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Abstract
Mental illness remains the greatest chronic health burden globally with few in-
roads having been made despite significant advances in genomic knowledge in 
recent decades. The field of psychiatry is constantly challenged to bring new 
approaches and tools to address and treat the needs of vulnerable individuals and 
subpopulations, and that has to be supported by a continuous growth in know-
ledge. The majority of neuropsychiatric symptoms reflect complex gene-
environment interactions, with epigenetics bridging the gap between genetic 
susceptibility and environmental stressors that trigger disease onset and drive the 
advancement of symptoms. It has more recently been demonstrated in preclinical 
models that epigenetics underpins the transgenerational inheritance of stress-
related behavioural phenotypes in both paternal and maternal lineages, providing 
further supporting evidence for heritability in humans. However, unbiased 
prospective studies of this nature are practically impossible to conduct in humans 
so preclinical models remain our best option for researching the molecular 
pathophysiologies underlying many neuropsychiatric conditions. While rodents 
will remain the dominant model system for preclinical studies (especially for 
addressing complex behavioural phenotypes), there is scope to expand current 
research of the molecular and epigenetic pathologies by using invertebrate 
models. Here, we will discuss the utility and advantages of two alternative model 
organisms–Caenorhabditis elegans and Drosophila melanogaster–and summarise the 
compelling insights of the epigenetic regulation of transgenerational inheritance 
that are potentially relevant to human psychiatry.

Key Words: Transgenerational inheritance; Epigenetics; Invertebrate models; Caenorha-
bditis elegans; Drosophila melanogaster; Environmental stress
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Core Tip: Psychiatry research is only beginning to identify the complex epigenetic 
pathologies across various conditions that may regulate symptomatology. Epigenetics 
may account for certain conditions that are highly heritable but are not fully accounted 
for by genetics. Preclinical animal models are a necessary tool to accelerate our 
understanding of molecular mechanisms and for developing new therapeutic options. 
Simple behavioural and neurobiological assays combined with high levels of functional 
gene conservation and rapid generation time in easily genetically manipulated 
organisms make Caenorhabditis elegans and Drosophila melanogaster excellent 
systems to model transgenerational epigenetic inheritance phenotypes.

Citation: Hime GR, Stonehouse SL, Pang TY. Alternative models for transgenerational 
epigenetic inheritance: Molecular psychiatry beyond mice and man. World J Psychiatr 2021; 
11(10): 711-735
URL: https://www.wjgnet.com/2220-3206/full/v11/i10/711.htm
DOI: https://dx.doi.org/10.5498/wjp.v11.i10.711

INTRODUCTION
Advances in genomic technologies have led to a rapid increase in the number of 
known genomic variants linked to human psychiatric illnesses. However, we still 
know little of the molecular and genetic functions of many of these genes or their 
mode of inheritance. The wealth of genetic information and experimental techniques 
associated with laboratory model organisms that have not been traditionally utilised 
for analysis of psychiatric illnesses provide an untapped resource that promise to 
revolutionise our understanding of these conditions.

At the turn of the 18th century, the French naturalist Jean-Baptiste Lamarck proposed 
that environmentally adaptive traits could be acquired by an individual over a lifetime 
and, more importantly, inherited by their progeny. It was not until the 21st century that 
Lamarckian theory re-emerged from the shadows of Darwin’s theory of natural 
selection and the principles of genetic inheritance. This recent revival has been driven 
by growing evidence of unusual inheritance patterns across a wide number of species, 
which collectively indicate the presence of biological mechanisms that govern how the 
physical environment, diet and individual experiences not only influence our 
individual constitution, but the health of our descendants as well. In the past decade, 
preclinical studies of mammalian models of human disease have uncovered robust 
evidence of transgenerational shifts in health. However, alternative animal models 
should be considered as a means of conducting more time- and cost-effective transgen-
erational research. Here, we summarise recent advances in transgenerational 
epigenetic inheritance stemming from non-mammalian models that have revealed 
epigenetic processes potentially relevant to psychiatry. We hope to convince readers 
that research based on these non-mammalian organisms have the capacity to provide 
novel insights into the molecular pathologies of different neuropsychiatric conditions.

Epigenetic inheritance drives the adaptation of phenotypic traits and plays a 
significant role in directing human health outcomes across generations. For example, 
the accumulation of specific epigenetic modifications is proposed to contribute to the 
increasing prevalence of cardiovascular and metabolic diseases[1,2]. Separately, 
epigenetic modifications have been demonstrated in the transgenerational trans-
mission of risk for mental illness, and possibly contributing to the increasing 
prevalence of a range of psychiatric disorders[3-6]. However, non-mammalian models 
have also contributed by extending our understanding of the molecular pathologies in 
human disease. For example, studies of the nematode Caenorhabditis elegans (C. elegans) 
have not only provided us enlightening perspectives on the molecular regulation of 
aging[7,8] but also revealed how stress and nutrition are transgenerational modifiers 
of progeny survival[9-11].

