. In retinal ischemia, potentially toxic media-
tors are released by activated inflammatory cells, by glial 
elements, and by injured neurones. Different roles of  ara-
chidonic acid, NOS (especially iNOS), cytokines such as 
interleukin-1, and TNF-α have been described[1]. In ad-
dition, the importance of  inhibiting adhesion molecules 
involved in leukocyte-endothelium interactions in retinal 
ischemia has been demonstrated. Indeed, reduction of  
intercellular adhesion molecule 1 (ICAM-1) mRNA ex-
pression in the ischemic rat retina obtained with pitavas-
tatin is associated with attenuation of  ischemia-induced 
leukocyte-endothelial interactions[123]. Further, triamcino-
lone acetonide, an anti-inflammatory drug constituted 
of  a corticosteroid suspension that downregulates adhe-
sion molecules of  retinal vascular endothelium, inhibits 
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leukocyte-endothelium interactions in the retina after 
ischemia and effectively decreases retinal thickness due to 
edema[124].

Inhibition of  COX-2 and iNOS: Concerning the ara-
chidonic acid pathway, it has been reported recently that 
COX-2 blockade with celecoxib, a selective COX-2 in-
hibitor, rescues RGCs from death after ischemic injury, 
while in COX-2 knockout mice RGCs are resistant to 
ischemia-reperfusion injury[125]. On the other hand, it has 
been demonstrated that phenylbutyrate, which inhibits 
iNOS levels, can play a role as an effective retinal protec-
tor against the damaging effects of  ischemia in rats[126].

TNF-α: Retinal ischemia results in increased expression 
of  TNF-α and its receptors[127]. A study investigating the 
role of  CD40, a member of  the TNF-receptor superfam-
ily, in the pathogenesis of  retinal injury identified CD40 
as a regulator of  retinal inflammation and neurovascu-
lar degeneration. The observations support a model in 
which CD40 stimulation of  endothelial and Müller cells 
triggers adhesion molecule up-regulation and chemokine 
production, promoting the recruitment of  leukocytes that 
express iNOS/COX-2[128].

TNF-α plays a largely deleterious role in ischemia-re-
perfusion injury, and direct neutralization of  this cytokine 
partially preserves retinal function[22]. Indeed, it has been 
reported that the histone deacetylase inhibitor trichostatin 
A protects the retina from ischemic injury and that its 
neuroprotective effect is associated with the suppression 
of  retinal TNF-α expression and signalling[129]. In addi-
tion, thalidomide treatment has also been found to re-
duce the effects of  retinal ischemia-reperfusion through a 
decrease of  TNF-α synthesis[130].

Combined effects on inflammation mediators: A num-
ber of  recent studies have revealed a variety of  factors 
that may reduce the effects of  retinal ischemia acting on 
the expression of  cytokines, chemokines, cell adhesion 
molecules or TNF-α, or on NOS activity or expression. 
For instance, nuclear factor-κB (NF-κB) is an essential 
transcription factor that controls the gene expression of  
cytokines, chemokines, growth factors, and cell adhe-
sion molecules. Pentoxiphylline, an antioxidant, has been 
found to decrease the up-regulated activation of  NF-
κB and the expression of  proinflammatory cytokines, 
TNF-α and interleukin (IL)-1β in rat retinas following 
ischemia-reperfusion[131]. Certain NF-κB-regulated pro-
inflammatory and redox-active pathways are central to 
glial neurotoxicity induced by ischemic injury. In retinas 
of  transgenic mice in which NF-κB pathway was sup-
pressed specifically in astrocytes, neuroprotection was 
associated with significantly reduced expression of  pro-
inflammatory genes, encoding TNF-α, chemokine (C-C 
motif) ligand 2 (CCL2), C-X-C motif  chemokine 10 
(CXCL10), IL-1β, vascular cell adhesion molecule 1, sev-
eral subunits of  NADPH oxidase and NOS[132].

