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Abstract
While survival rates for patients with childhood cancers 
have substantially improved, the quality of life of the 
survivors is often adversely impacted by the residual 
effects of chemo and radiation therapy. Because of 

the existing metabolic and physiological disparities 
between pediatric and adult patients, the treatment 
of pediatric cancer patients poses special challenges 
to oncologists. While numerous clinical trials being 
conducted, to improve treatment outcomes for pediatric 
cancer patients, new approaches are required to increase 
the efficacy and to minimize the drug related toxic side 
effects. Nanotechnology is a potentially effective tool 
to overcome barriers to effective cancer therapeutics 
including poor bioavailability and non-specific targeting. 
Among the nano-delivery approaches, lipoprotein 
based formulations have shown particularly strong 
promise to improve cancer therapeutics. The present 
article describes the challenges faced in the treatment 
of pediatric cancers and reviews the potential of 
lipoprotein-based therapeutics for these malignancies.
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Core tip: While survival rates for patients with childhood 
cancers have improved, the quality of life of survivors 
is often adversely impacted by the residual effects of 
therapy. Consequently, new approaches will be required 
to increase the efficacy and to minimize the drug 
related toxic side effects of pediatric cancer therapy. 
Nanotechnology is a potentially effective tool to improve 
cancer chemotherapy via  enhanced bioavailability 
and specific targeting. Lipoprotein based formulations 
have shown particularly strong promise to improve 
cancer therapeutics. The present article describes 
the challenges faced in the treatment of pediatric 
cancers and reviews the potential of lipoprotein-based 
therapeutics for these malignancies.
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INTRODUCTION
Although cancer is the leading cause of death in 
children above 1 year of age in Europe and the Unites 
States, more than 80% of the children diagnosed 
with cancer are expected to survive, subsequent to 
treatment, though 40% will suffer through adulthood 
from the long term consequences of the treatment 
administered during childhood[1,2]. While advances in the 
chemotherapy of pediatric malignancies have produced 
major improvements in survival over the last several 
years, treatment-related side effects remain a major 
concern. 

The recently developed nanotechnology-based drug 
delivery vehicles (nano-DDVs) are directed toward 
overcoming the shortcomings of the currently employed 
chemotherapeutic agents, including poor solubility, 
limited bioavailability and inadequate stability[3-6]. 
Additionally most of these nano DD systems target 
specific sites by either passive or active transport 
mechanisms[7-10] and thus minimize the systemic expo-
sure of normal tissues to the drug. Nanotechnology has 
also been shown to improve localized drug delivery by 
selective administration routes in order to overcome 
anatomical or physiological barriers, such as the 
blood brain barrier in the central nervous system[11-13]. 
Currently available treatment modalities for pediatric 
malignancies involve chemotherapy, surgery, radiation, 
bone marrow transplant and immune based therapy. 
These treatments are often accompanied by short and 
long-term side effects, resulting in deterioration of 
physiological functions among the survivors that impact 
the quality of life well into adulthood[14]. While current 
therapeutic approaches have markedly improved the 
prognosis for survival of pediatric cancer patients, a 
significant portion of childhood malignancies remain 
resistant to current regimens, leading to progressive 
disease and death[15]. Hence there is an urgent need to 
develop novel therapeutic strategies for pediatric cancers, 
in addition to reducing the residual toxicities.  This review 
aims to focus on the challenges involved in treating 
pediatric cancers and the potential for overcoming 
these barriers via nanotechnology in general, utilizing 
lipoprotein based nano DDV in particular. 

PEDIATRIC CANCERS ARE DIFFERENT 
FROM ADULT CANCERS
Pediatric cancers are different from adult malignancies 
because they often originate from cellular populations 
that have not completed the process of terminal 
differentiation[16-18]. Childhood cancers are often the 
result of genetic changes that take place very early in 
life, sometimes even before birth. Unlike many cancers 

in adults, childhood cancers are thus not strongly linked 
to lifestyle or environmental risk factors. Accordingly, 
children are very rarely diagnosed with ovarian, breast, 
colon or lung carcinomas that frequently occur in adults. 
Although childhood cancers are often more aggressive 
and remain undetected until an advanced stage is 
reached, due to the advances in therapeutics over 
past decades pediatric cancers tend to be more easily 
curable than adult cancers. The most common cancers 
diagnosed in children are given in Table 1. 

