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Abstract
Telomeres are non-coding tandem repeats of 1000-2000 
TTAGGG nucleotide DNA sequences on the 3’ termini of 
human chromosomes where they serve as protective 
“caps” from degradation and loss of genes. The “cap” 
at the end of chromosome required to protect its integ-
rity is a 150-200 nucleotide-long single stranded G-rich 
3’ overhang that forms two higher order structures, a 
T-loop with Sheltering complex, or a G-quadruplex com-
plex. Telomerase is a human ribonucleoprotein reverse 
transcriptase that continually added single stranded 
TTAGGG DNA sequences onto the single strand 3’ of 
telomere in the 5’ to 3’ direction. Telomerase activity 
is detected in male germ line cells, proliferative cells 
of renewal tissues, some adult pluripotent stem cells, 
embryonic cells, but in most somatic cells is not de-
tected. Re-expression or up-regulation of telomerase 
in tumours cells is considered as a critical step in cell 
tumorigenesis and telomerase is widely considered as a 
tumour marker and a target for anticancer drugs. Dif-
ferent approaches have been used in anticancer thera-
peutics targeting telomerase. Telomerase inhibitors can 
block directly Human TElomerase Reverse Transcrip-
tase (hTERT) or Human TElomerase RNA telomerase 
subunits activity, or G-quadruplex and Sheltering com-

plex components, shortening telomeres and inhibiting 
cell proliferation. Telomerase can become an immune 
target and GV1001, Vx-001, I540 are the most wide-
spread vaccines used with encouraging results. Another 
method is to use hTERT promoter to drive suicide gene 
expression or to control a lytic virus replication. Recently 
telomerase activity was used to activate pro-drugs such 
as Acycloguanosyl 5’-thymidyltriphosphate, a synthetic 
ACV-derived molecule when it is activated by telomer-
ase it does not require any virus or host active immune 
response to induce suicide gene therapy. Advantage of 
all these therapies is that target only neoplastic cells 
without any effects in normal cells, avoiding toxicity and 
adverse effects of the current chemotherapy. However, 
as not all the approaches are equally efficient, further 
studies will be necessary.
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Core tip: One of the hallmark of cancer is the replicative 
immortality of tumor cells guaranteed by telomerase 
activity that counteracts progressive telomere shorten-
ing during cellular replication: this makes telomerase a 
tumor marker and a target for anticancer drugs. In this 
review we summarize and update the most recent in-
novative studies and results on the different strategies 
that consider telomerase as a target for cancer therapy. 
In particular, we try to point out the advantages and 
the potentialities of some innovative approaches, com-
pared to other, equally promising, but that need further 
investigations.
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TELOMERES, TELOMERASE AND 
CANCER
Telomeres are non-coding tandem repeats of  1000-2000 
TTAGGG nucleotide DNA sequences on the 3’ termini 
of  human chromosomes[1-3] where they serve as protec-
tive “caps” from degradation and loss of  genes. In this 
way cells can discriminate between double strand breaks 
and natural chromosome ends[4,5]. In human somatic cells, 
telomeres become critically short after successive cell di-
visions (number of  divisions depending on the length of  
their telomeres), cells stop division and replicative senes-
cence occurs[6]. As a consequence, telomeres can reach a 
critical length that is no longer suitable to assemble into 
T-loop: this triggers a localized DNA damage response 
and p53-mediated cell cycle arrest[7-9]. However, cells that 
have inactivated the p53-pathway cell cycle checkpoint, 
are able to continue dividing, bypassing senescence, loos-
ing telomeric sequence with each division[9,10] and reach a 
“crisis” stage[11,12]. In this way telomeres become so short 
that cannot protect chromosome ends, so that they fuse 
together to produce a dicentric chromosome, inducing 
an increase aneuploidy and genomic instability that finally 
will lead to p53-independent apoptosis[13,14]. Bypassing 
crisis rarely occurs in human cells (1 in 10-6 in epithelial 
cells and 1 in 10-7 in human fibroblasts) and this leads to 
cell immortality and cancer cell progression, characterized 
by capability to continue to proliferate without limits. 