Byproducts of  heme degradation (bilirubin, ferritin, 

and CO) have been proven to confer cellular protection 
through their anti-inflammatory, antiapoptotic, antip-
roliferating, and antithrombotic effects. In a rat model 
of  ischemia-reperfusion injury, overexpression of  heme 
oxygenase (HO)-1 obtained with cobalt protoporphyrin 
(a potent HO-1 inducer) was associated with inhibi-
tion of  caspase-3, p53, NF-κB, and iNOS and with in-
creased expression of  Bcl-xL. At the same time, the anti-
inflammatory effect of  HO-1 was related to reduction in 
the recruitment of  macrophage infiltration in the retina 
through the suppression of  monocyte chemoattractant 
protein[133].

The protein encoded by the toll-like receptor 4 (Tlr4) 
gene plays a fundamental role in pathogen recognition 
and activation of  innate immunity. Tlr4 deficiency has 
been linked with reduced neuronal death and lowered 
levels of  proinflammatory cytokine expression in the hip-
pocampus in models of  global cerebral ischemia-reperfu-
sion[134]. In a model of  retinal ischemia-reperfusion, Tlr4 
deficiency was associated with significantly increased sur-
vival of  neurons and with significantly reduced expres-
sion of  proinflammatory genes, including TNF-α, IL-6, 
CCL2, CCL5, CXCl10, iNOS, and ICAM-1[135]. Similar 
effects have been reported in ischemic retinas treated 
with phosphatidylserine-liposomes[136] or with ATP-lipo-
somes[137].

Retinal ischemia-reperfusion induces the expression 
and deposition of  complement components. In these 
conditions, injured RGCs may be targeted and actively 
destroyed through complement mediated processes. 
Complement component 3 gene deficient mice clearly 
exhibited reduced optic nerve damage and substantial 
preservation of  RGCs, suggesting that inhibition of  the 
complement cascade delays optic nerve axonal and RGC 
degeneration in retinal ischemia[138].

Aldose reductase activity plays an important role in 
ischemia-reperfusion injury in the retina. In addition to 
oxidative stress (see above) the mechanisms involving 
this enzyme may be linked to inflammation. Indeed, the 
aldose reductase inhibitor fidarestat has been shown to 
partially suppress the inflammatory response associated 
with retinal ischemia and manifested by increased gene 
expression of  TNF-α and ICAM-1 as well as elevated 
protein levels of  soluble ICAM-1[139].

Protective effects of neuropeptides
Neuropeptides and their receptors are widely expressed 
in mammalian retinas, where they exert multifaceted 
functions both during development and in the mature 
animal[140]. Some of  these neuropeptides have also been 
found to play important neuroprotective actions. In 
particular, in recent years somatotropin release inhibi-
tory factor (somatostatin) (SRIF) and pituitary adenylate 
cyclase activating peptide (PACAP) have been reported 
to be highly protective against retinal cell death caused by 
ischemia, while data on opioid peptides, corticotropin-
releasing factor (CRF), endocannabinoids, angiotensin Ⅱ, 
and a peptide derived from the activity-dependent neuro-
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protective protein have also been published.
Using an ex vivo rat retinal model, SRIF analogues 

have been described to protect the retina from ischemic 
damage[72]. These observations have been confirmed and 
expanded in an ex vivo mouse retinal model, showing that 
the neuroprotective effect of  SRIF in ischemic retinas 
is mediated by the SRIF subtype receptor 2 (sst2). These 
studies showed that an increased expression of  function-
al sst2

[70] or the use of  SRIF or SRIF receptor agonists, 
such as the multireceptor ligand pasireotide and the sst2 
agonist octreotide[71], protect against retinal ischemia re-
ducing the number of  apoptotic neurons, the expression 
of  apoptotic markers, such as caspase-3 mRNA, and the 
release of  glutamate. In contrast, cell death was increased 
by blocking sst2 with the sst2 antagonist cyanamide[71]. 
In addition, SRIF as well as sst2 agonists, administered 
intravitreally, have been shown to protect the retina from 
AMPA-induced neurotoxicity in vivo[141].

