
epidemic, is one of the most significant social and health 
crises which has currently afflicted nearly 44 million patients 
worldwide and about new 7.7 million cases are reported 
every year. This portrays the unmet need towards better 
understanding of Alzheimer’s disease pathomechanisms 
and related research towards more effective treatment 
strategies. The review thus comprehensively addresses 
Alzheimer’s disease pathophysiology with an insight of 
underlying multicascade pathway and elaborates possible 
therapeutic targets- particularly anti-amyloid approaches, 
anti-tau approaches, acetylcholinesterase inhibitors, 
glutamatergic system modifiers, immunotherapy, anti-
inflammatory targets, antioxidants, 3-hydroxy-3-methyl-
glutaryl-coenzyme A reductase inhibitors and insulin. 
In spite of extensive research leading to identification 
of newer targets and potent drugs, complete cure of 
Alzheimer’s disease appears to be an unreached holy 
grail. This can be attributed to their ineffective delivery 
across blood brain barrier and ultimately to the brain. 
With this understanding, researchers are now focusing 
on development of drug delivery systems to be delivered 
via  suitable route that can circumvent blood brain barrier 
effectively with enhanced patient compliance. In this 
context, we have summarized current drug delivery 
strategies by oral, transdermal, intravenous, intranasal 
and other miscellaneous routes and have accentuated the 
future standpoint towards promising therapy ultimately 
leading to Alzheimer’s disease cure.
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Core tip: Dementia, including Alzheimer’s disease, the 
21st Century epidemic, is one of the most significant social 
and health crises which has currently afflicted nearly 44 
million patients worldwide and is on rampant rise. This 
portrays the unmet need towards better understanding 
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Abstract
Dementia, including Alzheimer’s disease, the 21st Century 
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of Alzheimer’s disease pathomechanisms and related 
research towards more effective treatment strategies. 
The review thus focuses on thorough understanding of 
Alzheimer’s disease pathophysiology, pharmacotherapy 
in terms of explored therapeutic targets and drug delivery 
systems towards better delivery of anti-Alzheirmer 
actives and a possible way ahead. 
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INTRODUCTION
Dementia, including Alzheimer’s disease (AD), the 21st 
Century epidemic, is one of the most significant social 
and health crises impacting families, social service and 
healthcare delivery systems. 

The incidence of dementia and AD escalates almost 
exponentially with age[1]. The prevalence of dementia 
nearly doubles every five years after the age of 60 in 
which AD accounts for between 50%-70% among all 
dementia cases[2]. The age-standardized occurrence for 
those aged 60 or older is 5%-7%; among persons aged 
60-64 years is 7%-18%, but among those aged over 
90 years is 29%-64%[3-6]. It is generally believed that 
men and women are equally at risk of AD. However, 
there are more women patients than men possibly due 
to higher longevity of women as compared to men. 
Further, it is devastating to note that nearly one in four 
people with AD hide or conceal their symptoms, citing 
social stigma or dread of being ostracized[7] and four out 
of ten sufferers report being excluded from the familiar 
and comforting routines of everyday life[8].

Worldwide, approximately 44 million patients are 
reported to be afflicted with AD or other dementias and 
about 7.7 million new cases are reported every year[9]. 
The numbers are estimated to reach 76 million by 2030 
and more than 135 million by 2050[4,10,11], with 90% 
increase in Europe, 226% in Asia, 248% in America and 
345% in Africa[12]. In fact, most countries are woefully 
unprepared for the dementia epidemic and have not 
structured their health care programs to cope with the 
foreseen increase in numbers. Despite the urgent need 
for action, only 13 of the 193 World Health Organization 
members have instigated national dementia plans, 
precisely all of them in the developed world[13]. 

On the other hand, as per the current statistics, 
the number of cases of AD in Asia and Africa is lower 
than that reported in developed countries. There are 
several possible reasons like undiagnosed AD, the lack 
of awareness, poor access to technologically advanced 
health care, etc., or there may be lower incidence of risk 
factors[14]. Research in India and Africa proposes that 
the AD risk was possibly greater for urban as compared 

to rural areas. The reason for this difference is not clear 
whether it is increased life expectancy, lifestyle or diet? 

AD though has a genetic predisposition in terms of 
mutations in specific genes (discussed in subsequent 
section), the expected hike in AD afflicted population 
can be attributed to increased exposure to AD risk 
factors that include ageing, oxidative stress (age and 
lifestyle induced), cardiovascular disorders, brain 
injuries, occupational hazards, etc.[12,15,16].

Further, the annual cost of AD related drug sales is 
reported to be increasing proportionally at growth rate 
of 33% from $500 million (year 1999) to approximately 
$6 billion (year 2008) and the estimated AD market is 
expected to cover a market size of $9.5 billion to $15 
billion by year 2015-2017 (Figure 1)[16].

These huge statistical numbers clearly portray the 
unfulfilled need in AD therapeutic research and better 
management strategies. The major hurdle in this 
context is not only the identification of potential targets 
and discovery of potent therapeutic agents but also 
their effective delivery across brain. 

With due consideration to these burning issues, 
the review focuses on thorough understanding of AD 
pathophysiology, pharmacotherapy in terms of explored 
therapeutic targets and current state of art in drug 
delivery systems towards better delivery of AD actives 
and a possible way ahead. 

AD: PATHOLOGY AND SYMPTOMS
AD is a progressive brain disorder wherein the patients 
show clinical symptoms after a significant manifestation 
of disease which can take as long as 20 years[15,17]. The 
symptomatic appearance of AD results from progressive 
neurodegeneration resulting from alteration in normal 
anatomy and physiology of central nervous system 
(CNS). This primarily includes abnormal appearance 
of extracellular senile plaques and intracellular neur-
ofibrillary tangles (NFTs) in CNS that interfere with 
classical neuronal activity triggering the neuronal death. 

The senile plaques comprise toxic Amyloid β [Aβ(1-42)] 
protein fragments resulting from atypical amyloidogenic 
cleavage of amyloid precursor protein (APP). These 
Aβ fragments undergo sequential aggregation process 
to form insoluble senile plaques that get deposited 
in extracellular neuronal matrix. These plaques then 
interfere with synaptic signal transfer and induce stress 
signals that activate microglia, lysosomes and synaptic 
mitochondria ultimately causing neuronal death[15,18-21].

The intracellular NFTs are predominantly made up 
of hyperphosphorylated tau protein inter-tangles that 
impede neuronal nutrient supply leading to neuronal 
death. Additionally, other pathological variations like 
inflammation, activated microglias, elevated levels of 
proinflammatory cytokines, etc., accelerate the neuronal 
death. 

From the site specific AD manifestation per se, the 
early neurodegeneration is observed in the choliner-
gic region of basal forebrain that results in cholinergic 
neuronal death. This results in acetylcholine (ACh) 
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imbalance leading to early symptoms and memory 
loss via interference in both nicotinic and muscarinic 
receptor activities[18,19]. This early clinical stage of AD is 
commonly identified with mild to moderate forgetfulness 
in routine activities, apathy, depression, etc. These 
symptoms are broadly classified under a general class 
of dementia. An important point to note here is that 
forebrain region is associated with memory formation 
and thus early manifestation of AD leads to loss of recent 
memory followed by the old memory as the disease 
advances[15,19,20].

As the disease progresses senile plaques and NFTs 
deposition gets extrapolated to other regions of brain 
that predominantly include parietal and temporal lobes, 
hippocampus and entorhinal cortex[19,22-24]. This worsens 
the neuropsychiatric symptoms resulting in delirium, 
disorientation, lack of judgment, withdrawal from social 
appearance, difficulty in performing routine activities 
like eating, talking, walking, writing, etc.[15,19]. 

As the disease progresses, the brain shows high 
degree of shrinkage and debris deposition due to 
excessive neuronal death in all regions of brain. This 
impairment makes the patients dependent on help even 
for performing routine daily activities and this is identified 
as the final stage of the disease. At this stage, the 
excessively deprived brain function deprives the control 
on all the other body functions. This makes the patient 
highly vulnerable to secondary diseases like cardiac/
pulmonary complications and out borne infections like 
pneumonia, etc., which forms the predominant reason 
for patient’s death[15].

AD: THERAPEUTIC TARGETS
From the ongoing multidirectional research on AD etio-

logy, it is well evident that there is no unanimous opinion 
suggesting a single mechanistic pathway. Hence the 
pathophysiological and symptomatic advents associated 
with AD are believed to be resulting from a multicascade 
pathway leading to neurodegeneration. To understand 
this gradual and irreversible cognitive decline, various 
hypotheses have been proposed that include, formation 
of Aβ and extracellular fibrillation thereof, development 
of intracellular hyperphosphorylated tau and associated 
NFTs, oxidative stress, etc., ultimately resulting in 
neuronal death (Figure 2). 

An extensive research on these variable pathways 
has resulted in identification of multiple therapeutic 
targets which are summarized below.

Amyloid cascade and therapeutic targets
This hypothesis was proposed by Hardy and Higgins 
in early 1990’s and till date it is the most-researched 
and conceptual framework for AD which has markedly 
influenced drug development over a period of last 25 
years[21]. The hypothesis is based on formation and 
accumulation of toxic Aβ(1-42) fragments resulting from 
abnormal amyloidogenic cleavage of trans membrane 
APP resulting from mutation in APP and presenilin gene 
(PS-1, PS-2) that regulate the entire pathway (familial 
origin)[25,26]. The so formed insoluble Aβ fragments 
further associate to form senile plaques, diffuse plaques, 
and cerebrovascular deposits which are the hallmarks of 
AD and being toxic they result in synaptic loss, neuronal 
death (predominantly cholinergic neurons) leading to 
progressive cognitive impairment[18,22-24].

Conventionally, 3 enzymes that play a crucial role 
in natural proteolytic cleavage of APP are α, β, and γ 
secretase. The first step herein comprises cleavage 
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Figure 1  Schematic of Alzheimer’s disease afflicted patient population and associated therapy market data. AD: Alzheimer’s disease.
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antibodies that target and remove Aβ and are discussed 
in subsequent sections.

α-secretase stimulators: This approach came in 
scientific limelight with an in vivo study that demon-
strated the potential of enzyme ADAM 10 (a member of 
disintegrin and metalloproteinase family) that functions 
as α-secretase to prevent plaque formation and addi-
tionally it offered neuronal protection in hippocampal 
region[27]. This is attributed to the fact that α-secretase 
cleaves APP in a non-amyloidogenic pathway (Figure 3) 
and thus, up regulation of this enzyme is postulated to 
arrest Aβ formation. In this context, naturally occurring 
retinoids are reported to possess α-secretase stimulator 
activity and one such molecule acitretin is at phase 2 trial 

of extracellular fragment by α-secretase (non-amyl-
oidogenic and predominant pathway under normal 
condition) or β-secretase (amyloidogenic pathway 
predominant under AD) leading to 83 or 99 amino acid 
peptide residues respectively that remain attached as 
a trans membrane fragment. Further, these fragments 
are invariably cleaved by γ-secretase which leads to 
formation of toxic Aβ(1-42) fragments in case of amyloi-
dogenic pathway and initiates the extracellular plaque 
formation[22,24] (Figure 3). 