The “cap” at the end of  chromosome required to 
protect its integrity is a 150-200 nucleotide-long single 
stranded G-rich 3’ overhang that forms two higher or-
der structures, a T-loop with Sheltering complex, or a 
G-quadruplex complex. Sheltering complex is represent-
ed by six proteins (TRF1 and TRF2, POT1, TPP1, TIN2, 
RAP1) responsible for maintaining the T-loop structure. 
G-quadruplex is stabilized with BRACO19, RHS4 and 
telomestatin proteins. Sheltering complex with T-loop, 
G-quadruplex and its stabilizers can lock the telomeric 
3’ overhang and block telomerase from accessing telom-
eres[15] (Figure 1).

Telomerase is a human ribonucleoprotein reverse tran-
scriptase that continually adds single stranded TTAGGG 
DNA sequences onto the single strand 3’ of  telomere in 
the 5’ to 3’ direction and translocates to the new termi-
nus[16,17]. This cycle goes on as far as telomerase dissoci-
ates from telomere[18,19]. Telomerase is composed of  two 
main subunits: the catalytic protein Human TElomerase 
Reverse Transcriptase (hTERT) and the ribonucleoprotein 
template Human TElomerase RNA (hTER)[15-17]. In par-
ticular hTER consists of  451 nucleotides of  which only 
nucleotides 46 through 56 (5’-CUAACCCUAAC-3’) repre-
sent a template for new telomeric added DNA sequences 
(Figure 2). 

Many proteins associated to the core components 
hTERT and hTER are required and are necessary for sta-
bility regulation, recruitment and activity of  the holoen-
zime[20]. hTER is expressed in all human cells, as well as 
normal and tumour cells, so telomerase activity is limited 

by of  hTERT expression, whereas is present[21,22].
Telomerase activity is detected in proliferative cells of  

renewal tissues, in some adult pluripotent stem cells, male 
germ line cells, embryonic cells, but not in most somatic 
cells[23]. However, telomerase activity is found in almost 
all human cancer cell lines and in about 85%-90% of  pri-
mary tumours[24]. In fact, one of  the hallmark of  cancer 
is the replicative immortality and so the ability to end-
lessly growth is synonymous of  telomerase reverse tran-
scriptase reactivation. Up-regulation or re-expression of  
telomerase in tumour cells is considered as a critical step 
in cell tumorigenesis and telomerase is widely considered 
as a tumour marker and a target for anticancer drugs. 
Progressive telomere shortening during cellular replica-
tion  is counteracted by telomerase activity[1,25]. 

One of  the advantages of  anticancer therapies target-
ing telomerase is that the telomeres of  highly proliferat-
ing cancer cells are shorter (5 kb) compared to that in 
normal somatic cells and stem cells (10-20 kb) that have 
not yet reached critical lengths as a result of  aging[26,27]. 
The difference in telomerase activity and telomere lengths 
in normal and cancer cells leads to a more selective thera-
peutics cytotoxicity on cancer cells and a minimal impact 
on normal cells with a limitation of  collateral effects that 
can be evaluated[28].

TELOMERASE INHIBITION AS A 
THERAPY
Telomerase inhibitors can be employed as a selective anti-
cancer therapy, disrupting telomerase-positive cancer cells 
replicative capacity[29].

To target telomerase in cancer treatment we can find 
two types of  approaches: the first one is blocking directly 
telomerase hTERT or hTER subunits activity, with conse-
quent shortening of  telomeres leading to the arrest of  cell 
replication. The second approach is to block telomerase 
by an indirect method, targeting G-quadruplex stabilizers 
or Sheltering complex components with the consequence 
of  preventing telomerase interaction with telomeres or 
binding of  proteins associated with telomerase; this leads 
to telomere uncapping and cell apoptosis[30].

Antisense olignucleotides-targeting hTER
One of  the most recent strategy for a direct telomerase 
enzymatic inhibition, is the use of  antisense oligonucle-
otides inhibitors. These molecules are complementary to 
the 11-base template region of  telomerase (hTER) and 
can be used to block the translation of  sense RNA. In or-
der to hybridize the hTER-template the antisense oligo-
nucleotides must get to the hTER region without being 
degraded by nucleases. For this reason the challenge for 
this kind of  drugs is both access and stability. To better 
get its target, antisense oligonucleotides have been modi-
fied and significantly improved in the past years. 