According to the Surveillance, Epidemiology, and 
End Results (SEER) Program of the National Cancer 
Institute a 5-year relative survival rate for all cancers 
combined has increased from 61.7% in 1975-1977 
to 81.4% in 1999-2006, among children from 0 to 19 
years of age (NCI SEERS 2010)[20]. Between 1975 and 
2007 the mortality rates for non-Hodgkin lymphoma 
decreased by 75% followed by 60% reduction in 
mortality statistics for acute lymphoblastic leukemia 
(ALL) and acute myeloid leukemia (AML)[20].

As a result, non-Hodgkin lymphomas and ALL are 
now among the most curable childhood cancers. These 
improvements in the prognoses of selected malignancies 
can be attributed to the improved risk assessment, 
supportive care, the development of new drugs directed 
at specific targets and most importantly, enrollment of 
large numbers of patients in well-designed prospective 
clinical trials. However, the survival rates for children 
with other solid tumors, including most bone and soft 
tissue sarcomas and brain tumors have not improved 
as dramatically over past four decades. 

THERAPEUTIC CHALLENGES IN 
PEDIATRIC ONCOLOGY
The differences between the metabolic capacity, drug 
bio-distribution, organ function and absorption in 
response to drug therapy of children and that of adults 
are well known[21-23]. In addition, pediatric patients are 
less likely to have underlying health related issues as 
compared to adult populations undergoing treatment. 
The developmental changes profoundly affect the 
responses of children to medications and to related 
therapies[24]. All these factors affect the way in which 
treatment modalities are designed and applied to 
pediatric populations. 

Designing formulations for pediatric patients is 
often complex because this age group is further sub-
divided into different groups, based on differences 
in biology and metabolic capacity. These groupings 
represent preterm newborn infants, term newborn 
infants (0-27 d), infants and toddlers (28 d-23 mo), 
preschool children (2-5 years), school children (6-11 
years) and adolescents (12-18 years)[25]. Each sub-
category displays different biochemical functions and 
capabilities[18,24] while the level of cognitive development 
may also impact the effectiveness of drug formulations 
for cancer therapy[26]. Because most pediatric cancers 
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are rare; hence sample size is often a major concern 
regarding the design and performance of clinical trials. 

Clinical trials involving pediatric patients are further 
restricted by the hesitancy of ethical review committees 
toward drug trials in children and the reluctance of 
pharmaceutical companies to invest in these costly 
ventures in view of the limited children’s pharmaceutical 
market. Another challenge faced by pediatric oncolo-
gists while designing clinical trials, is determining the 
appropriate dosages of a drug for administration, 
especially as they apply to combination therapy. Even 
though the mechanism of action and the effective dose 
of most drugs in adults are known, a linear dose-per-kg 
correlation may not be appropriate for small children. 
Kearns et al[24] reviewed key maturational changes 
that account for differences in drug metabolism and 
disposition of drug formulations in pediatric populations 
vs those in adults. Gastric emptying time, gastric 
and duodenal pH, intestinal transit time, secretion 
and activity of bile and pancreatic fluid, bacterial 
colonization and transporters, such as P-glycoprotein 
(P-gp) are important factors for drug absorption[24], 
whereas key factors explaining differences in drug 
distribution between the pediatric population and 
adults are organ size, membrane permeability, plasma 
protein concentration and characteristics, endogenous 
substances in plasma, total body and extracellular 
water, fat content, regional blood flow and transporters 
such as P-gp, which is present not only in the gut, but 
also in liver, kidney, brain and other tissues[23]. 

Cancer therapeutics via nano drug delivery vehicle 
(DDV) is an emerging field that is yet to be fully 
investigated in children. The toxicological aspects of the 
exposure to nanoparticles will need to be thoroughly 
assessed to establish their safety for children, before the 
application of these formulations in pediatric oncology. 
These challenges notwithstanding, the application of 
nano DDVs in cancer therapeutics represents one of 
the most promising and rapidly expanding approaches 
based on the number of research reports and clinical 
trials in progress. Consequently, it is likely that, in due 
time, nano DDVs will be broadly applied in pediatric 

oncology. 