Thus, targeting Aβ cascade presents the most im-
portant strategy towards management of AD. Several 
of such approaches include inflection of Aβ formation, 
augmentation of Aβ degradation, inhibition of Aβ ass-
embly, and immunization (passive and active) to raise 
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stage[28]. This finding suggests the use of natural retinoid 
rich food which includes spinach, carrots, soy products, 
etc., as a possible nutritional supplement for AD patients. 
Apart from natural sources, synthetic agonists of α-secr-
etase are under thorough investigation and one such 
molecule, EHT-0202 has shown very promising results 
both in vitro and in vivo and is currently under 3-mo 
phase 2 clinical evaluation in 35 AD subjects[29-31].

β-secretase modulators: The β-secretase enzyme 
initiates the amyloidogenic pathway and thus it is a 
prime requisite to develop inhibitors of the same. The 
enzyme is very large structurally and poses difficulties in 
producing an inhibitor especially with an ability to cross 
the blood brain barrier (BBB). Thus, small molecules 
are being designed to inhibit the enzyme at the active 
site. CTS-21166, a β-secretase inhibitor is successfully 
reported to reduce plasma Aβ levels in phase 1 study 
conducted in 48 healthy volunteers at 6 different doses 

up to 225 mg and phase 2 study is planned[32]. In 
another study, central Aβ levels were lowered by the 
orally administrable non peptide molecule LY2811376 
(molecule by Eli Lilly Inc.) in preclinical studies but 
further progress was halted as it affected animal retinal 
epithelium[33,34]. Other β-secretase inhibitor KMI-429 
is being developed and human trial data is awaited[35]. 
Thus, this strategy is in its infancy and has to undergo a 
battery of safety and efficacy studies prior to becoming 
a market reality.

γ-secretase modulators: γ-secretase, the ultimate 
enzyme in amyloid cascade pathway, presents the 
next probable target to arrest amyloid cascade. With 
this in vision, MK-0752 (Merck), a γ-secretase inhibitor 
was developed which is in phase 2 trial as phase 1 
trial was successful and indicated significant reduction 
in cerebrospinal fluid (CSF) Aβ levels in healthy 
volunteers[29,36]. 
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Figure 3  Schematic representation of amyloid cascade hypothesis. Three enzymes α, β, and γ secretase play a crucial role in the proteolytic cleavage of 
APP. The first step, extracellular fragment of APP is cleaved by α-secretase (non-amyloidogenic and predominant pathway under normal condition) or β-secretase 
(amyloidogenic pathway predominant under AD) leading to 83 or 99 amino acid peptide residues respectively that remain attached as a trans membrane fragment. 
These fragments are ultimately cleaved by γ-secretase which leads to formation of toxic Aβ(1-42) fragments in case of amyloidogenic pathway and initiates the 
extracellular Aβ plaque formation. APP: Amyloid precursor protein; AD: Alzheimer’s disease.
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Structurally, γ-secretase is a trans-membrane complex 
of four proteins: presenilin, presenilin enhancer 2, 
nicastrin, and anterior pharynx-defective 1[29,37] that play 
role in proteolysis of type-1 transmembrane proteins. 
Thus, it is worthy to note here that, apart from APP, 
γ-secretase has other substrates like Notch, E-cadherin, 
ErbB4, CD44, tyrosinase, alcadein which play a crucial 
role in embryogenesis and development[37]. Thus, 
non-selective inhibition of this protein may lead to 
side/adverse effects. As an instance, semagacestat 
(non-selective γ-secretase inhibitor) has advanced in 
therapeutic trials for AD but a phase 2 trial (14 wk) in 51 
subjects (15, 22 and 14 subjects received placebo, 100 
mg and 140 mg drug daily respectively) have shown 
high risk of skin rash and hair colour change which was 
reversed with treatment withdrawal[38]. Thus designing of 
an inhibitor to this enzyme desires meticulous selection. 
Owing to these observations, the new molecules are 
being developed with an aim to modulate the enzyme 
which will retain the therapeutic efficacy but overrule the 
adverse drug reactions[39].

Inhibitors of Aβ aggregation: Another encouraging 
approach for the development of novel therapeutics for 
treating AD is to prevent Aβ fibril formation especially 
by the small molecules. Neurochem Inc., a Canadian 
company, has developed a glycosaminoglycan mimetic 
Alzhemed™ which has an ability to bind to Aβ peptides 
and thereby inhibits the formation of Aβ aggregates. 
The molecule has successfully completed Phase 2 clinical 
trial and Phase 3 trial results are recently published 
wherein the data is very promising[40]. Metal ions like 
Cu2+ and Zn2+ are reported to augment Aβ aggregation 
and associated toxicity[41]. In consistency with this, a 
Cu/Zn chelator, clioquinol is reported to reduce CNS 
Aβ deposition after a 9 wk treatment in rodent model. 
The additional benefit of this molecule is its inherent 
tendency to cross BBB which is anticipated to ensure the 
therapeutic efficacy[42].

Aβ removal approaches: Aβ plaques are degraded 
by some proteases such as plasmin, neprilysin, insulin 
degrading enzyme, endothelin converting enzyme, 
angiotensin converting enzyme and metalloprotein-
ase[43]. The levels of these Aβ degrading enzymes are 
observed to decline in AD and may contribute to Aβ 
accumulation[44]. In consistency to these observations, 
experimental evidence has suggested that inhibitors of 
plasminogen activator decrease the plasma and brain Aβ 
levels in transgenic animals[45] and increasing neprilysin 
levels through viral vector-delivered gene expression 
shows beneficial effects in animal models[46]. Additionally, 
the peptide hormone somatostatin is also reported to 
enhance Aβ clearance through activation of neprilysin[47]. 
Therefore targeting neprilysin with somatostatin or its 
analogs is an encouraging option in AD. This approach is 
quite in its infancy and demands thorough investigation.

Immunotherapy against Aβ: Immunotherapy was 
first explored by Schenk et al[48] for treatment of AD 
in a preclinical experiment involving Aβ(1-42) active 
immunization using PDAPP transgenic mice. So far 
numerous studies have shown encouraging results 
by both active (vaccination) and passive (monoclonal 
antibody) immunization. In active immunization, the 
Aβ peptide or fragment conjugated to a carrier protein 
and adjuvant which holds potential to stimulate cellular 
and humoral immune response is administered to the 
host which results in generation of anti-Aβ antibody. In 
passive immunization, the Aβ peptide specific antibody 
is directly injected into the host, thus evading the step 
of stimulating the host immune systems. The exact 
mechanism by which immunotherapy executes anti-
AD activity is still not clear. However, studies conducted 
so far have given substantial proofs based on which 
few of the hypotheses are proposed viz. microglia-
mediated phagocytosis, antibody mediated Aβ monomer 
sequestration, antibody mediated prevention of Aβ 
aggregation and neutralization of Aβ toxicity and 
antibody mediated peripheral clearance of Aβ[49-57]. 
Figure 4 illustrates the diagrammatic representation of 
the various mechanistic pathways of immunotherapy in 
AD.

Bard et al[49] and Hartman et al[50] administered Aβ 
monoclonal antibody to PDAPP transgenic mice and 
further noticed significant immunoreactivity within the 
microglia and macrophages. The study clearly indicated 
that the generated antibodies were able to cross the 
BBB and bind to Aβ plaques, provoking the Fc receptors 
(FcR)-mediated microglial phagocytosis. Numerous 
studies conducted by active and passive immunization 
have suggested that the (FcR)-mediated microglial 
phagocytosis might play a crucial role in clearing Aβ 
load from brain[49,50]. 

In yet another study, Yamada et al[51] found that 
administration of certain anti-Aβ monoclonal antibody 
m266 has selectively sequestered soluble Aβ monomers 
in the brain and terminated its progression to oligomers 
and plaques, thus circumventing associated neuro-
toxicity. 

Another hypothesis suggests that certain anti-Aβ 
monoclonal antibodies have ability to by-pass the BBB 
and interact with Aβ oligomers and fibrils[52,53] to either 
disassemble or dissolve the existing plaques[54-56].

DeMattos et al[57] were the first to reveal the ability 
of antibodies to clear the Aβ levels from the systemic 
circulation. In this study, Aβ mid-region antibody (m266) 
which bears high affinity for soluble Aβ administered 
to PDAPP transgenic mice showed notable reduction 
in Aβ burden from the plasma. This mechanism was 
further confirmed by both active[58,59] and passive 
immunization[60-62]. These mechanisms indicated that 
anti-Aβ antibodies directly interact with plasma Aβ and 
enhance its clearance. This in turn imbalance the plasma 
to brain Aβ ratio and there by hasten the Aβ removal 
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from the brain.
Despite the promising outcome in in vitro and precli-

nical studies, application of immunotherapy in clinical 
trial using synthetic Aβ peptide AN1792/QS-21 in AD 
patients with mild to moderate severity has turned out 
to be fatal and resulted in abrupt termination as 8 out of 
300 patients developed meningoencephalitis during the 
study[63]. The study concluded that, there was significant 
plaque reduction in patients treated with AN1792/QS-2 
but unfortunately it augmented T cell activation leading 
to meningoencephalitis. A different clinical trial with 
Aβ immunization, indicated noteworthy clearance of 
amyloid plaque in AD patients but lacked the ability to 
arrest neurodegenerative progression[64].

In an attempt to evade the potentially harmful T cell 
responses, emergence of advanced vaccines consisting 
sole antibody epitope(s) that lack T-cell reactive sites is 
a step further in the development of immunotherapy for 
AD. The existing data has shown promising effects while 
clinical reports are still awaited. In all, despite promising 

outcome of immunotherapy by curtailing the Aβ load 
and improvement of cognitive function, threat of adverse 
reactions still remains to be the unresolved issue[64]. 

Although several drugs have been investigated to 
be active at their intended targets, none have yet been 
proven to have significant clinical benefits. In 2011 and 
2012, two negative trials of secretase inhibitors, sema-
gacestat and avagacestat, and several negative trials of 
monoclonal antibodies, bapineuzumab and solanezumab 
were reported[64-68]. Recent studies have demonstrated 
that reducing Aβ in the brain is possible but that decr-
easing production or reducing fibrils or plaques is not 
clearly associated with clinical improvement and could 
be associated with toxicity[64-68]. These issues must 
be critically evaluated while development of newer 
therapeutic molecules against the specific targets in 
amyloid cascade hypothesis.

