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Abstract
Arsenic-contaminated drinking water is a public health 
problem in countries such as Taiwan, Bangladesh, Unit-
ed States, Mexico, Argentina, and Chile. The chronic in-
gestion of arsenic-contaminated drinking water increas-
es the risk for ischemic heart disease, cerebrovascular 
disease, and prevalence of hypertension. Although 
toxic arsenic effects are controversial, there is evi-
dence that a high concentration of arsenic may induce 
hypertension through increase in vascular tone and 
resistance. Vascular tone is regulated by the rhythmic 
contractions of the blood vessels, generated by calcium 
oscillations in the cytosol of vascular smooth muscle 
cells. To regulate the cytosolic calcium oscillations, the 
membrane oscillator model involves the participation of 
Ca2+ channels, calcium-activated K+ channels, Na+/Ca2+ 
exchange, plasma membrane Ca2+-ATPase, and the 
Na+/K+-ATPase. However, little is known about the role 
of K+ uptake by sodium transporters [Na+/K+-ATPase 
or Na+-K+-2Cl- (NKCC1)] on the rhythmic contractions. 
Vascular rhythmic contractions, or vasomotion are a 
local mechanism to regulate vascular resistance and 

blood flow. Since vascular rhythmic contractions of 
blood vessels are involved in modulating the vascular 
resistance, the blood flow, and the systemic pressure, 
we suggest a model explaining the participation of the 
sodium pump and NKCC1 co-transporter in low dose 
arsenic exposure effects on vasomotion and vascular 
dysfunction.
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Core tip: Vascular tone is regulated in part by cytosolic 
calcium oscillations. Arsenic can induce an increase in 
vascular tone and resistance. We suggest a model ex-
plaining the participation of the sodium pump and Na+-
K+-2Cl- co-transporter in low dose arsenic exposure 
effects on vasomotion and vascular dysfunction. 
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INTRODUCTION
Arsenic toxicity is a global environmental health prob-
lem. The toxicity of  this metalloid has been observed 
in various countries, including Taiwan[1], Bangladesh[2], 
Mexico[3], United States[4], Hungary[5], Argentina[6], and 
Chile[7]. Volcanic emission is one of  the natural sources 
of  arsenic, and individuals are majorly exposed through 
contaminated drinking water[8]. Smelting companies are 
also an important source of  individual and population 
exposure to these kinds of  heavy metals contamination. 
Contamination has been reported in Russia[9], United 
States[10], Mexico[11], Peru[12], and Chile[13]. There are few 
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studies showing that Chinese workers in copper smelter, 
steel or iron have high levels of  total arsenic in urine (50 
g/g creatinine). These studies include those reported for 
Fushun city[14], Yunnan province[15], and Fuxin city[16].

CHRONIC ARSENIC EXPOSURE AND 
VASCULAR DISEASES
There are epidemiologic studies that showed an as-
sociation between chronic arsenic exposure and vas-
cular diseases[17,18]. In fact, the ingestion of  the arsenic-
contaminated drinking water produced an increased risk 
for ischemic heart disease, cerebrovascular disease, and 
peripheral vascular resistance[19]. Other studies report 
positive associations between chronic arsenic exposure in 
drinking water, and the prevalence of  hypertension[20-24].

Currently, arsenic effects on systemic blood pressure 
are controversial[25,26]. However, there is ample evidence 
that arsenic exposure mainly increases the vascular pe-
ripheral resistance[19,27], which defines the difficulty to 
blood flow through the blood vessels, particularly the 
small arteries.

Vascular rhythmic contractions, or vasomotion, are 
local mechanisms that regulate the vascular resistance 
and blood flow[28-30]. For instance, an increase in the am-
plitude of  the rhythmic contractions cause an increased 
blood flow because the vascular resistance is reduced[31]. 
Since vascular rhythmic contractions of  blood vessels are 
involved in modulating the vascular resistance, the blood 
flow, and the systemic pressure[28,29], the effects of  chronic 
low dose exposures to arsenic on vascular rhythmic con-
tractions becomes of  great interest. 

VASCULAR RHYTHMIC CONTRACTIONS
Vascular rhythmic contractions may be considered as a 
compensatory mechanism to preserve the perfusion of  
tissues[31], especially in patients with hypertension[32,33] or 
ischemia[34]. The mechanisms of  the vascular rhythmic 
contractions may account for 3 states of  contraction 
in blood vessels with different levels of  calcium. These 
include small, medium, and tonic contraction, but only 
the medium concentrations produce rhythmic contrac-
tions[35]. The changes of  vascular tone are generated by 
calcium oscillations in the cytosol of  vascular smooth 
muscle cells[36]. To regulate the cytosolic calcium oscil-
lations, the membrane oscillator model considers that 
activity of  Ca2+ channels, calcium-activated K+ channels, 
Na+/Ca2+ exchange, plasma membrane Ca2+-ATPase, and 
the Na+/K+-ATPase, voltage-dependent calcium channel, 
and transient receptor potential channel are essential for 
maintaining calcium oscillations[37].