Nanomedicine based therapeutics in children
The multiple advantageous features of nano DDVs, 
including high payload capacity, favorable biodistribution 
and pharmacokinetic profiles make them ideal candi-
dates. Another advantage of most nano DDVs is their 
multimodal loading capability. The surface or core of 
the DDV may be loaded with multiple agents, so that 
treatment and monitoring of treatment via imaging can 
occur simultaneously (theranostics). Metals, chelators 
and/or radioisotopes may be included for CT and 
MRI or PET/SPECT imaging or in vivo imaging[27-29]. 
The ease of tracking nano DDVs in vivo, presents a 
unique opportunity for monitoring drug distribution on 
a patient by patient basis to determine whether drug 
accumulation is sufficient for a desirable therapeutic 
effect. 

The potential of using nanomedicine to improve the 
diagnosis and the treatment of pediatric cancers has 
been extensively documented[30-32]. Several biologically 
based formulations have been applied in the form of 
nano DDVs[33-38] (including cross-linked liposomes, lipids, 
chitosan, lactic acid conjugates, etc.[36-38]) and chemical 
constructs (including polymer based, dendrimers, flo 
dots, quantum dots, ceramic, metal based, etc.). 

As a result of research and development in nano 
DDV over past decade, several nano DDV formulations 
already made their way to the market including poly-
mer-based poly(lactide-co-glycolide) nanocarriers, 
liposomes and abraxane[39,40]. However, all of these 
formulations are designated for use in adults. Similar 
formulations are currently in different phases of clinical 
trials in pediatric populations (Table 2); however, none 
has reached the clinic yet.

LIPOPROTEIN BASED NANO DDVS
An ideal DDV is expected to have excellent loading 
capacity, therapeutic shielding, biocompatibility and 
selective targeting capability. An effective DDV formu-
lation should also be able to accommodate multimodal 
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  Type of cancer Definition/characteristics % Incidence 
2005

  Leukemia Leukemia is cancer of the body's blood-forming tissues, including the bone marrow and the 
lymphatic system

34

  Brain and central nervous system tumors Normal cells in the brain or the spinal cord change and grow uncontrollably, forming a mass 23
  Neuroblastoma It is a neuroendocrine tumor, most frequently originating in one of the adrenal glands, in 

addition to nerve tissues in the neck, chest, abdomen, or pelvis
7

  Wilm's tumor or nephroblastoma Cancer of kidney that occurs in children 5
  Lymphoma
  (Hodgkins and Non-Hodgkins)

Blood cell tumor that develops from lymphocytes 12

  Rhabdomyosarcoma Cancer of soft tissues where the cancer cells originate from skeletal muscle progenitor 3
  Bone cancer Osteosarcoma and Ewing's sarcoma are the most common malignancies of bone 4
  Germ cell tumors Germ cells tumors typically emerge from gonads but may also originate in other parts of the 

body, while arising from embryonic germ cell "rests"
N/A

Table 1  Frequently encountered pediatric malignancies[19] 

N/A: Statistics not available.
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metabolism of the cell[56,57]. As a result, cancer 
cells exhibit markedly elevated metabolic/energy 
requirements to sustain the tumor proliferation and 
migration functions[58]. These changes are induced 
and facilitated by mutating growth factor receptors 
resulting in constitutive signaling to key metabolic 
pathways[50,59]. In addition to basic nutrients, cancer 
cells have an excessive need for many other substances 
including cholesterol for membrane biogenesis[60]. One 
of the mechanisms that cancer cells use to meet this 
requirement is by over-expressing the LDL and HDL 
lipoprotein receptors[59,61-63]. Drug delivery strategies 
have been developed using both LDL and HDL receptor 
targeting DDVs[64-67] as well as liposome DDVs modified 
by LDL receptor ligands[68,69]. The drug carrying 
reconstituted HDL (rHDL) nanoparticles targeted to 
Scavenger receptor B-1 (SR-B1) function as a “magic 
bullet” and enhance the therapeutic efficacy of the 
enclosed drugs toward malignant tumors[70]. The 
over-expression of the SR-B1 receptor in malignant 
tissues has the potential to facilitate the enhanced 
selective delivery of anti-cancer agents to tumors 
thus providing a marked improvement of the current 
chemotherapy regimens, including the limiting of off-
target toxicity[59,61,62]. 