Taupathy and therapeutic targets
The second major hallmark of AD is formation of NFTs 
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which comprise hyperphosphorylated form of tau 
protein. Tau is a protein that under normal physiological 
conditions stabilizes microtubules, allowing transport of 
vesicles and other products of neuronal cell bodies down 
the axon to the synapse. By regulating microtubule 
assembly, tau controls the morphology and growth of 
axons[69]. The protein has several phosphorylation sites, 
and the microtubule binding property of tau is dependent 
on the phosphorylation state. The phosphorylated tau 
binds microtubules with a lesser affinity leading to 
microtubule instability[70,71].

The trigger for this abnormal tau fibrillation initiates 
with stress signals (Aβ, mechanical damage, ROS, 
etc.) that activate primary microglial cells in CNS. 
This activation results in release of proinflammatory 
cytokines (TNFα and interleukins) that leads to neuronal 
alteration initiating tau hyperphosphorylation. This 
hyperphosphorylated form presents an aggregation 
tendency forming initial paired helical filaments that 
further precipitate to form NFTs. These intracellular NFTs 
elicit toxic effect on neurons leading to neuronal death. 
Upon neurodegeneration, these NFTs are released in 
extracellular matrix that in turn augments the microglial 
activity via positive feedback mechanism[72,73]. 

As per this hypothesis, AD pathology starts with 
formation of pretangles in proximal axons of the 
noradrenergic locus ceruleus which spreads via trans-
synaptic transport to entorhinal cortex, hippocampus, 
and neocortex. This cascade of reactions is known as 
taupathy and is reported to worsen the AD in conjunction 
with senile plaques[72] (Figure 2). 

Thus, it is well conceived that tau hyperphosphory-
lation, microtubule disruption and formation of NFTs play 
a crucial role in AD pathomechanisms. Therapeutically, 
several of these mechanisms can be targeted to arrest 
AD progression viz. inhibition of tau kinases to lower 
tau hperphosphorylation and associated aggregation, 
enhancing clearance of tau aggregates with drugs or 
antibodies and microtubule stabilization by enhancing 
phosphatase activity. Few of such approaches have 
progressed from preclinical to advanced clinical trials[74,75]. 
In this context, the main focus is now shifting on 
glycogen synthase kinase 3, a prime enzyme involved in 
tau phosphorylation. Lithium and valproate are reported 
to have inhibitory action on this enzyme and have shown 
promising results in terms of reducing taupathy and NFT 
formation in transgenic mice[76,77]. Further, it should be 
noted that tau pathology is not specific to AD, and occurs 
in several other disorders, including frontotemporal 
dementia, corticobasal degeneration, progressive 
supranuclear palsy, etc., and these approaches can be 
extrapolated in treatment thereof[72]. 

Recently, scientists have reported close relation 
between taupathy and synaptic mitochondrial dys-
function that leads to ROS augmentation. With this 
support, mitochondrial dysfunction cascade hypothesis 
is gaining wide attention in AD pathomechanisms[73].

Mitochondrial dysfunction and therapeutic targets
Mitochondria being the energy hose of the cells, decline 
in mitochondrial function allies itself with ageing and 
AD. The prime assumption of this hypothesis is based 
on genetic predisposition of AD that is presented by 
low genetic mitochondrial baseline function which is 
predominantly inherited from mother’s genome and this 
mitochondrial baseline function is inversely proportional 
with AD progression[73]. 

In addition to genetic predisposition, AD patho-
mechanisms are also reported to manifest mitochondrial 
dysfunction. Aβ is reported to be present in mitochondria 
and is observed to be interacting with complex Ⅱ of 
respiratory chain, mitochondrial membrane and Hsp 
60 (a mitochondrial chaperon matrix protein) leading 
to mitochondrial abnormalities. This not only alters the 
regular mitochondrial function but also causes abnormal 
increase in mitochondrial fission and reduced fusion 
that severely affects the mitochondrial morphology. 
This alteration in morphology is proposed to augment 
mitochondrial fragmentation and was confirmed using 
confocal and electron microscopic analysis in APP overex-
pressed neurons[78]. This can be additionally explained 
by the unwanted interaction of Aβ and NFT with dyna-
min-related protein 1, the protein that maintains the 
mammalian mitochondria. This interaction results in 
increased mitochondrial fragmentation, their restricted 
axonal transport and subsequent neurodegeneration[79].

Apart from genetic and AD associated factors, other 
environmental factors like heavy metal exposure, 
oxidative stress, insulin resistance, etc., are reported to 
down regulate the mitochondrial function via positive 
feedback pathway. Under normal scenario, mitochondrial 
biogenesis can take care of this external environmental 
burden but fails in case of patients with already declined 
neuronal activity like in case of AD. Thus, these environ-
mental factors are postulated to cause additional 
affliction by hastening the mitochondrial dysfunction 
ultimately leading to progressive AD associated synaptic 
damage and symptomatic manifestation[73,80].

Oxidative stress not only causes mitochondrial 
dysfunction but also triggers Aβ deposition, tau hype-
rphosphorylation and oxidation of other neuronal compo-
nents like lipids, proteins, nucleic acids, etc., causing 
neuronal damage[70]. The relationship between oxidative 
stress and AD suggests that oxidative stress is the key 
component of AD pathophysiology. In this context, use 
of antioxidants to reduce oxidative burden on cells holds 
a strong rationale[81]. 

Antioxidants for AD therapy
Antioxidant treatment is proposed to be a promising 
approach to slow down the disease progression by 
attenuating phospholipid peroxidation, protein and DNA 
oxidation[82]. Flavonoids and carotenoids, a group of 
ubiquitous antioxidants have also shown neuroprotective 
effect in several experiments[83,84]. Rutin, a flavonoid 
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compound, protected rats from stress induced damage 
and streptozotocin induced neuronal inflammation[85]. 
Lutein, a natural carotenoid with cytoprotective effect[86]; 
when supplemented in combination with docosahexaenoic 
acid, memory scores and rate of learning improved 
in elderly women[87]. The spice curcumin has shown 
several beneficial roles (antioxidant, anti-inflammatory, 
and amyloid disaggregating properties) in experimental 
studies[88,89].

Melatonin is another antioxidant compound which 
is anticipated to be a potent anti-AD active. This is 
attributed to N-methyl-D-aspartate (NMDA) receptor 
modulation, inhibition of Aβ generation, formation of 
amyloid fibrils, attenuation of tau hyperphosphorylation, 
mitochondrial protection, and antiapoptotic effect[90]. 
Vitamin E has shown marked reduction in lipid peroxi-
dation and plaque deposition when administered in 
transgenic AD rodent model but has failed to produce 
similar convincing results in humans[91]. Also, the 
combination of vitamin E with donepezil did not provide 
additional benefit in patients with AD or mild cognitive 
impairment[92]. Evidence for the protection offered by 
antioxidants including vitamins (E, C, and carotenoids), 
phytochemicals and synthetic compounds in AD is 
inconsistent[83].

Antioxidants though have shown positive results, 
their translation to clinic as a solitary AD therapy is not 
successful due to varied epidemiological data. However, 
it is worthy to note that they are emerging as nutritional 
supplements to decrease the incidence or to delay the 
progression of AD. 

Acetylcholinesterase inhibitors for AD therapy
As discussed in earlier section (AD: Pathology and 
Symptoms), cholinergic neuronal death is the classical 
manifestation of AD leading to ACh imbalance and 
associated cognitive decline[18,19]. Thus restoration of 
CNS ACh levels is believed to offer early symptomatic 
relief. 

In this context, cholinergic neuronal death restricts 
the opportunity to augment the ACh release from 
neurons and thus restoration of CNS ACh levels by arre-
sting its degradation was thought to be a promising 
strategy. With this in view, Acetylcholinesterase 
(enzyme responsible for degradation of Ach) inhibitors 
(AChEIs) were the first amongst the pharmacological 
treatments sanctioned by the United States Food and 
Drug Administration (FDA) for AD. Currently four AChEIs 
are available in market: tacrine (Cognex®), donepezil 
(Aricept®), rivastigmine (Exelon®) and galantamine 
(Razadyne®, Reminyl®). Their therapeutic efficacy may be 
attributed to their ability to sustain cognitive function over 
a prolonged period of therapy[93,94]. Studies have also 
shown that these drugs can arrest neurodegeneration 
and thus can delay AD progression, if the therapy is 
initiated at earliest in patients with mild to moderate AD. 
Rivastigmine blocks butyrylcholinesterase, levels of which 
are reported to be augmented in the brain of patients 

with AD[95] and this may have an advantageous effect 
on prolonged cholinesterase inhibition ensuing disease 
stabilization. On the other hand, galantamine binds to 
the nicotinic ACh receptor sites which opens the ionic 
channels and improves the receptor responsiveness to 
Ach[96]. Tacrine is hardly prescribed nowadays due to its 
high dosing frequency and associated hepatotoxicity. 
Other adverse effects associated with AChEIs are 
nausea, vomiting, diarrhoea, anorexia, etc., and are 
observed to worsen during dose escalation[97]. Patients 
with bradycardia are at higher risk and should be given 
additional attention[98]. Gastrointestinal (GI) effects can 
be minimized by simultaneous administration of food and 
an anti-emetic. As the cholinergic neurons decline with 
disease progression (severe forms of AD), the AChEI 
treatments becomes inefficient. 

The mechanism of action by which these drugs act 
is by arresting the breakdown of the neurotransmitter 
Ach via inhibition of the acetylcholinesterase enzyme. 
Acetylcholinesterase is also found to enhance Aβ plaque 
formation; therefore inhibition of this enzyme will not 
only provide symptomatic relief but also arrest AD 
progression[97].

Glutamatergic system modifiers for AD therapy
Glutamate is the major excitatory neurotransmitter in 
the CNS which is involved in a variety of functions, inclu-
ding synaptic neurotransmission, neuronal growth and 
development, synaptic plasticity, etc[98,99]. Glutamatergic 
neurotransmission is also observed to be very crucial in 
learning and memory[64,65] which is greatly hampered 
in case of AD patients. Moreover, the glutamatergic 
neurons are observed in the brain regions affected 
by AD, particularly in the neocortex, cortex and hippo-
campus[99-101]. 