ROLE OF NA+/K+-ATPASE AND NA+-K+-
2CL- COTRANSPORTER ON RHYTHMIC 
CONTRACTIONS
Little is known about the role of  K+ uptake through 

Na+/K+-ATPase and Na+-K+-2Cl- (NKCC1) on the 
rhythmic contractions. Na+/K+-ATPase and NKCC1 
cotransporter are responsible for the major K+ uptake in 
vascular smooth muscle cells[38-40]. Recent reports dem-
onstrates that rhythmic contractions were associated with 
tonic and phasic responses, the tonic dependent on [Ca2+]i 
and the phasic on potassium efflux (through K+ chan-
nels) and potassium uptake[41,42]. 

Na+/K+-ATPase is responsible for the electrochemi-
cal gradient of  sodium and potassium ions, it also plays 
a vital role in the regulations of  ionic homeostasis in tis-
sues and cells. In vascular smooth muscle cells, Na+/K+-
ATPase plays a major role in the regulation of  vascular 
tone[43,44], an increase in Na+/K+-ATPase activity leads to 
hyperpolarization and relaxation of  smooth muscle[45], 
while its inhibition blunts rhythmic contractions in vascu-
lar smooth muscle cells[46]. 

It was postulated that the inhibition of  KATP channels 
reduces extracellular K+ and Na+/K+-ATPase activity, 
increases intracellular calcium concentration via Na+/Ca2+ 
exchanger, uncouples vascular smooth muscle cells via 
gap junctions, and eliminates vascular rhythmic contrac-
tions[47,48]. Also, the inhibition of  inward-rectifier K+ 
channels (Kir) decrease Na+/K+-ATPase activity in vas-
cular smooth muscle cells[49]. It is important to remember 
that the Na+/K+-ATPase participates in relaxation of  
vascular smooth muscle cells through K+ channels. For 
instance, Na+/K+-ATPase is involved in K+-induced 
vasodilatation of  hamster cremasteric arterioles[50], and 
vasodilation in the human forearm[51]. When K+ (1 to 15 
mmol/L) accumulates in the extracellular space, Na+/K+-
ATPase activity increases efflux of  potassium through  
Kir. This leads to hyperpolarization and vasodilatation 
of  the vascular smooth muscle cells[49,52]. In contrast, the 
opening of  calcium-activated K+ channels inhibits the 
Na+/K+-ATPase function[53,54], and vascular rhythmic 
contractions[28]. 

NKCC1 is an obligatory symport system with an ap-
parent stoichiometry of  1:1:2 sodium, potassium and 
chloride ratios respectively. Although the co-transporter 
is bidirectional in resting vascular smooth muscle cells, 
the sum of  the electrochemical gradients for the three 
transported ion species determines net influx[55]. 

Evidence for the role of  NKCC1 co-transporter on 
vascular rhythmic contractions is scanty, but it is worthy 
of  note that the inward current of  Cl- decreases rhythmic 
contractions by increasing vasoconstriction[47]. NKCC1 
is responsible in part to keep intracellular Cl- concentra-
tion above the electrochemical equilibrium[56] as such 
helping to maintain the electrochemical gradient and 
cellular reactivity. Phenylephrine-induced stimulation of  
NKCC1 increases intracellular Cl- concentration, depolar-
ize vascular smooth muscle cells[57], open L-type calcium 
channels[58] and produce vasoconstriction. In the vascular 
oscillator model[59], the release of  intracellular Ca2+ from 
the reticulum stimulates the inward current of  Cl- via the 
calcium-activated Cl- channel[60] and cyclic guanosine mo-
nophosphate (cGMP)-activated Ca2+-dependent Cl- chan-
nels[61]. This leads to membrane depolarization, opening 
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L-type calcium channels and reduction in the oscillations 
of  vascular tone. Therefore these findings suggest that 
the cotransporter NKCC1 would be responsible, in part, 
for vasoconstriction by chloride.