Briefly, transgenerational inheritance broadly describes the process of a parental 
generation undergoing experiences and exposures that are subsequently linked to 
altered phenotypes and behaviours in future generations (in F2s at the very least). 
Note that the phrase ‘intergenerational inheritance’ describes transmission that is 

https://www.wjgnet.com/2220-3206/full/v11/i10/711.htm
https://dx.doi.org/10.5498/wjp.v11.i10.711
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limited (or only studied up till) to the very next F1 generation (see Figure 1 for further 
patrilineal and matrilineal distinctions). While the full spectrum of biological processes 
underlying transgenerational inheritance is yet to be fully elucidated, a multiplex of 
epigenetic modifications has been implicated. Importantly, epigenetic inheritance 
specifically excludes the reorganisation of genome sequence through DNA mutations, 
and some epigenetic marks are species-specific (further emphasizing the importance of 
multi-species research). The most widely studied epigenetic modifications include 
DNA methylation, histone protein modifications (such as methylation, acetylation), as 
well as short and long non-coding RNAs (sncRNAs and lncRNAs, respectively) that 
moderate transcriptional activity. Due to space constraints, we refer readers to the 
following reviews that comprehensively discuss the biochemistry of epigenetic 
modifications relevant to the neuropsychiatric field[12-16]. The epigenome is subject to 
modification following exposure to stressors that challenge survival, ranging from 
environmental (exposure to toxic chemicals)[17] to physical (heat stress) to psycho-
logical (fear of predation)[18,19]. We now know that offspring can inherit a range of 
epigenetic modifications that alters their physical or behavioural traits. Over the past 
decade, preclinical studies of rodent models of chronic stress[20,21] and trauma[22-24] 
have demonstrated this phenomenon, but could alternative non-mammalian models of 
stress offer further insight into the relevant epigenetic pathologies? These tools offer 
the field of psychiatry the opportunity to clarify the extent to which the risk for mental 
illness may be moderated by parental or ancestral exposures to such stressors and life 
events, and understand the molecular mechanisms mediating such forms of transgen-
erational inheritance. Epidemiological studies have reported a range in heritability of 
neuropsychiatric disorders (although readers should note that there have been 
relatively few studies given the challenges of conducting such large-scale research). 
For example, a high degree of heritability (81%) was initially estimated for schizo-
phrenia (SZ) based on twin studies[25], while subsequent estimates based on the 
Danish and Swedish populations were comparatively lower at approximately 60%[26,
27]. Those latter studies also estimated that heritability of bipolar disorder (BP) was 
similar to SZ. However, the potential that epigenetic inheritance moderates the 
heritability of certain neuropsychiatric conditions has yet to be thoroughly invest-
igated. Of course, in contrast, other psychiatric disorders such as alcohol dependence 
or major depression display low-moderate degrees of heritability[28] so while those 
disorders may involve aspects of epigenetic pathology, it is less likely that epigenetic 
inheritance would be a significant causal factor.

While studies of C. elegans and Drosophila melanogaster (D. melanogaster) may be 
initially dismissed as far removed from relevance to human physiology, and although 
most preclinical drug testing is performed with rodent models, these invertebrate 
model systems provide alternative approaches to conducting complementary research 
of common epigenetic mechanisms and biochemical processes that may be 
fundamental to neuropsychiatric pathologies. One should not forget that mammalian 
transgenerational research can trace its roots to historically rich and revealing studies 
of plants. Some of the earliest evidence for the phenomenon include Barbara 
McClintock’s ground-breaking studies of retrotransposition in maize and the transgen-
erational inheritance of transposon phases. While we tend to associate ‘stress’ with the 
notion of psychosocial stress, this term can be used to encompass any extrinsic 
condition that disturbs the normal function of the biological system, or a condition that 
decreases fitness, including thermal stress, desiccation, UV stress, starvation, chemical 
exposure and overcrowding. In using alternative animal models, it is crucial that 
etiologically relevant stressors are applied in the appropriate manner. Heat stress is 
well known to impact a wide range of physiological and behavioural parameters, 
which can result in gastrointestinal dysfunction[29], increased blood pressure and 
disordered metabolic function[30]. In particular, elevated temperatures cause 
profound disruptions to various aspects of reproduction in both mammals and 
invertebrates including mating behaviours[31,32], spermatogenesis and oogenesis, 
egg/foetal development and viability, and offspring body size[33,34]. With mounting 
concerns about climate change, and recent increases in unusual climate events, 
understanding how we adapt to such environmental changes and the implications for 
global population health trends have become more important than ever. A recent 
systematic review of the impacts of climate change on mental health reported on the 
complexities in attempting to consolidate the data, but highlighted more common 
psychopathologies such as anxiety and trauma[35]. It is unclear if and how climatic 
factors could influence human health outcomes through epigenetic modifications. 
Understandably, designing and conducting human studies of this nature would be 
highly challenging due to the inherent complexities e.g. having to account for 
geographical and ethnic diversities. However, research based in the primary 
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Figure 1  Differences between the definition of transgenerational and intergenerational inheritance through the male and female germ 
lines.