Glutamate induced up regulation of the NMDA 
receptor augments the intracellular calcium level leading 
to neuronal death which is the hallmark of AD[102]. Meman-
tine (Namenda®, Axura®, Ebixa®), a non-competitive 
NMDA receptor antagonist was approved by FDA in 
October 2003 for treatment of moderate to severe 
AD. It inhibits the neurodegeneration resulting from 
protracted glutamate release[103] but does not interfere 
with cognition at therapeutic doses[104]. At higher doses, 
clinical studies have shown the potential of drug to 
cause functional decline with delay in cognition but 
have overruled the possibility of any severe adverse 
effects[105,106]. Some studies also suggest that memantine 
may synergies the AChEIs therapeutic efficacy if given 
in combination. In one such study, it is proven that the 
combination was effective and well tolerated by majority 
of AD subjects without any severe side effects[107]. With 
such a promising data combination therapy can be 
envisioned as a better AD treatment regime. 

Anti-inflammatory agents for AD therapy 
The perception of AD being an inflammatory disease has 
appeared with two unique pathophysiological findings 
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in AD patients. Firstly, the increased size and number 
of microglial cells in the brain and second the overex-
pression of complement system via amyloid plaques. 
Results from several studies, based on follow-up design 
and prescription based data have shown substantial 
reduction in the incidence of AD with prolonged use of 
non-steroidal anti-inflammatory drugs (NSAIDs)[108].

Investigation of AD brain has confirmed the incid-
ence of inflammation at and around the sites of Aβ 
plaques deposits, NFTs and degenerating neurons. 
The aggregation and deposition of Aβ plaques tend 
to provoke the activation of microglia and astrocytes. 
This event is further accompanied by overexpression 
of complement system, particularly C1q, C3b, C3a, 
membrane attack complex (MAC), cytokines and 
chemokines. During the Aβ aggregation process, bin-
ding of C1q and C3b to amyloid plaques activates the 
complement system causing dystrophic neuritis and 
up regulating C3a and MAC (Figure 5). C3b further 
boosts the complement activation. C3a stimulates the 
activation of microglial cells which clears the Aβ through 
phagocytic mechanism. MAC causes cell lysis and 
results in toxic effects. The uncleared Aβ escalates the 
deposition and provokes the microglial cell activation 
and release of cytokines, chemokines and neurotoxins 
which cause neuronal loss and synaptic dysfunction[108]. 

Multiple mechanistic pathways have been cited 
for NSAIDs to elicit anti-AD activity. First of which is 
native anti-inflammatory action (Figure 5). NSAIDs 
mainly exert their anti-AD activity by suppressing the 
synthesis of inflammatory prostaglandin executed 
via Cyclooxygenase inhibition[109]. In support of this, 
Kotilinek et al[110] also recorded that the major improve-
ment in the memory aspect of transgenic mice is 
associated with decreased prostaglandin E2 and is 
attributed to COX-2 inhibition. In another mechanism 
the NSAIDs are known to inhibit the nuclear transgenic 
factor Kβ which is up regulated in AD patients and is 
involved in regulation of many cellular target genes[111]. 

Yet in another investigation, the role of nuclear 
located peroxisome proliferator-activated receptor-γ 
(PPARγ) was unveiled where it is involved in regula-
tion of pro-inflammatory genes associated with the 
pathogenesis of AD. The NSAIDs like ibuprofen and 
naproxen are known to stimulate PPARγ receptor and 
subsequently cause anti-inflammatory effect. Also, 
PPRAγ receptor mediated release of pro-inflammatory 
cytokines is associated with reduction of β-secretase 
expression and Aβ secretion[112].

The second proposed mechanism of anti-AD activity 
of NSAIDs is attributed to inhibition of amyloidogenic 
APP processing, Aβ formation and its aggregation. 
Studies conducted by Avramovich et al[113] have 
shown that NSAIDs in particular like indomethacin and 
ibuprofen stimulate non-amyloidogenic α-secretase 
pathway and cause marked release of neurotrophic and 
neuroprotective APP ectodomain in neuronal cells.

Further, effect of ibuprofen causing down regulation 

of α1-antichymotrypsin, a protein responsible for 
triggering Aβ pathogenesis proves another mechanistic 
pathway. They are known to exhibit a direct effect 
by inhibiting Aβ oligomer formation and subsequent 
deposition by interacting with Aβ peptide[114]. 

Despite generation of enormous data at cellular 
and preclinical level, replication of similar effects at 
clinical level has been still a matter of debate. Ten 
years of comprehensive study conducted in Canada 
to assess the incidence of AD has shown that use 
of NSAIDs is associated with reduced incidence of 
AD[115]. Contradictory to this, several studies conducted 
with other anti-inflammatory drugs like prednisone, 
hydroxychloroquine, COX-2 selective inhibitors (celecoxib, 
rofecoxib) and non-selective COX inhibitors (naproxen) 
have failed to show any advantageous effect[108,109].

3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors 
(statins) for AD therapy
The relation between cholesterol and AD was brought to 
notice for the first time by Sparks et al[116] and statistical 
studies have suggested that individuals on statins 
therapy (drugs used in cholesterol management) have 
very low incidence of AD.

It had been observed that elevated intracellular 
cholesterol induces the β-secretase activity leading 
to enhanced Aβ production. Inhibition of 3-hydroxy-
3-methyl-glutaryl-CoA (HMG-CoA) reductase by 
statins, reverses this elevated intracellular cholesterol 
level (cholesterol dependent pathway) (Figure 6) and 
thereby blocks the Aβ formation. Another proposed 
mechanism by which statins act against Aβ progression 
is through cholesterol independent effect or pleiotropic 
effect that grants neuroprotection (Figure 6)[117,118]. 
Herein, statins enhance nitric oxide (NO) mediated anti-
inflammatory activity and facilitate the systemic Aβ 
clearance by stimulating endothelial NO synthase[117,118]. 
Owing to these multi-target activities, statins are 
now emerging as promising pharmacological agents 
for AD treatment. The clinical trials conducted with 
statins like atorvastatin, lovastatin (for longer duration 
approximately 1 year) have shown beneficial effect by 
reducing the plasma Aβ levels but were not observed 
to be reproducible[117,118]. This could be attributed to 
study variations that include differences in cognitive test 
employed, experimental protocol, study duration and 
the stage of AD manifestation and dose. Thus, there is 
need for thorough investigation of this strategy towards 
its clinical approval.

Insulin for AD therapy
Apart from diabetes, insulin is reported to play a critical 
role in glucose uptake and neurotransmission across 
the brain[119-122]. Further, the proteins important for 
transmission of insulin signal were identified to be up 
regulated in AD sensitive brain regions viz. hippocampus 
and temporal lobe. This instigated an interest of 
researchers to investigate possible correlation between 
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Figure 5  Diagram representation elaborating various mechanistic pathways by which anti-Alzheimer’s disease activity is executed by non-steroidal anti-
inflammatory drugs. The aggregation and deposition of Aβ plaques provoke the activation of microglia, astrocytes and complement system (C1q, C3b, C3a, MAC, 
cytokines and chemokines). The Aβ plaques which evades the clearance process forms deposit and provokes microglial cell activation and release of cytokines, 
chemokines and neurotoxins which consequently results in neuronal loss and synaptic dysfunction. NSAIDs are reported to act by multiple ways to elicit anti-AD 
activity which includes suppresion of oligomer formation, PPRAγ, COX, NFKβ, α1-ACT and non-amyloid α secretase pathway. Aβ: Amyloid β; APP: Amyloid precursor 
protein; MAC: Membrane attack complex; PPARγ: Peroxisome proliferator-activated receptor-γ; COX: Cycloxygenase; α1-ACT: α1-antichymotrypsin; BACE1: Beta-
secretase 1. 
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insulin and AD[123,124]. Remarkably, research groups both 
at cell-culture and clinical level have shown that normal 
insulin signaling under an AD condition confers beneficial 
effects like protection against Aβ oligomer-mediated 
insulin receptor loss and synaptic deterioration[125], 
boosting Aβ trafficking at cell membrane and clearance 
thereof[126].

Briefly, insulin signaling pathway is initiated when 
tyrosine phosphorylated insulin receptor substrate 
interacts with insulin receptor. Upon interaction, phospha-
tidylinositol 4,5-bisphosphate (PIP2) is transformed to 
phosphatidylinositol 3,4,5-triphosphate (PIP3) at the 
plasma membrane via cascade of mechanisms that 
finally activate Phosphoinositide-dependent kinase-1 
which triggers the insulin signal. Though the exact 
mechanism by which insulin enhances cognitive function 
is unknown, the possible mechanisms can be down 
regulation of insulin receptors and other signaling 
intermediates discussed above[124-127].

Moreover, evidences also show that Aβ acts as a 
competitive inhibitor of insulin at the insulin receptor. 
This inhibition results GSK-3 stimulation by negative 

feedback mechanism which subsequently increases 
tau phosphorylation (Figure 7). Thus, insulin therapy 
is expected to arrest both Aβ generation and tau 
hyperphosphorylation[124-127].

Two dose clinical study performed in young, cog-
nitively normal subjects (1.5 mU/kg per minute and 
15 mU/kg per minute) showed improved memory 
performance and attention at high serum levels of 
insulin[127]. Other additional studies conducted in elderly 
impaired individuals by Craft et al[128,129] demonstrated 
improvement in declarative memory at dose level of 1.0 
mU/kg per minute infusion. Since treatment with insulin 
infusion is associated with hypoglycemia, direct delivery 
of insulin to the brain proves to be a viable approach. 
In this context, intranasal administration of insulin has 
gained wide attention wherein a 8 wk therapy (40 IU/
dose, 4 × per day) showed good performance in recalling 
the words in young, cognitively normal subjects[130] 
whereas 21 d (20 IU, 2 × per day) treatment promoted 
story recall and attention in cognitively impaired subjects 
and individuals with AD[130-132]. These effects have shown 
insulin to be a promising anti-AD agent.
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Figure 6  Diagrammatic illustration of anti-amyloid activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors via cholesterol independent and 
cholesterol dependent mechanistic pathways. Cholesterol independent pathway: Statins cause NO mediated anti-inflammatory activity and facilitate the clearance 
of systemic Aβ by stimulating endothelial nitric oxide synthase. The statins with the virtue of its antioxidant effect cause reduction in lipid peroxidation which is 
escalated due to elevated levels of NO in AD brain. Cholesterol dependent pathway: The systemic cholesterol enters the brain in form of HDL. The astrocytes 
originated ApoE facilitates the uptake of extracellular free cholesterol and release into the neuronal cells via LRP. This act reduces free cholesterol and curtails the Aβ 
genesis whereas un-sequestered free ApoE aggravates the Aβ formation. Statins inhibits the HMG-CoA reductase and subsequently reverse the elevated intracellular 
cholesterol levels and blocks the Aβ formation. Also, ACAT inhibition leads to reduction in Aβ levels by an unknown mechanism. HDL: High density lipoprotein; 
BBB: Blood brain barrier; Aβ: Amyloid β; ApoE: Apolipoprotein E; LRP: LDL receptor-related protein; HMG-CoA reductase: 3-hydroxy-3-methyl-glutaryl-CoA; ER: 
Endoplasmic reticulum; NO: Nitric oxide; eNOS: Endothelial nitric oxide synthase; nNOS: Neuronal nitric oxide synthase; iNOS: Inducible nitric oxide synthase; ACAT: 
Acetyl-coenzyme a acetyltransferase. AD: Alzheimer’s disease.
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In addition to aforementioned targets some new 
hypotheses are emerging with advances in under-
standing of AD pathmechanisms. One such recent 
observation is presence of autophagic vacuoles in deg-
enerating neurons. It is proposed that these vacuoles 
formation results from lysosomal autophagy induced 
by oxidative stress, Aβ, calcium ion imbalance and 
cleavage of heat shock protein (Hsp 70.1) that plays 
a crucial role in lysosomal integrity. Accumulation of 
these vacuoles further results in autophagy induced 
neurodegeneration[133]. Thus lysosomal stabilization can 
be seen as a near future approach to treat AD. Thus to 
summarize, multivariate targets have been identified as 
treatment avenues for AD and are currently in various 
stages of clinical development. However, it must be 
noted that clinicians have now started believing in multi-
target approach as a better therapy module to address 
both disease progression and symptomatic relief.