Currently GRN163L (Imetelstat®) is one of  the first 
generation most promising telomerase inhibitor target-
ing hTER used in cancer treatment; it is a lipid modified 
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version of  GRN163, a 13-mer oligonucleotide N3’-P5’-
thio-phosphoramidate, that required a lipid carrier mol-
ecule and a lipid-base transfection agent to adequately 
enter tissue and cellular membranes[31,32]. On the contrary, 
GRN163L with a covalently bound lipophylic palmitoyl 
(C16) group linked to its 5’-thio-phosphate[33] is lipid 
soluble, and shows an higher drug availability and bio-dis-
tribution, without any lipid carrier supply[32]. GRN163L 
in part overlaps the hTER template region by binding 
with high affinity and specificity at its active site, acting as 
competitive telomerase inhibitor and causing a total en-
zyme inhibition[32,33] (Figure 2).

The GRN163L inhibitory effect on telomerase activ-
ity has been evaluated in different cancer cell lines[34] and 
its effects were evident as well as “in vitro” and “in vivo” 
models; in fact, long term treatment with GRN163L re-
duced cell viability in cancer cells derived from bladder[33] 
glioblastoma[35], multiple myeloma[36], Barrett’s adenocar-
cinoma[37], as well as breast[38,39], lung[40], liver cancer[41] and 
prostate[42].

Recently, the effects of  GRN163L have been tested on 
a panel of  ten pancreatic cancer cell lines, and the results 
indicated that the inhibitory effect of  the drug was main-
tained also after its removal[43]: in fact, only three weeks af-
ter the GRN163L removal, a telomerase recovery was ob-

served, but the enzyme was less processive. This suggests 
that to maintain continuous telomerase inhibition and to 
reduce side effects risk after a pharmacological treatment 
of  a patient with GRN163L, a maintenance dose given 
once every other week might be sufficient. However, the 
reversible effects of  Imetelstat have been also previously 
demonstrated on rat mesenchymal stem cells[44].

A combined treatment where homologous recombi-
nation and telomerase inhibition are associated, causes a 
significant increase in telomeres attrition, relative to each 
treatment alone, leading to senescence and apoptosis in 
Barrett’s adenocarcinoma[45]. 

Tamakawa et al[46] showed that the DNA damage in-
duced in S/G2 phase of  the cell cycle, by genotoxic stim-
ulus was potentiated by the telomerase inhibition induced 
by GRN163L in breast and colorectal cancer cells[46].

In previous studies, synergies between GRN163L and 
various anticancer treatments such as microtubule inhibi-
tion, inhibition of  oncogenic signals and ionizing radiation, 
were considered to be dependent on longer-term changes 
associated with chromatin status[47] and telomere length[48].

Telomere shortening induced by telomerase inhibitors 
would affect the self-renewal properties of  cancer stem 
cells (CSCs), normally not responding to standard chem-
otherapy, but capable of  inducing initiation and currency 
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press functional active telomerase, and hTERT-specific 
epitopes are expressed on tumour cells, but not on nor-
mal cells. In this way, telomerase become an immune 
target, and can be eradicated by the stimulation of  the 
immune system with specific vaccines. Telomerase-target 
immunotherapy sensitizes immune cells against tumor 
cells expressing hTERT peptides as surface antigens[67]. 
The consequent expansion of  telomerase-specific CD8+ 
cytotoxic T lymphocytes is directed to target and kill tel-
omerase positive cancer cells[68,69].

Recently, multiple peptides are known to induce 
hTERT-specific immune responses[68] and several vaccine 
strategies are being developed and used: among these 
GV1001, Vx-001, I540, are the most widespread thera-
peutic approaches. As almost all human tumor-associated 
antigens are self-proteins, their specific T cells are often 
tolerated: this is the major problem of  cancer immuno-
therapy. For this reason, overcoming tumor-specific self-
tolerance is a principal goal in cancer immunotherapy. 

Self-tolerance is commonly directed against ‘‘domi-
nant’’ (high affinity for HLA) but not against ‘‘cryptic’’ 
(low affinity for HLA) peptides[70,71], so the simplest way 
to circumvent tolerance is to use these cryptic peptides[72] 
as for example Vx-001 (9-mer cryptic TERT 572 pep-
tide) that was developed as tumour-associated antigen of  
hTERT to induce cytotoxic T lymphocyte responses[73,74].