Why use the rHDL nanoparticles for drug delivery of 
anti-cancer drugs in pediatric oncology?
While numerous studies employed liposomes to produce 
improved solubility and bioavailability of anti-cancer 
agents, due to their small size, rHDL nanoparticles 
accrue substantial additional therapeutic benefits 
(Figure 1) via their enhanced capability to penetrate 
the tumor microenvironment, including its vasculature 
and stroma. This is anticipated to be a major advantage 
when treating pediatric cancers since these tumors are 
often associated with stroma. The rHDL DDVs have 

anti-cancer and /or contrast agents (for tumor imaging) 
and exhibit minimum undesirable side reactions by 
avoiding interactions with off target sites. Lipoprotein-
inspired DDVs possess most of these desirable features 
and thus represent a promising platform for pediatric 
cancer therapeutics[35,47-50]. 

Lipoproteins are natural transport vehicles for shut-
tling lipids and lipophilic molecules in an aqueous milieu 
to organs of the body in mammals[51]. Although there 
are several classes of lipoproteins differing in size, 
buoyant density and the constituent apolipoproteins 
present, they exhibit common chemical characteris-
tics that include a hydrophobic core surrounded by 
an amphiphilic shell of a phospholipid/cholesterol 
monolayer and several apolipoproteins. There are four 
major classes of lipoproteins present in the human/
mammalian circulation (Figure 1), including chylomicron 
(75-1000 nm/ApoB-48), very low density lipoprotein 
(30-80 nm/ApoB-1000), low density lipoprotein (LDL) 
(18–25 nm/ApoB-100) and high density lipoprotein 
(HDL) (5-12 nm/ApoA-I, A-II, -E and -C)[47,52,53]. Due to 
their unique structural/functional properties lipoproteins 
are considered an excellent model DDVs for transporting 
and delivering chemotherapeutic agents[47]. 

Lipoprotein DDVs may be artificially assembled in 
different ways to transport drugs or imaging agents to 
desired sites[34,35]. Depending on the chemical nature 
of the payload and the method of formulation these 
DDVs may be loaded either by covalent modification of 
the phospholipid or protein component, intercalation of 
the agent into phospholipid or encapsulation into the 
hydrophobic core of the DDV[47,54,55].

Drug delivery via LDL and HDL receptors: Carci-
nogenesis is a multifaceted process that involves 
immense reorganization of signaling pathways, gen-
etic information, structural constituents and energy 
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  FDA approved   
  Formulations

Drug Phase of 
pediatric

clinical trial

Type of cancer Ref.

  Abraxane Paclitaxel Preclinical Rhabdomyosarcoma 
Osteosarcoma 

Neuroblastoma

[30]

  Nab paclitaxel Paclitaxel Phase I and II Rhabdomyosarcoma, neuroblastoma [41]
  Doxil Doxorubicin Phase I and II Refractory or recurrent 

Rhabdomyosarcoma, Neuroblastoma, Pontine glioma
[31]

  DaunoXome Daunorubicin Phase III AIDS related Kaposi Sarcoma, pediatric in acute myloid leukemia refractory/
relapsed

[32]

  L-Annamycin L-Annamycin Phase I Acute lymphocytic and acute myloid Leukemia [42]
  Depocyte
  (liposomalformulation)

Cytarabine Phase I Acute lymphocytic leukemia [43]
Recurrent brain tumor [44]

  Marquibo Vincristine 
sulfate

Phase I Sarcoma [45]
Phase II Neuroblastoma

  CPX 351 Cytarabine 
and 

daunorubicin

Phase I Relapsed leukemia or lymphoma [46]

Table 2  Drug delivery formulations currently undergoing clinical trials for pediatric cancers

FDA: United States Food and Drug Administration.