AD: DRUG DELIVERY SYSTEMS
With emergence of newer therapeutic targets as 
discussed in earlier section, there comes a great hope 
for successful AD treatment modalities in near future. 
Though very lucrative, the prime challenge in getting 
these potent drugs from bench to bedside lies in their 
effective delivery across BBB and ultimately to the 
brain. BBB is identified as an obstructive interface 
between blood and CNS that restricts the entry of 
variety of molecules to the brain via tight junctions 
and also serves as CNS microvasculature. This over-
protective phenomenon of BBB turns out to be the 
rate limiting step in effective transport of drug to the 
brain. Further, during AD progression, BBB undergoes 
certain pathophysiological changes in terms of altered 
expression of certain transporter receptors, altered 
glucose transport, impaired P-gp efflux system, leaky 
vasculature, release of neurotoxins and oxidative 
stress induced changes in BBB permeability. These are 
being studied extensively in recent years for better 
understanding of disease pathophysiology. In coming 
years, understanding of these will play a crucial role in 
designing smart delivery systems to surpass BBB[134,135].

Besides drug delivery system, the route of admini-
stration also plays a significant role in drug absorption, 
distribution, and passage across BBB, etc. With this 
understanding, researchers are now focusing on develo-
pment of drug delivery systems and suitable route of 
delivery that can synergistically circumvent BBB and 
enhance patient compliance[134-136]. This section describes 
design and development of plethora of drug delivery 
systems for AD therapeutics with a special attention on 
route of delivery. Table 1 abridges the novel strategies 
under investigation and Table 2 summarizes currently 
marketed products and ongoing clinical studies.

Oral drug delivery systems
Peroral route is most preferred route of drug delivery 

owing to the associated patient compliance and 
convenience of administration. This is marked from the 
fact that the first approved dosage form for treatment 
of AD was an oral capsule of reversible AChEI drug 
tacrine (Cognex®).

However for AD treatment, in addition to BBB, GI 
stability and permeation of drug into systemic circul-
ation become superfluous rate limiting step upon oral 
administration. This is well evident from the reports 
that Cognex® is prescribed 4 times daily which resulted 
in poor therapeutic compliance due to meager oral 
bioavailability, severe first-pass metabolism and 
peripheral side effects. Thus to leverage the benefits 
of oral delivery towards effective treatment strategy 
in case of AD, researchers are working towards the 
modified oral dosage forms that ensure better stability 
and permeation across GI tract. 

Various drugs investigated in literature towards 
modified oral dosage form include AChEIs, polyphenols, 
metal chelators, peptides, etc. Polyphenols are a class 
of molecules which are extensively explored for AD 
treatment. One such polyphenol is (-)-epigallocatechin-
3-gallate (EGCG) which is reported to be a potent 
activator of α-secretase that activates nonamyloidogenic 
processing APP but is a poor candidate for oral delivery. 
In this context, Smith et al[137] developed the nanolipid 
particles of EGCG using a co-solubilization method at 
drug to excipient ratio ranging from 1:1 to 1:32. The 
in vitro studies in murine neuroblastoma cells indicated 
significant enhancement in α-secretase activity above 
the ratio of 1:8 and activity was attributed to the better 
encapsulation and stability of drug in nanolipid matrix. 
Further, the oral pharmacokinetic studies performed 
in male Sprague Dawley rats exhibited over two fold 
enhancement in oral bioavailability with nanolipid 
EGCG formulation as compared to plain drug when 
administered at dose of 100 mg/kg of EGCG. These 
results signify importance of modified dosage form 
towards better oral bioavailability and can be anticipated 
to also enhance the brain uptake owing to the nanolipid 
matrix[137]. On similar lines, Dube et al[138] reported 
chitosan-tripolyphosphate nanoparticles of EGCG and 
performed pharmacokinetic studies in Swiss Outbred 
mice. The studies indicated almost 1.5 fold improvement 
in oral bioavailability as compared to EGCG suspension 
and interestingly indicated higher permeation from the 
jejunum region of GI tract indicating better potential of 
these NPs to enter systemic circulation. 

Among the various AD treatment targets antipro-
gesterone drugs like mifepristone are also reported 
to arrest the cognitive impairment and thus offer 
symptomatic relief[139-141]. To enhance oral bioavailability, 
He et al[139] have reported polylactide-co-glycolide 
(PLGA) nanoparticles of this drug and have shown 
significantly high oral bioavailability of mifepristone as 
compared to plain drug. Thus lipid as well as polymeric 
encapsulation of actives presents a promising strategy 
towards enhanced stability and permeation of drug 

248 September 9, 2015|Volume 4|Issue 3|WJP|www.wjgnet.com

Desai P et al . Alzheimer’s disease: Therapy and challenges



across GI tract. A step ahead in this field is to explore 
dual modalities towards enhanced GI as well as BBB 
permeability. For this, Mittal et al[142,143] developed 
estradiol entrapped PLGA nanoparticles coated with 
tween 80 using single emulsion technique (particle 
size approximately 170 nm). The rationale here was 
to enhance GI uptake of estradiol by nanopolymeric 
encapsulation and to enhance the brain uptake by 
tween 80 coat which is reported to be recognized and 
actively taken up across BBB by apolipoprotein receptors 
present on the BBB. Upon oral administration in Sprague 
Dawley rats, the estradiol level was found to be 1.969 
± 0.197 ng/g brain tissue in case of tween 80 coated 
nanoparticles which was almost 2 fold as compared 
to 1.105 ± 0.136 ng/g tissue as in case of uncoated 
nanoparticles. Interestingly, the drug levels obtained in 
brain with tween 80 coated nanoparticles given orally 
were almost similar to that obtained after intramus-
cular injection (2.123 ± 0.370 ng/g tissue) of estradiol 

indicating the superiority of targeted nanoparticles. Also, 
the pharmacodynamic studies performed using elevated 
plus maze test indicated marked reduction in anxiety 
behaviour with nanoparticulate formulation as compared 
to plain drug[142,143]. 

Oral therapy though poses issues w.r.t. low oral 
bioavailability, chronic oral treatment is reported to be 
effective probably for drugs that offer minimal or no 
peripheral side effects. This can be attributed to the 
time dependent accumulation and slow clearance from 
brain. In support of this, very recently Kazim et al[144] 
reported that the chronic oral treatment of neurotrophic 
factors results in reduction of neural plasticity and 
associated cognitive impairment. In this study, a ciliary 
neurotrophic factor P021 (Ac-DGGLAG-NH2) was given 
orally over a period of 12 mo to both moderate and 
severe stages of AD in transgenic mice. It was also 
observed that there was a significant down regulation 
of hyperphosphorylated tau and Aβ and thus chronic 
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Table 1  Novel therapeutic strategies for Alzheimer's disease management

Active Mechanism of action Drug delivery system Efficacy study model Ref.

Oral
Rutin Antioxidant Only drug Preclinical rodent streptozotocin 

induced AD model
[85]

(-)-Epigallocatechin-3-
gallate

Antioxidant, α-secretase 
activator

Nanolipid carriers In vitro, preclinical rodent model [137]
Chitosan Preclinical rodent model [138]

Mifepristone Antiprogesterone activity, AD 
symptomatic relief

PLGA nanoparticles Preclinical rodent model [139-141]

Estradiol Estrogenic activity,
AD symptomatic relief

Tween 80 coated PLGA nanoparticles Preclinical rodent model [142,143]

CNTF P021 
(Ac-DGGLAG-NH2)

Neurotrophic factor Only drug Preclinical rodent AD transgenic 
model

[144]

Clioquinol Metal ion Cu/Zn chelator Only drug Preclinical rodent AD transgenic 
model

[145,146]

Galactose Glucose restoration Only drug Preclinical streptozotocin induced 
rodent model

[147]

Transdermal
Galantamine AChEI Drug in adhesive type patch Preclinical rodent model [151]
Donepezil (base and salt 
form)

AChEI Fatty acid based topical formulation In vitro skin model, preclinical 
rodent model

[152]

Huperzine A AChEI Microemulsion, solid lipid nanoparticles, 
nanostructured lipid carriers

In vitro skin model, preclinical 
rodent model

[153]

Donepezil AChEI Iontophoresis, Wearable Electronic Drug 
Delivery System patches

Preclinical rodent model [154]

Rasageline and selegiline MAO-B inhibitors Solution and carbopol based gel - 
iontophoresis

In vitro skin model [155]

Memantine NMDA receptor modulator Iontophoresis with penetration enhancers In vitro skin model [156]
Aβ(1-42) antigen AD immunovaccine Microneedles Preclinical rodent model [161]

Intravenous
Clioquinol Cu/Zn chelator Only drug Preclinical rodent AD transgenic 

model
[42]

Lithium GSK-3
inhibitor of tau phosphorylation

Only drug Preclinical rodent AD transgenic 
model

[76,77]

Valproate sodium GSK-3
 inhibitor of tau 
phosphorylation

Only drug Preclinical rodent AD transgenic 
model

[76,77]

Nerve growth factor Cholinergic neuron protection Polysorbate 80 coated PBCA nanoparticles Preclinical scopolamine induced 
rodent model

[162]

PEG chemical conjugate Preclinical rodent model [163]
Antitransferrin antibody chemical 

conjugate
Preclinical rodent model [163,164]