Immunological response associated with extended sur-
vival were evident in patients with advanced non-small-cell 
lung cancer treated with Vx-001 vaccine (TERT572Y pep-
tide)[74]; in patients with various types of  chemo-resistant 
advanced solid tumours (stages Ⅲ and Ⅳ) the vaccination 
with Vx-001 stimulates TERT572-specific reactive T cells 
in a great number of  patients independently of  the disease 
stage or clinical status before vaccination and a late immune 
response correlated with longer survival was induced[73,75].

State of  the art of  clinical trials using anti-telomerase 
cancer immunotherapy is encouraging. In fact, vaccines 
are tested in breast, lung, melanoma, prostate, and pan-
creatic cancer[76-82] and these trials have widely induced a 
specific immune response against hTERT positive cancer 
cells. Encouraging results have been also obtained in 
patients with advanced melanoma, where immunity to 
hTERT has been safely generated[83]. The combination 
of  cancer vaccination with chemotherapy  showed that 
temozolomide and GV1001 induced immune and clini-
cal response in 78% of  stage Ⅳ melanoma patients, that 
developed long-term T-cell memory and survived more 
than those rapidly losing their responses[84]. Vaccination 
with GV1001 was well tolerated and immunized the great 
part of  non-small cell lung cancer patients establishing 
durable T-cell memory[85]. However, GV1001 vaccination 
was not effective in cutaneous T cell lymphoma patients, 
raising concerns about also its safety[86]. The survival 
data indicated that patients with non-resectable pancre-
atic cancer treated with GV1001 showed that immune 
response correlated with an extended survival, suggest-
ing that the vaccine could be the new goal for pancreatic 
cancer patients treatment and encouraging further clinical 

in different hematologic and solid tumours[49,50]. 
Many studies showed that CSCs can represent the 

Imetelstat target in different cancers[35,42,51], and that a tel-
omere shortening-independent as well as dependent Ime-
telstat mechanism of  action on CSCs subpopulation, can 
be suggested[52,53]. The effect of  Imetelstat was evaluated 
on both the bulk cancer cells and putative CSCs of  breast 
and pancreatic cancer cell lines. The in vitro treatment 
inhibited telomerase activity, cell growth, self  renewal in 
bulk cancer cells and putative CSCs, with a consequent 
reduced cancer engraftment in nude mice[52]; in particular 
an increased sensitivity of  CSCs to Imetelstat did not 
correlate with differences between telomerase activity 
expression levels or telomere length of  CSCs and bulk 
tumour cells suggesting a telomere shortening- independ-
ent mechanism of  action for the Imetelstat effects on 
CSCs subpopulation. 

All these studies support the hypothesis that conven-
tional therapies often fail to target CSCs while the use 
of  telomerase inhibitor could have the potential role for 
more durable clinical response in many tumors, reducing 
relapse recurrence.

Imetelstat is currently in phase Ⅱ clinical develop-
ment for breast cancer, non-small cell lung carcinoma, 
multiple myeloma, and other tumor types[30].

Inhibitors targeting hTERT: BIBR1532
BIBR1532 [2-(E-3-naphtalen-2-yl-but-2-enylylamino]-
benzoic acid] is actually a promising hTERT inhibitor 
among the few TERT inhibitors developed. BIBR1532 
is a small synthetic non-nucleic compound that linking 
hTERT in its active site, inhibits telomerase in a non-
competitive manner: BIBR1532 does not cause chain ter-
mination events but rather leads to an overall reduction in 
the number of  added TTAGGG repeats[54]; in particular  
the drug could act translocating the enzyme-DNA-sub-
strate complex, or favouring the DNA substrate disjunc-
tion from the enzyme during the copy of  the template[55].

In the last few years, different studies showed that 
BIBR1532 treatment induced telomerase activity reduc-
tion with consequent cell growth arrest in different hu-
man cancer cell lines[54,56-60], without affecting normal stem 
cells[61]. In addition telomeres targeting might represent a 
valid strategy for the re-sensitization of  chemoresistant 
chondrosarcomas[56], and a rapid induction of  a high level 
telomere dysfunction appears to be a crucial parameter 
for the development of  future telomerase-based thera-
peutic[62]. However, although some human squamous 
cell carcinoma cell lines are resistant to telomerase in-
hibition[63] some works suggest that a valid strategy for 
the treatment of  both drug-resistant and drug-sensitive 
cancers may be pharmacological telomerase inhibition in 
combination therapy[64-66].