production industries may be an unexpected source of early clues as to how these 
occur. Afterall, developing the knowledge to control the effects of heat stress has been 
crucial to the field of agriculture for maximising crop yield[36,37] and maintaining 
livestock fecundity and fitness[38,39].

There are mounting calls to recognize that ancestral health is a significant 
contributing factor of current day human health and phenotypes, and this would 
require maintaining detailed individual medical records for longitudinal epidemi-
ological studies. On a large scale, such a perspective shift would aid us in identifying 
the determinants of public health issues and evaluating possible interventions and 
treatments. Furthermore, elucidating the mechanisms driving environmentally-
induced epigenetic changes linked to specific aspects of health and disease may 
promote a shift towards the development of personalised treatments and drugs based 
on these signatures[40]. With numerous epigenetic processes conserved from 
invertebrates to humans, it is unsurprising that many fundamental epigenetic 
processes are also shared by humans and non-mammalian animals. Therefore, there is 
valid argument for utilising non-mammalian species as viable alternative animal 
models to investigate environmentally induced changes in human health, stress 
response and behavioural adaptations. We will now summarise recent evidence from 
transgenerational studies of key two non-mammalian models-C. elegans and D. melano-
gaster–focussing on environmental stressors and highlight their potential utility for 
investigating the molecular pathologies of psychiatric conditions.

EPIGENETIC MODIFICATIONS IDENTIFIED BY TRANSGENERATIONAL 
STUDIES OF C. ELEGANS RELEVANT TO PSYCHIATRY
In contrast to mammalian models where multigenerational studies are impeded by 
long generational times, logistical difficulties and confounding factors, invertebrate 
models breed rapidly with large progeny cohorts, making them ideal models for 
performing multi-generational studies. There are the obvious limitations of C. elegans 
as a model, primarily that it is a relatively simple organism lacking many organ 
systems found in vertebrates. However, the C. elegans genome possesses homologs of 
about two-thirds of all human disease genes. Thus, it is widely used as a model system 
for studying aging, age-related diseases[41] and neurogenerative conditions[42]. 
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Transgenerational studies of C. elegans could therefore provide insight into the 
molecular pathologies and epigenetic modifications that could be accumulating across 
generations in humans. Here, we will summarise recent advances in our 
understanding of the transgenerational responses of C. elegans involving thermal stress 
and starvation and highlight their relevancy to human psychopathologies (Table 1).

The most impressive finding to-date was that exposure of a single progenitor 
generation to an elevated rearing temperature (25 °C instead of 20 °C) caused 
transcriptome-wide expression changes that persisted for a further seven generations 
after temperature normalisation[43]. Importantly, it was identified that the ancestral 
exposure to a higher temperature was associated with a reduction in the repressive 
histone modification H3K9me3 (trimethylation of lysine 9 residue in histone H3) in 
both oocytes and sperm, before onset of zygotic transcription. What could be of 
importance to the psychiatry field was the revelation that there was de-repression of 
endogenously repressed repeat sequences, and increased expression of two DNA 
transposons remained for up to five generations. The role of repetitive elements in 
human health and disease is still unclear but they have been speculated to be potential 
etiological factors for SZ, BP and major depressive disorder (MDD)[44], despite a 
present lack of consistent evidence. For example, there has only been a single report of 
a repetitive element insertion in three monozygotic twin pairs discordant for SZ[45] 
but similar observations have not been detected in other studies. However, subsequent 
studies have reported elevated levels of Class I retrotransposon RNA in cerebrospinal 
fluid, whole blood and serum samples from SZ patients[46-48]. It should be noted that 
these latter studies were conducted by the same research group and further 
independent verification is still required. At the present time, there are also no 
available rodent models of abnormal repetitive element expression so determining its 
relevance to neuropsychiatric pathologies is impossible. C. elegans would therefore be 
a prime model organism to investigate environmental factors associated with the 
aforementioned psychiatric conditions, with the dysregulation of repetitive element 
expression as a primary outcome measurable. Such studies would either cement their 
causal roles or establish them as secondary molecular pathologies.