Galantamine AChEI Peptide targeting ligand functionalized 
liposomes

In vitro cell line [165]

Aβ binding peptide QSH Aβ reduction Targeted PEGylated polylactic acid 
nanocarriers

Preclinical AD induced rodent 
model

[166]

Thiflavin T Specific Aβ plaque binding PBCA Nanoparticles Preclinical rodent model [168,169]
Anti- Aβ antibody AD immunotherapy Only drug Preclinical rodent AD transgenic 

model
[49,50]

BAM -10 antibody AD immunotherapy External targeting with trans-cranial 
application of magnetic and ultrasound 

energy

Preclinical rodent AD transgenic 
model

[186,187]

Cholic acid Cholinergic management Fluorescent labeled PEG-PLGA 
nanoparticles, external ultrasound

Preclinical rodent model [188]

Octapeptide NAP derived 
from the neurotrophic 
factor

Neuroprotective activity Only drug Preclinical rodent model [196,197]

Mesenchymal stem Cells Neuronal growth Only drug In vitro, Preclinical transgenic AD 
rodent model

[203,204]

Intranasal
Insulin Multicascade anti AD activity Only drug Preclinical rodent model [130-132]
Tacrine AChEI Cyclodextrin coated bovine serum albumin 

nanospeheres
Ex vivo permeation model [175]

Curcumin Antioxidant, anti- Aβ activity Nanoemulsion Ex vivo permeation model [177]
siRNA AD associated gene silencing Cell penetrating peptide TAT conjugated 

polycaprolactone- PEG Micelles
Early development [184]

Gene delivery AD associated gene silencing Exosomes Early development [185]
Pituitary adenylate cyclase-
activating polypeptide

Neuroprotective activity Only drug Preclinical rodent model [198]
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therapy can be visualized to be an effective strategy for 
such drugs that do not offer peripheral side effects but 
pose problem with oral bioavailability alone. In one such 
study, clioquinol (metal ion Cu/Zn chelator) was given 
orally over a period of 9 wk to aged APP2576 transgenic 
mice with advanced AD. As hypothesized, the results 
indicated significant reduction in both cerebral and 
serum Aβ levels[145,146].

Nutrient imbalance is generally observed with AD and 
among all, glucose hypometabolism is one such hallmark 
condition. With an aim to restore the brain glucose levels, 
Salkovic-Petrisic et al[147] supplemented streptozotocin 
induced AD rats with oral galactose (200 mg/kg per day) 
over a period of 1 mo. The pharmacodynamic evaluation 
with Morris Water Maze and Passive Avoidance test 
indicated restoration of cognitive function in galactose 
treated group as compared to control. Thus, it can be 
well noted that chronic treatment with nutrient sugars 
that can be converted to glucose via alternative path-
ways can be a supportive therapy ensuring symptomatic 
relief. 

Transdermal drug delivery systems
Considering life-long therapy, transdermal delivery 
of AD actives is considered to be an ideal route as it 
offers sustained drug delivery over prolonged period 
of time with reduced dosing frequency. This certainly 
ensures patient compliant therapy module and positively 
reduces patient dependence on caretaker. Additionally, 
it also overrules the adversities associated with oral 

route viz. peripheral side effects, first pass metabolism, 
fluctuations in plasma drug concentration, etc.[148,149]. 
Owing to these lucrative advantages and feasibility of 
dosage form development, first AChEI drug rivastigmine 
transdermal patch (Exelon®) was introduced in market 
in year 2007 for treatment to mild to moderate AD. 
In a multicentric study with approximately 2000 AD 
patient caregivers, it was observed that 94.3% of 
caregivers preferred transdermal form of rivastigmine 
over oral therapy and corroborated better efficacy 
and symptomatic relief in patients[150]. With this great 
success of Exelon®, various conventional patches 
have been investigated for transdermal delivery of AD 
therapeutics. In one such study, Park et al[151] formulated 
drug in adhesive type patch of galantamine with a series 
of pressure sensitive adhesives. Among all, DT-2510 
was found to be the most suitable pressure sensitive 
adhesive and this optimised patch demonstrated sust-
ained drug plasma levels over a period of 24 h with 80% 
bioavailability. Thus, the successful delivery of galan-
tamine via transdermal route proves to be a promising 
alternative to oral therapy ensuring relief from peripheral 
side effects like severe vomiting, nausea, etc.

Drug as well drug carrier both play a crucial role in 
delivery of drugs across the skin. To understand this 
phenomenon, Choi et al[152] investigated the permeation 
of AChEI drug donepezil in its base as well as salt 
form and further studied the influence of fatty acids as 
penetration enhancers on permeation behavior. The 
in vitro permeation studies performed using mouse 

251 September 9, 2015|Volume 4|Issue 3|WJP|www.wjgnet.com

Implants
Rivastigmine AChEI BTM and SAM based organogel implants, 

subcutaneous administration
Preclinical rodent model [195]

Aβ: Amyloid β; AD: Alzheimer’s disease; PLGA: Polylactide-co-glycolide; CNTF: Ciliary neurotrophic factor; AChEI: Acetylcholinesterase 
inhibitors; MAO-B: Monoamine oxidase B; NMDA: N-methyl-D-aspartate; GSK-3: Glycogen synthase kinase 3; PEG: Polyethylene glycol; PBCA: 
Polybutylcyanoacrylate; BTM: N-behenoyl L-tyrosine methylester; SAM: N-stearoyl L-alanine methylester.

Active Mechanism of action Drug delivery route Clinical status Ref.

Approved drugs
   Tacrine (Cognex®) AChEI Oral USFDA approved [205]
   Donepezil (Aricept®) AChEI Oral USFDA approved
   Galantamine (Razadyne, Reminyl®) AChEI Oral USFDA approved
   Rivastigmine (Exelon®) AChEI Transdermal patch USFDA approved
   Memantine (Namenda, Axura®, Ebixa®) NMDA receptor inhibitor, 

glutaminergic system modifier
Oral USFDA approved

Drugs under clinical investigation
   EHT-0202 α-secretase activator Oral Phase 2 [29]
   CTS-21166 β-secretase inhibitor Oral Phase 2 [35]
   MK-0752 γ-secretase inhibitor Oral Phase 2 [29,36]
   Immunoglobulin AD immune activity Intravenous Phase 2 [170]
   Omega-3-fatty acid treatment, nutritional supplement, 
physical exercise and cognitive stimulation

AD symptomatic management Oral Phase 3 [199]

   Cerebrolysin and AChEI Neirotropic, AChEI Oral Phase 4 [200,201]
   Alzhemed™ Activity

Aβ aggregation inhibitor
Oral (dietary 
supplement)

Phase 3 [206]

Table 2  Current market status and ongoing clinical investigation for Alzheimer's disease therapeutics

USFDA: United States Food and Drug Administration; AChEI: Acetylcholinesterase inhibitors; NMDA: N-methyl-D-aspartate; AD: Alzheimer’s disease.
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and human cadaver skin indicated a good degree of 
correlation and confirmed a parabolic relationship 
between drug permeation and fatty acid chain length 
wherein the oleic acid and palmitoleic acid were 
observed to be optimum for the base and the salt form 
respectively. In vivo pharmacokinetic studies performed 
in rat model indicated that the base form of the drug 
exhibited 6 fold higher bioavailability as compared to 
the salt form, when formulated and applied topically 
with the respective fatty acid. This confirmed that the 
base form is more permeable and can be correlated to 
the lipophilic nature of drug along with the fatty acid 
matrix that ensured better permeation.

Considering the need of AD therapeutics to cross 
BBB, one must ensure higher plasma drug levels 
so as to felicitate BBB transport. Use of transdermal 
delivery presents a hurdle here, as stratum corneum, 
the uppermost layer of skin epidermis acts as a strong 
barrier towards the permeation of drug from skin into 
the systemic circulation. Thus higher degree and extent 
of drug permeation across skin demands modifications 
in transdermal delivery systems. 

Lipid matrix based formulations are anticipated to 
enhance transdermal permeation and if formulated 
in nanocarriers are expected to cross BBB via passive 
transport. In context of this, Patel et al[153] developed 
microemulsion (ME), solid lipid nanoparticles (SLNs), 
and nanostructured lipid carriers (NLCs) based gels of 
an AChEI drug Huperzine A (particle size less than 150 
nm) and compared their efficacy both in vitro and in 
vivo. In vitro skin permeation studies performed using 
rat skin resulted in highest flux observed with ME based 
formulation followed by NLCs and SLNs respectively. 
This enhanced permeation with ME based formulation 
can be ascribed to unique properties of ME to cause 
structural alteration in stratum corneum by virtue of the 
ME excipient matrix. Further, in vivo pharmacodynamic 
studies performed using elevated plus maze test in 
scopolamine induced mice amnesia model displayed 
significant reduction in transfer latency period indicating 
better cognition with nanoformulations as compared to 
orally administered drug suspension.

In order to further enhance permeation across 
the skin, various techniques viz. iontophoresis, sono-
phoresis, microneedles are being investigated. Among 
these techniques iontophoresis has gained the widest 
attention and is being explored for varied arena of AD 
therapeutics viz. AChEI, monoamine oxidase B (MAO-B) 
inhibitors, metal chelators, NMDA receptor antagonists, 
etc. 

 one such study Saluja et al[154] studied the ionto-
phoretic delivery and effect of electric current on drug 
permeation via Wearable Electronic Drug Delivery 
patches using donepezil as a model drug. The done-
pezil gel loaded electronic patches were applied on 
hairless rats and in vivo pharmacokinetic studies were 
performed. The studies revealed that at current intensity 
of 0.13 mA, 0.26 mA and 0.39 mA, the Cmax level of 

drug in plasma was observed to be 0.094 μg/mL, 
0.237 μg/mL and 0.336 μg/mL respectively indicating 
that current density has a proportional effect on drug 
permeation. The imperative role of electric current was 
also confirmed by the fact that during iontophoresis 
linear pharmacokinetics were observed and it altered to 
flip flop kinetics after iontophoretic intervention.

Kalaria et al[155] investigated anodal iontophoresis as 
a technique to check permeation of two MAO-B inhibitor 
drugs rasagiline and selegiline, both from solution 
and carbopol gel form. In vitro studies performed 
using porcine and human skin revealed that rise in 
electric current intensity increases the permeation flux 
proportionally and the major mechanism of permeation 
was electromigration in presence of counter ions. Further, 
the degree of permeation from solution form was better 
as compared to the carbopol gel and was attributed to 
slower diffusion of drugs from the gel matrix. Thus, the 
studies suggested that simple transdermal patches can 
be employed for effective iontophoretic delivery wherein 
the patch system plays a very crucial role on rate of 
permeation and thus demands a meticulous selection.