An over-expression of  functional sst2 characterises 
the retinas of  mice carrying genetic deletion of  another 
SRIF receptor, sst1

[142-145]. One would expect that sst2 ago-
nist administration to these retinas results in greater pro-
tection from ischemic damage. However, in contrast to 
this expectation, in sst2 over-expressing ischemic retinas 
SRIF analogues increased cell death, and octreotide also 
increased glutamate release. This apparent contradiction 
has been clarified by experimental data at pharmacologi-
cal and molecular level showing that over-expressed sst2 
are likely to be rapidly desensitized by agonists (i.e., oc-
treotide), thus resulting in a decrease of  their functional 
activity[71]. 

The mechanisms by which the somatostatin analogues 
prevent the damage produced by chemical ischemia re-
quire further elucidation. However, a role of  nitric oxide 
and cyclic guanosine monophosphate has been proposed 
as mediators of  SRIF protective action against retinal 
ischemia[146].

PACAP is known to protect the retina against a vari-
ety of  insults[147]. In particular, a neuroprotective effect of  
PACAP against RGC loss induced by ischemia following 
high intraocular pressure in the rat has been reported 
recently[148]. In general, PACAP acts by activating anti-
apoptotic and inhibiting proapoptotic signalling pathways 
in the retina[147]. Indeed, the retinoprotective effects of  
PACAP are not phenotype-specific, but it rather influ-
ences general cytoprotective pathways irrespective of  the 
neuronal subtypes in the retina subjected to the effects of  
ischemia[64].

Concerning opioid peptides, recent evidence demon-
strates that activation of  one or more opioid receptors 
can reduce the effects of  ischemia-reperfusion injury by 
the suppression of  TNF-α production[10]. In addition, 
intravitreal administration of  morphine immediately after 
reperfusion blunts the effects of  ischemia-reperfusion in-
jury, and pharmacologic evidence suggests that this pro-
tective action may be mediated, at least in part, by opioid 
receptors[16,149]. Possible protective effects of  CRF are 
suggested by a study showing that intraocular administra-

tion of  urocortin 2, a paralog of  CRF that preferentially 
activates CRF2 receptors, may preserve the thickness 
of  retinal layers and reduce RGC loss in ischemic reti-
nas[63]. Retinal ischemia has also been found to induce 
modifications in the retinal endocannabinoid metabolism 
and there is evidence that drugs that interfere with the 
endocannabinoid system may prevent retinal damage 
due to ischemic insult[150]. Further, a recent study reports 
that ischemia promotes the expression of  angiotensin Ⅱ 
type 1 receptor in the inner retina and that blocking this 
receptor may attenuate the retinal ischemic damage[21]. 
Finally, NAP, a synthetic 8-amino acid peptide (NAPV-
SIPQ) derived from activity-dependent neuroprotective 
protein and playing important roles in neuronal differen-
tiation and survival, has been found to exert a neuropro-
tective action in vivo after retinal ischemia and optic nerve 
crush[57].

CONCLUSION
At present, a working hypothesis to comprehensively 
explain the causes and the detrimental effects of  retinal 
ischemia is still lacking. As outlined above, the cascade 
of  events leading to cell death and their prevention may 
be similar in retinal ischemia and hypoxia. However, in 
basic sciences such a distinction could be important to 
develop and study experimental models which may simu-
late the human retinal ischemic disease in a more precise 
way and so provide valuable information for future treat-
ments. On the other hand, to contrast this pathological 
state, specific pharmacological strategies need to be de-
veloped aimed at the many putative cascades generated 
during ischemia. In this respect, a better understanding 
of  the fundamental pathophysiology of  retinal ischemia 
will lead to better management and an improved clinical 
outcome. 
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