Separately, another repressive histone mark linked to C. elegans lifespan[49], di
methylation of lysine 9 residue in histone H3 (H3K9me2), has also been implicated in 
various psychiatric conditions. Increased levels of H3K9me2 were found in post 
mortem SZ brains and in peripheral blood cells[50]. However, the directionality of this 
change in expression may vary depending on the specific psychopathology, according 
to evidence from rodent studies. For example, stress-induced depression was 
associated with reduced H3K9me2 occupancy at the oxytocin and arginine vasopressin 
gene promotors, both of which were normalised by physical exercise[51]. Thus, the 
outcomes linked to the manipulation of H3K9me2 levels are also gene specific. This is 
further exemplified by the capacity for Cdk-5 targeted H3K9me2 to attenuate cocaine-
induced locomotor behaviour and conditioned place preference[52]. These clearly 
showcase the complexity to epigenetic regulation of gene transcription and the 
significant challenges faced when attempting to treat psychiatric conditions by 
targeting a single histone modification. However, armed with precise knowledge of 
the molecular pathologies, aiming to modify negative behaviours in addiction through 
gene-targeted histone modification could be an intriguing prospect for the future.

A recent study examined a more severe temperature perturbation through acute 
heat shock (34 °C for 5 min) and discovered that this caused maternal neurons to 
release the neurotransmitter 5-HT, which facilitated transcription factor heat shock 
factor 1 (HSF-1)-mediated mRNA production in soon-to-be fertilized germ cells[9]. The 
authors proposed that this timely activation of HSF-1 in germ cells ensures viability 
and future stress tolerance since embryos that arose from heat-shocked mothers 
contained an excess of protective mRNA and their F1 progeny were more resilient to 
subsequent temperature insults. It was found that HSF-1 recruited the histone 
chaperone FAcilitates Chromatin Transcription (FACT) complex to alter histone 
dynamics and promote transcription of the heat shock protein Hsp70. Interestingly, 
several studies have identified an accumulation of Hsp70 associated with MDD. In a 
study of post-mortem brain samples from patients with MDD, Hsp70 was significantly 
elevated in the dorsolateral prefrontal cortex, while antidepressant treatment did not 
have any modulatory effect[53]. Separately, elevated serum Hsp70 levels were 
reportedly predictive of premenopausal women who would go on to develop MDD
[54], although Hsp70 levels subsequently decreased for women who did not develop 
MDD. Collectively, this suggests that Hsp70 could be a useful biomarker for MDD risk 
but it remains to be verified in a younger, or even a healthy, population.
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Table 1 Studies of transgenerational epigenetic inheritance in Caenorhabditis elegans of relevance to neuropsychiatric conditions and 
mammalian preclinical models

Type of stress 
(if applicable 
to study)

Transgenerational shifts in 
progeny phenotypes

Epigenetic modifications 
implicated in the inheritance 
process

Ref. Psychiatric conditions with 
similar epigenetic pathology Ref.

Heat shock reduces H3K9me3 to 
facilitate de-repression of 
endogenously repressed repeats 
(DNA transposons)

Repetitive elements as etiological 
factors for schizophrenia (SZ), 
bipolar disorder and major 
depression (review)

Darby and 
Sabunciyan 
2014[44]

No difference in another 
repressive mark, H3K27me3

Altered expression of human 
endogenous retroviruses 
associated with autism spectrum 
disorder and SZ (review)

Misiak et al
[169], 2019

Elevated 
temperature

Temperature-induced 
transcriptome changes 
potentially up to F14 generation

Active histone marks H3K36me3 
and H3K4me2 both unchanged

Klosin et al
[43], 2017

Tissue-specific repetitive 
elements expression differences 
in Parkinson’s disease

Billingsley et al
[170], 2019 

MDD associated with increased 
hsp70 expression in post mortem 
dorsolateral prefrontal cortex

Martín-Herná
ndez et al[53], 
2018 

Elevated serum HSP70 levels 
predicted development of MDD 
for premenopausal women. 
Serum HSP70 decreased over 
time for women who did not 
develop MDD

Pasquali et al
[54], 2018

Heat shock Maternal heat shock altered 
survival of F1 progeny through 
5-HT dependent HSF-1 
recruitment to heat shock protein 
gene promotors. Persistence of 
phenotypic changes not 
investigated

Histone H3 occupancy at hsp70 
genes decreased following heat 
shock

Das et al
[9], 2020 

Decreased Hsp70 expression in 
CA4 associated with complete 
seizure remission for temporal 
lobe epilepsy

Kandratavicius 
et al[171], 2014 

NA NA Transgenerational inheritance of 
H3K36me3 is regulated by two 
distinct histone 
methyltransferases, MES-4 and 
MET-1