With an aim to compare the potential of chemical 
penetration enhancers and iontophoresis, del Rio-Sancho 
et al[156] conducted 2 sets of in vitro skin permeation 
studies wherein the skin was pre-treated over a period 
of 12 h with various classes of chemical permeation 
enhancers viz. decenoic acid, R-(+)-limonene, oleic acid, 
cineol, laurocapram followed by in vitro permeation with 
memantine drug solution. In other set, iontophoresis 
was investigated as a drug permeation technique at the 
current density of 0.5 mA/cm2. Amongst the various 
penetration enhancers, R-(+)-limonene exhibited 
maximum transdermal flux of 91.9 ± 8.2 μg/cm2per 
hour. Iontophoresis exhibited transdermal flux of 
158 ± 6 μg/cm2 per hour which was almost 1.5 fold 
higher than the optimized permeation enhancer. Thus, 
iontophoresis can be visualized as an effective technique 
and additionally this opens up newer doors to investigate 
the co-application of both the techniques towards better 
permeation profiles.

As discussed in earlier section, AD immunovaccines 
are now emerging as a different dimension to AD 
therapeutics. Initial studies have proven potential of 
Aβ antigen injections in mouse but clinical trials were 
withdrawn from phase 2 due to meningoencephalitis 
induced by TH1 cells[63,157,158]. To overcome this adverse 
reaction, transcutaneous immunization is now gaining 
attention in recent years as it involves immune response 
via Th2 pathway[159,160]. Matsuo et al[161] amalgamated 
the concept of transcutaneous immunization with 
novel transdermal devices and have developed Aβ(1-42) 
antigen incorporated microneedle array, MicroHyala that 
is dissolved upon incorporation into the skin releasing 
the antigen. The scientists have proven the induction 
of immune system activation and have suggested that 
further modification is desired in delivery systems to 
achieve higher immune response and better cognitive 

252 September 9, 2015|Volume 4|Issue 3|WJP|www.wjgnet.com

Desai P et al . Alzheimer’s disease: Therapy and challenges



regain.

Intravenous drug delivery systems
Intravenous delivery of AD actives is being investigated 
extensively as it results in 100% bioavailability. This 
ensures higher systemic levels of drug that presents 
higher probability of drug permeation across the BBB. 
Further, this serves as an effective research tool to 
investigate the effect on drug carrier system on BBB 
permeability as upon intravenous administration the 
only major rate limiting step towards entry of drug in 
brain is BBB.

In recent times, with a rationale to augment the 
delivery of nanoparticulate carriers across BBB, use 
of targeting ligands is gaining wide attention. Having 
understood the potential of Nerve growth factor (NGF) 
in maintenance of cholinergic neurons, targeted delivery 
of NGF is under extensive exploration. Kurakhmaeva 
et al[162] developed polybutylcyanoacrylate (PBCA) 
nanoparticles of NGF followed by a polysorbate 80 coat 
that serves as a targeting ligand across BBB. Upon 
intravenous administration in scopolamine induced 
amnesic rodent model, significant improvement in 
cognition was observed and was corroborated with 
higher levels of NGF detected in murine brain as 
compared to plain NGF.

Several other approaches that involve drug ligand 
chemical conjugation are also reported in literature for 
delivery of NGF that include covalent ligation of NGF to 
polyethylene glycol (PEG) that warrants long circulation 
time in systemic circulation boosting the chances of 
BBB uptake[163], conjugation to antitransferrin antibody 
enabling receptor mediated active transport across 
BBB[164,165]. Mufamadi et al[165] recently reported 
peptide targeting ligand functionalized liposomes (size 
approximately 150 nm) incorporating galantamine and 
they have shown selective uptake of these targeted 
nanoliposomes across PC12 cells in contrast to the non-
targeted liposomes.

Use of multiple targeting ligands is also being inve-
stigated. Zhang et al[166] employed two targeting ligands 
on PEGylated polylactic acid (PLA) nanoparticles. The 
targeting ligands were TGN, a 12 amino acid ligand 
specific for BBB transport and an Aβ binding peptide 
QSH. The hypothesis here was to achieve a better 
permeation across BBB via active transport of target 
specific nanocarriers followed by selective binding to Aβ 
plaques. The in vivo biodistribution studies followed by 
intravenous administration of these nanoparticles to AD 
induced mice indicated almost 1.5 fold higher uptake 
in cerebellum and hippocampus as compared to blood 
indicating the preferential uptake in brain.

In another approach, Bana et al[167] have reported 
development of liposomes with phosphatidic acid and a 
derivative of ApoE-peptide as a dual targeting strategy. 
The in vivo biodistribution studies in rodent model upon 
intravenous administration revealed a higher uptake 
as compared to monofunctionalised liposomes. This 

signposts that concurrent targeting strategy can be used 
as a synergistic method to enhance BBB permeability.

The nanoparticulate systems are also extrapolated for 
diagnostic purpose. Thioflavin T is a fluorescent marker 
and is reported to possess specific binding affinity 
towards Aβ plaques. Taking advantage of this, scientists 
have developed polymeric PBCA nanoparticles of this dye 
and have shown imaging potential of this dye towards 
AD diagnosis. These results are very encouraging as 
these nanoparticles are reported to be taken across 
BBB from the systemic circulation and thus the current 
techniques of direct CNS intervention via intracerebral or 
intracortical or intrahippocampal injections for diagnostic 
purpose can be circumvented[168,169].

Intravenous immunoglobulins are reported to contain 
anti-Aβ antibodies and are under clinical studies for 
their therapeutic assessment. In an open study, 8 
patients with mild AD were subjected to intravenous 
immunoglobulins for a period of 6 mo followed by a 
break that was continued with further treatment for 9 
mo. Studies publicized significant reduction in Aβ levels in 
CSF and a symptomatic progress was observed with 2.5 
points increase in Mini-mental state[170]. In extension to 
this, phase 2 double blind studies in patients with mild 
to moderate AD suggested the efficacy of treatment 
and confirmed safety. However they have reported 
need for longer trials with higher number of patients for 
more clinically significant data generation[171].

Intranasal drug delivery systems
Olfactory pathway is being reconnoitered comprehen-
sively towards the brain delivery of therapeutic actives 
as it is the most accessible route for circumventing 
BBB that allows entry via peripheral olfactory neurons 
and lamina propria in the CNS (Figure 8)[172-174]. In 
this context, both passive as well as active targeting 
approaches are well reported in literature. Considering 
the nasal epithelium and permeability of olfactory 
pathway, nanoparticle mediated intranasal drug delivery 
for treatment of AD is most widely investigated for both 
passive as well as active delivery modules.

Natural polymeric nanocarriers viz. albumin, chito-
san, etc. are amongst the highly explored nanoparticles 
because of high degree of mucoadhesion, negligible 
nasal mucosa irritation and compatibility. Luppi et al[175] 
developed cyclodextrin coated bovine serum albumin 
nanospheres of tacrine (size approximately 300 nm) 
using coacervation technique. These nanospheres 
presented strong mucoadhesive properties and ex vivo 
permeation studies using sheep nasal mucosa indicated 
complete permeation within 100 min. This suggests 
a better possibility of brain delivery via nasal route as 
complete dose permeated well within the nasal mucosa 
clearance time (approximately 4 h).

Gao et al[176] developed 6-Coumarin, a fluorescent 
dye loaded lectinised nanoparticles as a tool for targeted 
uptake via olfactory epithelium. Briefly, Ulexeuropeus 
agglutinin Ⅰ is reported to bind specifically to l-fucose, 
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a lectin binding domain located on olfactory epithelium. 
Using this as a targeting ligand decorated on PEG-
PLA nanoparticles, almost 1.7 fold enhancement in 
brain bioavailability was seen as compared to the non-
targeted PEG-PLA nanoparticles. Further, the developed 
targeted nanocarrier exhibited higher affinity towards 
olfactory mucosa than respiratory mucosa and was 
attributed to nanoparticulate surface immobilization 
of carbohydrate binding pockets present in the nasal 
mucosa. This evidently ensured the selective passage of 
targeted nanoparticles via olfactory pathway upon nasal 
administration. 

Researchers have also developed nanoemulsion 
based formulation of anti-AD drugs with a view of 
better permeation possibility achieved using selective 
surfactants. In this area, Sood et al[177] formulated 
nanoemulsion of curcumin using high hydrophilic 
lipophilic balance surfactant with size less than 100 
nm (optimized using Box-Behnken model). Further, 
with a rationale to synergise permeation by better 
mucoadhesion, the formulation was additionally loaded 
with 1% chitosan solution. Interestingly, in ex vivo 
permeation studies across sheep nasal mucosa, the 
mucoadhesive nanoemulsion exhibited an increased flux 

(445.1 ± 37.48 μg/cm2 per hour) in contrast to plain 
nanoemulsion (359.9 ± 36.85 μg/cm2 per hour). This 
could be attributed to opening of tight nasal epithelial 
junctions with enhanced permeation resulting from 
the combination approach. Thus, multiple permeation 
pathways may enhance the brain drug delivery via nasal 
route.

As discussed in earlier sections, Aβ is the major 
culprit causing AD induced neuronal death. Since past 
two decades, serious efforts are being directed to use 
this as a diagnostic marker. In this context, it must be 
understood that detection of Aβ in blood is a difficult 
challenge as it gets assimilated in blood only after 
sufficient progression of disease and is present at very 
low concentration as compared to the brain. This makes 
AD diagnosis a difficult task and if at all diagnosed 
it is only after a significant progression of disease. 
Thus, it is of prime concern to identify other efficient 
diagnostic techniques. For this, Kameshima et al[178,179] 
did a systematic study in Tg2576 mice wherein they 
not only indicated significant amount of Aβ(1-42) in nasal 
cavity but also proposed that it reaches nasal cavity 
via non blood pathway. They further proved that there 
is positive correlation between nasal and brain Aβ(1-42) 
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Figure 8  Schematic representation of nose to brain uptake by olfactory pathway circumventing blood brain barrier that allows entry via  peripheral 
olfactory neurons and lamina propria in the central nervous system. Modified from[172]. CSF: Cerebrospinal fluid.
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levels which was not observed in case of serum and 
CSF. This is worthy to note as using nasal cavity for AD 
diagnosis will not only avail early diagnosis of AD but 
will also enable to monitor disease progression.

The efficacy of nasal route to deliver therapeutic 
actives is well perceived with pilot clinical studies 
performed for insulin delivery in patients with AD and 
mild cognitive disorders. The CSF biomarkers were 
positively identified ascertaining delivery of insulin via 
nasal route. Further, the study results were promising 
in terms of attention and memory improvement corro-
borating that insulin signaling pathway plays a crucial 
role in cognition[180]. This favors further exploration of this 
route for delivery of peptides which is otherwise difficult 
by other routes. 