IMMUNOTHERAPY FOR TELOMERASE 
EXPRESSING CANCER
As previously described, nearly all cancer cells over-ex-
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studies[82]. On the contrary, in patients with advanced and 
metastatic pancreatic cancer the use of  GV1001 telom-
erase vaccination in combination with chemotherapy, 
induced a weak and transient immune response and did 
not improve overall survival[80,81]. Likewise, a low dose cy-
clophosphamide treatment in combination with GV1001 
vaccination in patients with advanced hepatocellular 
carcinoma did not show antitumor efficacy[87]. Further 
studies and new strategies are needed to analyze and to 
enhance the immune response effect of  telomerase vac-
cination during chemotherapy, in patients with both pan-
creatic and hepatocellular cancers.

Vaccination with autologous dendritic cells transfect-
ed with hTERT mRNA (GRNVAC1) represents another 
anticancer approach that induced immunological re-
sponse in human. Immunotherapy targeting the hTERT 
subunit of  telomerase has been demonstrated to induce 
an important immune responses in cancer patients after 
vaccination with single hTERT peptides, while vaccina-
tion with dendritic cells transfected with hTERT mRNA 
has a key role in inducing efficient immune responses 
to multiple hTERT epitopes. In this way this kind of  
therapy can be an attractive approach to more efficient 
immunotherapy[88-90].

TELOMERASE-EXPRESSING CELLS AS 
TARGET OF ONCOLYTIC VIRUSES
Recently has been shown that the use of  hTERT pro-
moter to drive the expression of  a suicide gene and/or 
control the replication of  a lytic virus, can be a successful 
approach to target cancer cells. 

To drive the expression of  a suicide gene, the expres-
sion of  a pro-apoptotic protein, like TRAIL (tumour 
necrosis factor-related apoptosis-inducing ligand) or pro-
drug-activating enzyme[91-96] is controlled by the hTERT 
promoter, generally active in cancer cells expressing 
telomerase. These cells are injected with viruses carrying 
the suicide gene and then killed by a toxin derived from 
the administration of  a pro-drug activated by the pro-
drug-activating enzyme. 

A second clinical approach, is to use the hTERT 
promoter to control the replication of  a lytic virus. On-
colytic effects on tumors can be mediated by oncolytic 
viruses, tumor selective viruses genetically modified and 
engineered to replicate in and kill only cancer cells. For 
this purpose, the E1 gene expresses viral proteins E1A 
and E1B necessary for adenovirus replication, but the 
modified virus can replicate only in cells which express 
telomerase if  gene itself  is redesigned to be controlled by 
the hTERT promoter[97-100]. One such virus is telomelysin 
(OBP-301) that in pre-clinical studies targets selectively 
only telomerase-expressing cells.

The modified viruses induce cytolysis in several kinds 
of  human cancer cell lines in which can replicate; when 
human lung, prostate or liver cancer cells were used in 
xenotransplantation models, intratumoral injection of  
the virus reduced tumor growth and improved mice sur-

vival[97-100]. 
The potential role of  oncolytic virotherapy has re-

cently been demonstrated to be a promising strategy in 
the management of  human gastrointestinal cancer[101]. 
Studies about OBP-301 have been shown that it medi-
ates the effective in vivo purging of  metastatic tumor cells 
from regional lymph nodes and moreover it co-operates 
to optimize treatment of  human gastrointestinal ma-
lignancies[102]. Moreover, telomerase-specific oncolytic 
viruses is a potential treatment of  human squamous cell 
carcinoma of  head and neck[103], while in pancreatic can-
cer the combination therapy with gemcitabine has been 
tried, exhibiting enhanced cytotoxic effects both “in vitro” 
and “in vivo”[104]. In addition, preclinical study showed that 
OBP-301 can be used for treatment of  human hepatocel-
lular carcinoma and that its tumor-killing activity persists 
after multiple injections[105].