Kreher et al
[172], 2018 

H3K36me3 implicated in SZ 
susceptibility SNPs. But histone 
lysine methyltransferases yet to 
be investigated in the context of 
SZ

Niu et al[65], 
2019 

H3K9me2 elevated in post-
mortem SZ brains and peripheral 
blood cells. Treatment with 
histone methyltransferase 
inhibitor BIX-01294 decreased 
H3K9me2 levels and rescued 
expression of SZ risk genes

Chase et al[50], 
2019 

Reduced H3K9me2 at oxytocin 
and arginine vasopressin gene 
promotors in a rodent model of 
stress-induced depression. 
Rescued by physical exercise

Kim et al[51], 
2016 

NA NA Lifespan regulated by the 
H3K9me2 methyltransferase 
MET-2

Lee et al
[49], 2019 

Cdk-5 targeted H3K9me2 
attenuates cocaine-induced 
locomotor behaviour and 
conditioned place preference in a 
rodent model of addiction

Heller et al[52], 
2016 

Treatment with antipsychotic 
drug olanzapine increased 
H3K4me2 binding on gene loci 
associated with adipogenesis 
and lipogenesis in a rat model

Su et al[174], 
2020 

NA Decline in fertility H3K4me2 demethylase spr-5 Greer et al
[173], 2014 

KDM5C gene that encodes the 
H3K4me2/3 histone 
demethylase linked to autism 
and intellectual disability

Vallianatos et al
[175], 2018 

Increased H3K4me3 associated 
with three synapsin gene variants 
in bipolar disorder and major 
depression

Cruceanu et al
[63], 2013 

SZ risk variants are over-
represented in association with 

Heavy metal 
(arsenite) stress

Increased resistance to oxidative 
stress up to F2 generation; no 
change in reproduction or 
lifespan

H3K4me3 complex components (
wdr-5.1, ash-2, set-2), and 
transcription factors daf-16 and 
hsf-1

Kishimoto 
et al[10], 
2017 

Girdhar et al
[64], 2018
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H3K4me3 in human frontal lobe

H3K4me3 implicated in SZ 
susceptibility SNPs

Niu et al[65], 
2019

Increased H3K4me3 associated 
with increased Oxtr gene 
expression in a rat model of 
methamphetamine addiction

Aguilar-Valles 
et al[68], 2014

Hyperosmotic 
stress

Increased resistance to oxidative 
stress up to F2 generation

Not further investigated in study Kishimoto 
et al[10], 
2017

Relevance to human health presently unclear

Larval 
starvation

Increased resistance to oxidative 
stress up to F2 generation

Not further investigated in study Kishimoto 
et al[10], 
2017

Relevance to human health presently unclear

Eight differentially expressed 
blood miRNAs linked to PTSD. 
Four up-regulated (miR-19a-3p, 
miR-101-3p, miR-20a-5p, miR-
20b-5p). Four down-regulated 
(miR-486-3p, miR-125b-5p, miR-
128-3p, miR-15b-3p)

Martin et al[78], 
2017 

Deletion of miR-34 family in 
mice facilitates resilience to 
stress-induced anxiety and 
extinction of fear memory

Andolina et al
[84], 2016

miR-34 differentially expressed 
in induced pluripotent stem cells 
derived from schizophrenia 
patients

Zhao et al[176], 
2015 

Larval 
starvation

NA Thirteen miRNAs up-regulated 
(miR-34-3p, the family of miR-
35-3p to miR-41-3p, miR-39-5p, 
miR-41-5p, miR-240-5p, miR-246-
3p and miR-4813-5p); Two 
miRNAs down-regulated (let-7-
3p, miR-85-5p)

Garcia-
Segura et al
[77], 2015 

miR-34a regulates expression of 
p73, a p53-family member, that is 
implicated in neuronal 
differentiation

Agostini et al
[86], 2011

Inheritance of small RNAs 
through at least 3 generations. 

miRNAs and rRNAs make up 
the majority of exRNAs in 
human plasma

Danielson et al
[91], 2017 

Small RNAs regulating 
expression of genes involved in 
nutrition, metabolic health and 
lipid transport