Sabnis N et al . Lipoprotein based drug delivery



been evaluated regarding their efficacy and capacity 
to perform targeted delivery of cancer drugs[61,62,71]. In 
addition, the rHDL DDVs are comprised of endogenous 
biocompatible ingredients that have already been 
injected into human subjects during cholesterol meta-
bolism trials[72]. 

Due to their structural similarity to their natural 
counterparts, rHDLs effectively avoid recognition by 
the reticuloendothelial system that clears foreign 
substances, and thus fail to trigger immune responses 
in contrast to other synthetic DDVs including lipo-
somes[73]. Additional advantages of the rHDL DDVs 
include extended retention time in circulation, stability 
and cytoplasmic drug delivery to circumvent drug 
resistance that may develop during chemotherapy. 
Also lesser amounts of drug are likely to be required for 
achieving the same cytotoxic effect compared with the 
drug used in its free form[67]. Although these advantages 
of lipoprotein based nano DDV could be beneficial 
to all types of cancer patients, pediatric patients are 
anticipated to benefit the most by the extended safety, 
long drug retention time and enhanced therapeutic 
efficacy.

Our laboratory has focused on studies of targeted 
drug delivery, including optimization of the rHDL 
nanoparticle via attachment of targeting molecules. 
Mooberry et al[61] have shown that the uptake of 
paclitaxel by ovarian cancer cells from rHDL DDVs could 
thus be substantially enhanced by covalently attaching 
a folic acid residue to the apolipoprotein component 
of the nanoparticle. Similarly, Parker et al[74] exploited 
the overexpression of folate receptors in tumor cells by 
conjugating folic acid to the apolipoprotein B component 
of an LDL-like DDV and thus specifically targeted drugs, 
transported by the lipoprotein vehicle. These studies 
suggest that lipoprotein DDVs could be specifically 
functionalized for targeting surface antigens (includ-
ing receptors) that are overexpressed by malignant 

tumors[48,60]. Overall, as described above, lipoproteins 
possess many desirable characteristics that enable 
them to serve as natural or synthetic drug transporters. 
While lipoproteins were proposed as efficient DDVs over 
thirty years ago, perhaps surprisingly, no lipoprotein 
formulation has so far been approved for clinical 
application to date. The recent upsurge in interest 
to develop lipoprotein DDVs will perhaps spawn the 
needed energy and investment to fully take advantage 
of this robust, natural drug carrier for therapeutic 
purposes in general and pediatric formulations in 
particular.

FUTURE PERSPECTIVE FOR PEDIATRIC 
CANCER CHEMOTHERAPY
Conventional cancer chemotherapy has traditionally 
been associated with undesirable side effects that are 
especially troublesome during the treatment of pediatric 
patients. Researchers have drawn attention to the 
multidimensional benefits of lipoprotein based DDVs 
including their biocompatibility and stability that enable 
them to minimize these side effects via specifically 
targeting malignant cells and tumors while avoiding 
normal tissues[48,59,61,63,75]. Several clinical studies have 
demonstrated that HDL-type formulations have been 
safely administered to human subjects[76-78]. Selection 
of patients for rHDL driven chemotherapy could be 
based on the SR-B1 expression levels of each specific 
tumor involved; thus, provide a new bio-marker for 
eventual personalized therapy. There are numerous 
additional membrane proteins which could be used 
as targets for functionalized rHDL. This feature of 
rerouting DDVs from their endogenous receptors and 
steering them to specific sites[71] could further enhance 
the potential of the rHDL nanoparticles to facilitate the 
development of a robust personalized therapy regimen 
for pediatric cancers. Despite the major advances in 
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pediatric cancer research, there are several malignancies 
afflicting children that remain resistant to therapy. In 
addition, extension of 5 year survival or even producing 
permanent remission is often accompanied by harmful 
long lasting and debilitating side effects in pediatric 
cancer patients. Perhaps improved treatment modalities 
developed via novel nanoparticle formulations and 
specifically involving lipoprotein type carriers will provide 
the needed tools to overcome the current barriers to 
successful pediatric cancer therapy.
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