Data regarding combination therapy with OBP-301 
and chemotherapeutic agents are preliminary but encour-
aging[106]. In particular Boozari et al[107] showed that the 
combination of  intratumoural virotherapy with an anti-
tumoural vaccine, could represent a promising immuno-
therapeutic strategy against hepatocellular carcinoma and 
metastasis.

TELOMERASE CANONICAL ACTIVITY AS 
A THERAPY
Recent studies revealed that telomerase canonical activity 
can be exploited for therapeutic purpose. 

The evidence that telomerase is expressed in almost 
all tumor cells, preventing  telomeres shortening by 
continually adding single stranded TTAGGG DNA se-
quences, prompted us to develop a thymidine analogue 
pro-drug, acycloguanosyl 5’-thymidyltriphosphate (ACV-
TP-T) (Figure 3). This molecule is a synthetic ACV modi-
fication that is metabolized by telomerase, and this reac-
tion releases the active form of  acyclovir able to reduce 
pancreatic and hepatocellular carcinoma cells growth as 
well as “in vitro” and “in vivo”[108,109]. 

ACV is a nucleoside analogue acting as a DNA chain 
terminator that could be used in the suicide gene thera-
py[110]. ACV or the ACV analogue ganciclovir[110,111] when 
used as antiviral agent needs a first phosphorylation to 
ACV monophosphate by herpes virus thymidine kinase 
(TK) carried by wild-type herpes virus or, in the suicide 
gene therapy, by engineered adenovirus (Figure 3), then cel-
lular kinases perform the two remaining phosphorylation 
to obtain the ACV triphosphate. This active metabolite is 
incorporated into DNA during its replication causing DNA 
chain termination. 

On the contrary, ACV-TP-T, may be metabolized by 
telomerase that incorporates thymidine in replicating telo-
meres and releases ACV diphosphate. This process skips 
the viral TK phosphorylation, allowing the cellular kinases 
to go on with further phosphorylation to obtain the ac-
tive drug[108,109]. The results showed that after activation of  
ACV-TP-T by telomerase, cell proliferation is significantly 
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reduced and apoptosis is increased in different human 
pancreatic adenocarcinoma cell lines. High and low telom-
erase activity is related with low and high IC50 of  the drug, 
respectively. On the other hand, the cytosine-containing 
pro-drug ACV-TP-dC, which is not a telomerase substrate, 
is not able to reduce pancreatic cancer cell proliferation. 
Moreover, ACV-TP-T administration increases apoptosis, 
reduces growth, proliferation and vascularization of  pan-
creatic xenograft tumors in mice[108].

Analogue results were obtained in human and murine 
hepatocellular carcinoma cell lines and in transgenic and 
orthotopic murine models of  hepatic cancers[109]. Further-
more, in orthotopic syngenic mice, ACV-TP-T has been 
used alone or in combination with the approved standard 
of  care, Sorafenib, a multikinase inhibitor. Combination 
therapy showed a synergistic effect between Sorafenib and 
ACV-TP-T.

Advantages of  this strategy are evident. Despite recent 
improvements in suicide gene therapy, the application of  
adenovirus-mediated therapy is limited by many factors: the 
low and transient expression levels of  the transgene[110,112,113], 
the induction of  immune response in the host[108], and a late 
carcinogenesis[112]. In addition ethical concerns regarding 
the use of  virus in patients[112,113] could be a limitation. 

The use of  telomerase promoter[114] and the introduction 
of conditionally replication-competent adenovirus[115] only par-
tially overcome the above mentioned disadvantages. Moreover, 
the immunotherapy based on vaccination for telomerase[84] re-
lies on the induction of an active immune response that often 
is deregulated in the oncology treated patients[116].

In this contest, the use of  ACV-TP-T represents a new 
therapeutic strategy that exploits the enzymatic activity of  
telomerase. This approach is efficient only in neoplastic 
cells without any effects in normal cells, it avoids the toxic-
ity and the adverse effects of  the current chemotherapy, 
and finally, it does not require the use of  any viruses or an 
active immune response of  the host. 

As a paradox in this contest telomerase switches from 
being a target of  anticancer therapy, to an integral part of  
the therapy. Preliminary evidences suggest the possible 
use of  ACV-TP-T molecule for the treatment of  other 
tumors characterized by high telomerase expression and 
activity such as ovarian and adrenocortical cancers.