1 specific exRNA predicted 
diagnosis of Alzheimer’s disease

Yan et al[94], 
2020

Starvation Increased longevity of progeny 
up to F3 generation

Rechavi et 
al[11], 2014 

exRNAs are potentially involved 
in the paternal intergenerational 
influence on offspring metabolic 
health (mouse model)

van Steenwyk et 
al[93], 2020

HSF-1 activity is also associated with elevated histone H4 protein levels in somatic 
tissue during development, leading to reduced transcription of mitochondrial complex 
IV genes and decreased respiratory capacity[55]. While it has not been linked 
specifically to histone H4 only, a similar role of neuronal heat shock proteins in 
moderating the response to oxidative stress is evidenced in D. melanogaster with 
increased resistance to oxidative stress and extended organismal lifespan, in addition 
to ameliorating phenotypes associated with Parkinsonism-type genetic models[56]. 
Collectively, it emphasizes the conserved association between heat shock proteins, 
oxidative stress and neuronal damage. However, the precise regulatory roles that 
histone H3 and H4 proteins provide independently to the overall oxidative stress 
response remain unclear and warrants further investigation. Mitochondrial 
dysfunction and the accumulation of oxidative stress are crucial factors in the 
pathophysiology of MDD[57-59], and biomarkers of oxidative stress are elevated in 
drug-naïve first episode SZ patients[60]. Thus, there is strong interest in targeting 
oxidative stress deficiencies in MDD, BP and SZ[61] through antioxidant treatments 
such as N-acetylcysteine[62]. Future studies could use C. elegans to explore the 
efficacies of various antioxidant compounds in treating heat shock-induced oxidative 
stress, as well as their underlying modes of action. Studies could also be extended to 
heat shocking C. elegans pre-treated with antioxidants to better understand the 
epigenetic regulation of 5-HT neurotransmission.
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The dysregulation of transcriptional activity is widely reported in a swathe of 
psychiatric conditions but the causes have yet to be precisely identified. For example, 
H3K4me3 has been implicated in the pathophysiology of SZ, BP and MDD, with 
increased H3K4me3 is associated with three synapsin gene variants in BP and MDD[63] 
while SZ risk variants are over-represented in association with H3K4me3 in human 
frontal lobe samples[64]. The latter is a consistent with a separate study examining 
H3K4me3 association with SZ susceptibility SNPs[65]. While there have been several 
independent GWAS studies of SZ, there has yet to be an attempt to reconcile the 
genomic data with epigenomic variation. That would undoubtedly be a tremendous 
undertaking, but it could further streamline and identify more robust gene candidates 
in our attempts to pinpoint the primary molecular pathologies underlying SZ. C. 
elegans could be used to first establish the molecular consequences of such an 
abnormal epigenetic landscape and resulting transcriptional dysregulation (matched 
to existing human data), before further behavioural studies are extended to 
mammalian models. Incidentally, H3K4me3 was identified by Kishimoto et al[10] as 
being involved with the transgenerational adaptations to other forms of environmental 
stressors aside from thermal stress, namely heavy metal exposure, hyperosmotic 
conditions, and transient starvation[10]. Following progenitor exposure to all three 
stressors, there were consistent increases in progeny fitness up till the F2 generation; 
however only the epigenetic mechanism mediating adaptation to arsenite exposure 
was further investigated. Unlike the repressive histone modifications mentioned 
above, H3K4me3 predominantly marks transcriptional start sites and is part of a 
regulatory complex that facilitates access and assembly of RNA polymerase 2[66,67]. 
Kishimoto et al[10] reported that the genetic components (wdr-5.1, ash-2 and set-2) of 
the H3K4me3 regulatory complex were required to manifest the transgenerational 
adaptations, implicating histone H3-dependent gene transcription in transgenerational 
inheritance. Therefore, future work on H3K4me3-regulation transcriptional activity 
could provide new insight into the molecular pathways affected in SZ, BP and MDD 
by targeting C. elegans homologs of human risk genes for more specific investigations.

Finally, in a rat model of methamphetamine addiction, there was greater H3K4me3 
association with the oxytocin receptor gene that corresponded to increased Oxtr gene 
expression[68]. As discussed above, strategies to treat addiction-related molecular 
pathologies by targeting histone modifications will be challenged by having to account 
for both active and repressive histone marks. The viability of such interventions and 
their molecular consequences would be ideally be first tested in C. elegans before 
proceeding to trials in mammalian models.