With this promising milestone achieved, the research 
here is paving a new path towards nasal delivery 
of siRNA, dsDNA, miRNA, etc. These molecules are 
recognized to be playing a key role in gene silencing 
especially for the pathways that lead to Aβ generation 
and thus represent a newer therapy module. From AD 
per se miR-107, miR-206 are recognized as potential 
actives inhibiting β-secretase and brain-derived neuro-
trophic factor (BDNF) respectively, whereas miR-34 is 
selective in terms of reducing stored BDNF levels[181-183]. 
Though it is lucrative, one must understand that the 
biggest challenge here is their site specific delivery 
owing to their extremely fragile nature and lack of 
permeability[183]. The smart formulation approach is 
anticipated to come to the rescue here wherein scientists 
have shown improved delivery of siRNA intranasally 
when given via cell penetrating peptide TAT conjugated 
polycaprolactone-PEG micelles as carriers[183,184]. 
Alternatively, exosomes, specialized vesicles resulting 
from plasma membrane like structures are coming 
in limelight as delivery vehicles via nasal route after 
proving their better efficacy via intravenous route. But 
research in this direction is in quite infancy and desires 
thorough investigation[183,185]. 

Altering BBB permeability
Thorough insights of AD pathophysiology and treatment 
strategies conclude in one major understanding that BBB 
serves as a major milestone to be overcome towards 
effective management of AD. 

In supplement to various active and passive targe-
ting strategies to cross BBB, transitory increase in BBB 
permeability using magnetic resonance or ultrasound is 
proposed to be the most site specific and sophisticated 
targeting strategies as it allows external control over 
BBB permeability and can further be focused to the 
particular site in the CNS. 

Using this technology, Jordão et al[186] proposed the 
targeted immunotherapy approach for AD treatment. In 
this study, anti-Aβ antibody BAM-10 was administered 
intravenously with magnetic resonance imaging (MRI) 
and focused ultrasound contrast reagents in transgenic 
AD mice model. This was followed by trans-cranial 

application of magnetic and ultrasound energy. The 
results indicated immediate entry of contrast agents 
along with the antibody across the BBB and were 
confirmed with significant binding of antibody to Aβ 
plaques in brain cortical region. The similar group 
further explored the potential of only ultrasound 
energy to achieve selective BBB permeation. In the 
study, they injected a single dose anti-Aβ antibody 
with ultrasound contrast agent in transgenic AD mice 
model and demonstrated a significant reduction in Aβ 
plaques post 4 d of treatment. They also observed that 
the ultrasound application resulted in activation of glial 
cells and astrocytes in brain region which is assumed to 
further reduce the Aβ plaque load[187].

This strategy can be extended to ensure synergistic 
penetration of nanoparticles by virtue of their size 
along with increased permeability of BBB. To study 
this phenomenon, Nance et al[188] prepared fluorescent 
labeled PEG-PLGA nanoparticles (size approximately 60 
nm) of cholic acid and administered them intravenously 
with contrast reagents. Upon application of brain 
focal MR-guided ultrasound, a significant increase in 
fluorescent intensity was observed as compared to 
when administered without MR-guided ultrasound. In 
another study, Treat et al[189] have demonstrated better 
penetration of liposomal formulations across BBB using 
ultrasound treatment.

These strategies are also extrapolated for AD 
diagnostics[190-192]. Under current protocol, an intra 
cerebroventricular injection of MRI contrast agent is 
given for imaging based diagnosis of microscopic Aβ 
plaques. To avoid the CNS intervention, Santin et al[192] 
have reported a novel ultra sound-Gd-staining protocol 
wherein they propose to administer clinically approved 
MRI contrast agent Dotarem® and microbubbles 
Sonovue® intravenously followed by external ultrasound 
treatment that ensures partitioning of contrast agent 
inside BBB. With preliminary studies in mouse model, 
the group has demonstrated fast imaging within 30 min 
with a resolution upto 29 μm which is similar to the one 
achieved with intra cerebroventricular injection alone. 

These studies reveal the potential of transient 
improvisation of BBB permeability towards better dia-
gnostics and therapeutic efficacy. Though non-invasive, 
one must thoroughly study the effect of prolong use 
of such strategies on BBB. To understand this Xie et 
al[193] employed the ultrasound frequency of 1 MHz 
over temporal bone of higher animal model, i.e., pigs 
for a period of 30 min and tracked the permeation of 
using MRI and a dye evans red. Studies revealed signifi-
cant retention up to 90 min post exposure but was 
not observed at 120 min. This indicates that enhanced 
BBB permeability with ultrasound is a temporary and 
reversible mechanism but demands detailed investigation 
of chronic use of such techniques as AD treatment is a 
life-long therapy desiring regular therapeutic intervention.

Miscellaneous
With an aim to achieve sustained delivery of AD actives 
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over a prolonged period of time, implants are emerging 
as novel delivery tools in this arena[194]. Sustained 
release biodegradable polymeric implants of PLGA, 
Polylactic acid, Lecithins, organogels of safflower oil, 
N-stearoyl L-alanine methylester (SAM), N-behenoyl 
L-tyrosine methylester (BTM), etc., and hydrogels 
are very well explored. In this class of biodegradable 
implants, organogel based implants (identified as a 
3-dimensional gelator network entrapping an organic 
phase component and drug) are gaining wide attention 
in AD therapeutics due to their unique properties 
of insitu implant formation, better entrapment and 
control over the release of low molecular weight polar 
compounds.

In congruence with this hypothesis, Bastiat et al[195] 
developed BTM based organogels of rivastigmine and 
compared its efficacy w.r.t. SAM based organogels. 
These organogels were injected subcutaneously in 
rodent model wherein they formed an implant in situ. 
In vivo pharmacokinetic studies herein resulted in 2.5 
fold enhancement in bioavailability with BTM based 
organogels as compared to SAM based organogels over 
a period of 35 d with minimum foreign body response 
thus proving the potential of these oraganogels in AD 
treatment modality.

Not only the drug delivery systems but AD the-
rapeutic research is also witnessing the discovery of 
newer molecules originating from native brain protective 
factors. One such example is an octapeptide NAP 
derived from the neurotrophic factor (molecular weight 
= 825 Da). Researchers have shown the significant 
accumulation of this octapeptide in cortex and cerebellum 
of brain with reduced levels of hyperphosphorylated tau 
and Aβ in transgenic mouse[196,197]. In extension to this, 
Gozes et al[197] studied the effect of this oligopeptide 
on memory retention and reported improved short-
term spatial memory behavior in cognition impaired 
rat model. This finding suggests the potential use 
of this peptide towards both pathophysiological and 
symptomatic relief in AD therapy.

One such other peptide under investigation is 
pituitary adenylate cyclase-activating polypeptide 
(PACAP) which is a strong α-secretase activator and 
possesses neuroprotective activity. Upon continuous 
intranasal application Rat et al[198] demonstrated that 
PACAP upregulated non amyloidogenic processing of 
resulting in reduction of Aβ and synergistically improved 
the levels of brain derived neurotrophic factor. These 
results are promising towards development of newer 
therapy modalities for AD and nasal route can be 
anticipated as an emerging choicest route for delivery 
of such molecules as it will not only ensure effective 
delivery to brain but will also confer stability to these 
fragile peptides otherwise difficult to deliver by other 
routes.

FUTURE PROSPECTS
With thorough insight of current state of art in AD rese-

arch and due consideration to few burning facts viz. 
clinical failure of majority of drug candidates especially 
those targeted towards reduction of Aβ load, lack of any 
new drug approval and market entry since almost a 
decade necessitates identification of newer AD targets 
and/or modified treatment strategies.

In this setting, multi-domain treatment strategies 
are expected to become mainstream in coming years. 
For instance, a Multi-domain Alzheimer Prevention 
Study (MAPT) is currently ongoing in France that involves 
combination of omega-3-fatty acid treatment, nutri-
tional supplement, physical exercise and cognitive 
stimulation in patient population over the age of 70. 
The results have shown very positive outcome opening 
a newer opportunity for AD management[199]. Also a 
combination of neurotrophic peptide drug, Cerebrolysin 
(Ever Neuro Pharma Ltd.) and AChEIs have shown very 
promising synergistic results and a phase 4 clinical trial 
is on-going[200,201].

Additionally, epigenetics is recently being discussed 
as a key reason of AD pathomechanisms and is 
correlated with alterations due to methylation of DNA 
and/or acylation of histones. Enzymes involved in these 
reactions are thus drawing wide attention of researchers 
and identification of potential inhibitors of these driver 
enzymes (histone acetyl transferase, etc.) is underway. 
Additionally a concept of epigenetic diet that includes 
vitamins (B6, B12, folate, etc.) is getting streamlined 
as these vitamins act as essential cofactors for the 
enzymes that control methylation homeostasis. Thus, a 
supplementary therapy to the existing treatment can be 
seen as a next step in AD therapeutics[200].

Neurodegeneration being the major pathophysiolo-
gical cause of AD, stem cells induced neuroregeneration 
is becoming lucrative avenue which will not only arrest 
disease progression but will also offer symptomatic 
relief. In vitro studies have shown that mesenchymal 
stem cells (MSCs) augment neuronal cell differentiation, 
neurite growth and more importantly are resistant to 
taupathy[202]. Another study has recently suggested that 
human placental MSCs elicit significant immunomodu-
latory and paracrine effects leading to marked 
improvement in spatial and memory functions in AD 
transgenic mice[203]. With such promising research 
leads, it is envisioned that stem cells will soon serve as 
a survivor to AD patients.

CONCLUSION
Literature gives a wide spectrum of possibilities towards 
future AD treatment but in current setting complete 
AD cure appears to be an unreached holy grail. As a 
fact, 413 AD clinical trials have been conducted from 
year 2002 to 2012 and only 0.4% of trials have shown 
positive results[196]. This portrays the unmet need 
towards more better and deeper understanding of 
AD pathomechanisms and related research towards 
more effective treatment strategies. In this context, 
it is predicted that even if one succeeds in achieving 
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two-year delay in both the onset and progression of 
AD, it will possibly reduce both AD prevalence and 
the last stage of disease by more than 20% and 30% 
respectively. This will in turn reduce the individual, social, 
and economic burden of the disease[197]. Thus the great 
challenge of coming decades will be to find financial and 
humanitarian resources towards better management 
of those afflicted with AD and to refine and redouble 
research efforts.

With more awareness and worldwide programs like 
AD Neuroimaging Initiative, Alzheimer’s Drug Therapy 
Initiative we are optimistic that the collaborative 
streamlined research will soon come up with a promising 
therapy for AD treatment and ultimately the cure.
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