NON CANONICAL EFFECTS OF TELOM-
ERASE
Telomerase activation may have both telomere-dependent 
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phosphorylated to ACV monophosphate by viral TK carried either by wildtype herpes virus or, in the suicide gene therapy, engineered adenovirus. ACV monophos-
phate is then further phosphorylated by cellular kinases to the triphosphated active form. Conversely, ACV-TP-T is substrate of telomerase that incorporates the 
thymidine in the replicating telomeres and directly release ACV diphosphate skipping the viral TK phosphorylation step. (Reproduced with permission from Ref [108]. 
Copyright 2011 AGA Institute). ACV-TP-T: Acycloguanosyl 5’-thymidyltriphosphate; TK: Thymidine kinase.
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and telomere-independent implications for cancer pro-
gression: in particular, telomerase reverse transcriptase 
may exert some biological functions independently of  its 
telomere maintenance enzymatic activity. 

Different studies support a role of  telomerase in 
some telomere-independent activities in cancer progres-
sion; nevertheless, apart from its role in telomere main-
tenance, the molecular mechanism by which telomerase 
promotes cancer is still not fully understood. Zhou et 
al[117] showed that hTER regulated vascular endothelial 
growth factor (VEGF) expression at the transcriptional 
level, independently of  telomerase activity[117]; previous 
studies reported that VEGF induced hTERT expression 
and activity in normal[118] and cancer cells[119]. All these re-
sults suggested a positive feedback regulation that could 
contribute to a mutual and collaborative function of  
VEGF and telomerase in cancer progression. 

Wu et al[120] in a recent review focused on various 
signaling pathways and genes involved in the feedback 
regulation of  TERT. The expression of  numerous genes 
involved in different cellular processes, as well as cell 
cycle and cellular signaling, could be regulated by TERT, 
indicating that telomerase is both an effector and a regu-
lator in carcinoma. However, the mechanisms underlying 
the interaction between TERT and its target genes are 
still not completely understood.

Ghosh et al[121] suggested a functional interplay be-
tween TERT and nuclear factor (NF-κB) signaling, fur-
ther reinforced by the observation that telomerase over 
expression resulted in enhanced expression of  NF-κB 
target genes, whereas telomerase null mice were refrac-
tory to NF-κB activation; in addition, it seems that also 
hTER could regulate the expression of  some NF-κB 
target genes. The function of  hTER in gene expression 
regulation is not clear, in fact, hTERT can form com-
plexes with or without hTER[122].

hTERT could be involved also in a negative feedback 
loop system with pRb/E2F pathway in cancer, as well as 
in a positive feedback loop with Wnt/b-catenin signal-
ling, or in multiple interactions with phosphoinositide 3 
kinase/Akt pathway[120]. In addition, Liu et al[123] demon-
strated a potential role of  hTERT in epithelial mesenchy-
mal transition.

Although the mechanisms underlying the interaction 
between TERT and its target genes are still not com-
pletely understood, all the above observations, strengthen 
the idea that telomerase non-telomeric functions could 
be used as a new therapeutic target for cancer.

CONCLUSION
Although recent and ongoing results support an impor-
tant role for telomerase targeting therapeutics in cancer 
treatment, additional preclinical and clinical trials are nec-
essary to improve some of  these strategies.

In fact, if  difficulties with dendritic cells derivation 
will be easily overcome[124], vaccination with dendritic 
cells transfected with hTERT mRNA could potentially 

become an attractive approach to a more potent immu-
notherapy. In addition, further studies are necessary to 
enhance the effects of  telomerase vaccination in combi-
nation with intratumoral virotherapy and with standard 
chemotherapeutic agents.

On the contrary, beside more promising approach offered 
by GRN163L that seems to target also CSC, BIBR1532 could 
be preferred therapy if  used also in combination with standard 
chemotherapy for the treatment of drug-resistant cancers.

Finally, ACV-TP-T use is very promising and deserves 
further studies. In fact, preclinical evidences showed that 
this new pro-drug may be considered for treatment of  
hepatocellular and pancreatic carcinoma, as well as of  
other tumors characterized by high telomerase expression 
and activity. 
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