Malnutrition and starvation at different stages of life have a dramatic impact on 
mental health. For example, famine exposure in utero was associated with an increased 
risk for mental illness in females, though surprisingly with no apparent significant 
effect on males[69]. Developmental malnutrition driven by abnormalities in oxidative 
stress pathways has been linked to an increased risk for SZ and other psychiatric 
illness later-in-life[70]. Nutrition ultimately dictates metabolic health and more recent 
studies reported that fasting insulin levels and body mass index at different ages were 
predictive of at-risk status for psychosis or depression[71], while fasting blood glucose 
and serum lipid levels predicted suicide attempters in young patients with MDD[72]. 
At the opposite end of the age spectrum, geriatric deficiencies in micronutrients such 
as folic acid, thiamine or cobalamin have been linked to worsened mental health 
symptoms[73,74]. However, careful regulation of nutrition through caloric restriction 
or fasting has been proposed to be effective in improving symptoms of MDD[75], 
indicating that dietary interventions where appropriate would benefit patients. This 
could be particularly important in conditions whereby medications could have 
unavoidable metabolic side effects[76]. While epidemiological data flags the 
importance of nutrition for mental health, we continue to have a very poor 
understanding of this interactive relationship in the absence of evidence of causality 
and the underlying molecular mechanisms. Human studies of that nature would be 
severely limited by inherent genetic and cultural heterogeneities within populations, 
and there would be strong ethical arguments against the manipulation of subjects’ 
diets. These issues are circumvented in studies of C. elegans wherein genetic 
homogeneity is controlled and dietary manipulations are feasible, although as C. 
elegans feed upon bacteria subtle dietary manipulations may be more easily 
accomplished using the chemically controlled diets that have been formulated for D. 
melanogaster. Transgenerational studies of starvation in C. elegans have already been 
conducted with clear evidence of downstream impacts on progeny fitness. More 
importantly, these studies have identified epigenetic mechanisms regulating the 
transgenerational adaptations, and these could potentially be regulating the molecular 
pathologies driving the malnutrition-related increase in risk for mental illness.
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Kishimoto et al[10] reported that progenitor larval starvation triggered increased 
resistance to oxidative stress of two generations of progeny[10] but did not pursue the 
underlying epigenetic mechanisms and their associated molecular adaptations. 
However, previously, it was reported that starvation during the early L4 Larval stage 
altered the expression of 13 miRNAs in C. elegans[77]. Of the 13, only 2 were downreg-
ulated while the miRNAs of the miR-35 family were most highly upregulated. Being a 
simple organism, there are only 302 known miRNAs in C. elegans compared to over 
2000 human miRNAs, so studying their role in transgenerational inheritance and 
phenotype adaptations is comparatively straightforward. miRNAs are now 
established to be dysregulated in different human conditions and are the subjects of 
interest for severe stress-related anxiety disorders such as post-traumatic stress 
disorder and SZ, as prognostic biomarkers and therapeutic targets. However, their role 
as epigenetic regulators of pathogenesis are unclear and systematic profiling of 
individual miRNAs to neuronal circuitry could be one approach to identifying their 
potential pathogenic roles in psychiatric conditions.

In a cohort study of military combat veterans, 8 differentially expressed blood 
miRNAs were associated with the diagnosis of post-traumatic stress disorder (PTSD)
[78], and their predicted gene targets were implicated in neurotransmission and 
maintenance of the neural circuitry. Indeed, multiple functional magnetic resonance 
imaging studies have clearly demonstrated that brain function is compromised in 
PTSD[79,80]. There is initial evidence to suggest that paternal PTSD may also have the 
capacity to influence the neural function and behaviour of progeny, and that this is 
through the inheritance of sperm-borne miRNAs. In the social defeat mouse model of 
PTSD, both male and female progeny displayed significant anxiety and depression-
related behaviours despite themselves not having been subject to stressful 
interventions[81,82]. It was later independently reported that modelling paternal early 
life trauma alters sperm miRNAs and exerts significant intergenerational alterations of 
target genes in the brains of progeny (e.g. ctnnb1, catenin β1 in the hippocampus)[22]. 
Our own studies have extended that line of evidence by demonstrating the transgener-
ational effects of paternal stress exposure and altered sperm miRNAs resulting in 
significant expression differences of the imprinted gene insulin-like growth factor 2, 
Igf2 in the hippocampus of two generations of progeny[21]. While their downstream 
target genes may have been discovered to be dysregulated, there is still some 
controversy regarding the intergenerational inheritance of sperm miRNAs because 
having altered levels of miRNAs in sperm does not translate to those same miRNAs 
being dysregulated in offspring brains[23]. Despite the transgenerational implications 
of paternal PTSD on brain function of their children remaining unknown at this time, a 
bigger unresolved question is how traumatic stress alters miRNA expression , with 
one possibility being dysregulation of histone protein modifications and altered 
chromatin state. Unlike PTSD, which is caused by an external trigger, miRNAs appear 
to be co-regulated with susceptibility risk genes in SZ. For example, one study has 
reported an over-representation of miR-9-5p-targeted risk genes while miR-9-2 is 
located in a genomic region strongly associated with SZ[83]. Given the strong environ-
mental component to both PTSD and SZ, continuing research into stress-induced 
miRNA changes in C. elegans could be used to further our understanding of the 
relevant environment x gene interactions underlying the molecular pathogenesis of 
PTSD and SZ. Other miRNAs have been implicated in stress-related disorders such as 
members of the miR-34 family, which are differentially expressed in induced 
pluripotent stem cells derived from SZ patients[41,84]. Among these, and consistent 
with the neurodevelopmental hypothesis of SZ[85], miR-34a is a key regulator of p73 
expression, a p53-family member that is implicated in neuronal differentiation[86]. 
However, causal evidence is lacking to demonstrate that miR-34a is an epigenetic 
conduit for environmental stress to impact on brain development resulting in a 
schizotypy brain phenotype. One feasible experiment to propose would be ablating 
expression of the C. elegans homolog of miR-34a or the miR-34 family and study the 
impacts on neuronal differentiation, development and circuit maturation.