EFFECT OF ARSENIC ON VASCULAR 
RHYTHMIC CONTRACTIONS
Vascular rhythmic contractions are dependent in part on 
endothelial nitric oxide (NO)[46], but there are few studies 
showing that the arsenic reduces vasomotion (vascular 
rhythmic contractions) by decreasing the NO bioavail-
ability[62]. 

It is well established that heavy metals such as arsenic 
induce increases in vascular resistance by inducing vas-
cular endothelial dysfunction (VED)[62,63]. VED consists 
of  a reduction in endothelium-dependent vasorelaxation 
caused by a decrease in the release of  endothelial NO[64]. 
Arsenic-induced VED is caused in part by oxidative 
stress. 

Oxidative stress from pollutants like arsenic causes 
an increase in the reactive oxygen species, this leads to a 
modification of  amino acids of  proteins, mainly sulfur-
containing amino acids methionine and cysteine[65]. Arse-
nic causes oxidative stress through peroxynitrite genera-
tion in aortic endothelial cells, producing loss of  biological 
activity in enzymes and proteins[66,67]. In this context we 
had shown that chronic arsenic exposure in drinking water 
reduced acetylcholine-induced relaxation in female rat aor-
ta[68], impairment of  the endothelial nitric oxide synthase 
activity and decreasing of  endothelial NO production[69,70].

NO is reported to activates Na+/K+-ATPase func-

tion[71], we observed that acetylcholine and sodium nitro-
prusside (SNP) induces activation of  Na+/K+-ATPase 
activity, and SNP effect is abolished by inhibition of  PKG 
(KT-5823)[72]. Cogolludo et al[73] (2001) showed that SNP 
activates Na+/K+-ATPase in mesenteric piglet’s arteries 
while Tamaoki et al[74] (1997) found that cGMP activates 
Na+/K+-ATPase in pulmonary artery smooth muscle 
cells.

Since arsenic decreases the NO bioavailability[62], and 
the NO increases Na+/K+-ATPase function[71] which 
enhances the vascular rhythmic contractions, we may 
suggest that arsenic decreases the vascular rhythmic con-
tractions by Na+/K+-ATPase function (Figure 1). Similar 
conclusions would be expected with the Kir channel, as 
Chen et al[75] (2010) demonstrated that arsenic trioxide 
produces down-regulation of  Kir channel in cardiomyo-
cytes of  rats, and the Kir channel function increases 
Na+/K+-ATPase activity[49]. 

Although the endothelial NO does not affect NKCC1 
co-transporter function[76], the endothelial prostaglandins 
increase NKCC1 activity thereby enhancing the con-
tractile response to agonist in rat aorta[77-80]. Moreover, 
the endothelial prostaglandins increase agonist-induced 
rhythmic contractions in rat aorta[81], rat mesenteric 
artery[82], and arterioles of  the cheek pouch of  male 
hamsters[42]. Furthermore, arsenic increases the cyclooxy-
genase-2 (COX-2) protein in aortic endothelial cells[67], 
COX-2 in HUVEC[83], and enhances COX-1 and COX-2 
activities in hind paw muscle of  male rats[84]. Therefore, as 
a result of  the prostaglandins effect on the vascular con-
tractility through NKCC1 described above, arsenic might 
increase the vascular rhythmic contractions by NKCC1 
co-transporter function. 

The major toxic species of  arsenic used in several 
studies are arsenite (trivalent inorganic arsenic, i.e., arse-
nic trioxide) or arsenate (pentavalent inorganic arsenic). 
Although the concentration of  arsenate in drinking water 
is higher than those of  arsenite, toxic effects of  arsenate 
have not been properly documented. Arsenate is mainly 
metabolized by organisms as monomethylarsonic acid 
and dimethylarsinic acid, which significantly are not tox-
ic[85]. However, this theory of  the methylation of  inorgan-
ic arsenic as a detoxification process has been revised[86] 
as other trivalent methylated species with higher toxicity 
have been reported[87]. Possibly, the biological effect of  
arsenate is mainly by reduction to arsenite[88].
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Figure 1  Putative model of arsenic effect on vasomotion phenomenon 
in blood vessels. The figure shows the stimulation of the Na+/K+-ATPase by 
endothelial nitric oxide (NO) and stimulation of the Na+-K+-2Cl- cotransporter 
by endothelial prostaglandins (PG). Arsenic would reduce NO bioavailability or 
would increase PG level, both of them would produce an increase in vasocon-
striction or a decrease in the repolarization of the cell membrane, respectively, 
and then would reduce vasomotion. PE: Phenylephrine; As: Arsenic; eNOS: 
Endothelial nitric oxide synthase; SR: Sarcoplasmic reticulum.
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