Interestingly, Rechavi et al[11] report that progenitor larval starvation was 
associated with extended longevity in three generations of progeny through the 
inheritance of small RNAs that regulate genes involved in nutrition, metabolic health 
and lipid transport[11]. It has been demonstrated in C. elegans that extracellular RNAs 
(exRNAs) are transported from one generation to the next through intracellular 
vesicles or even as unpackaged extracellular material[87]. The transgenerational effects 
of paternal stress exposures[21-23] involve altered small non-coding RNA content of 
sperm transmitted in microvesicles within the male reproductive organs[88,89], but so 
far this has only been demonstrated in mouse models[90]. Perhaps not so coincid-
entally, miRNAs are one of two major exRNA species in human plasma (the other 
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being ribosomal RNAs)[91]. Their presence and relative stability have led to an 
emerging recognition of their promise as ‘liquid biopsies’ for diseases, but while early 
adoption has targeted metabolic pathology[92], the correlation of biofluid exRNA 
levels with psychiatric conditions remain untested. Interestingly, it was reported that 
chronic injection of serum from a mouse model of trauma into healthy controls was 
sufficient to recapitulate the intergenerational impact on offspring metabolism[93]. 
However, miRNA profiling of the serum content was not performed in that study. 
Very recently, an investigation profiling exRNAs isolated from the plasma of elderly 
individuals up to 15 years prior to death revealed that the early presence and 
progressive increase of phosphoglycerate dehydrogenase (PHGDH) exRNA predicted 
eventual diagnosis of Alzheimer’s disease (confirmed with post mortem pathology 
testing)[94]. Studies of C. elegans could be used to first determine how stress triggers 
an elevation of circulating exRNAs. Subsequently, given that biofluid screening of 
exRNAs is already being used to aid diabetes and AD diagnoses, there appears to be 
untapped potential for this methodology as a presymptomatic screening tool in 
psychiatry.

Overall, recent studies have demonstrated the complexity of epigenetic responses 
implicated in the transgenerational responses to progenitor stress exposure. These 
include histone modifications, dysregulation of DNA repetitive elements and altered 
expression of non-coding RNAs. These are also molecular processes shared by humans 
and have been identified as molecular pathologies of various psychiatric conditions. 
Thus, studying the epigenetic response of C. elegans to etiologically relevant environ-
mental stressors and the corresponding physiological and behavioural responses will 
continue to provide further insight into human molecular psychiatry.

EPIGENETIC MODIFICATIONS IDENTIFIED BY TRANSGENERATIONAL 
STUDIES OF D. MELANOGASTER RELEVANT TO PSYCHIATRY
D. melanogaster has been established as an invertebrate model organism for studying 
human neurological disorders due to the remarkable evolutionary conservation of 
multiple human disease-causing genes. D. melanogaster have a higher degree of 
concordance with humans than C. elegans, with 75% of human diseases estimated to 
have a D. melanogaster homologue[95]. While also displaying sexual dimorphism in its 
physiology and behaviour, D. melanogaster have a generational time of only 10-12 d as 
opposed to approximately 6-9 wk for mice. Thus, in a protracted timeframe and at 
much lower cost compared to using rodents, multi-generational studies can also be 
performed to assess transgenerational effects and adaptations of D. melanogaster 
offspring to various environmental stressors. Additionally, a wide range of established 
transgenic strains, gene manipulation techniques and tools are readily available[96]. 
Here, we refer readers to several broad reviews discussing the utility of D. melanogaster 
research in advancing the understanding of the complex genetic basis for human traits, 
psychiatric disorders, neurodegeneration, and for drug discovery and screening[97-
100]. Of course, the significant limitations of modelling complex neuropsychiatric 
conditions in D. melanogaster must also be acknowledged. Despite the relative ease in 
genetic manipulation, neuropsychiatric conditions such as SZ are driven by a 
combination of multiple genetic and environmental factors, and cannot be simply 
reduced to and reproduced in single, double or even triple transgenic knockout 
strains. Furthermore, the myriad of behavioural symptoms requires higher brain 
function to manifest, for which only mammalian models could be considered as 
appropriate. However, these reasons should certainly not diminish the utility value of 
D. melanogaster as a high throughput screening tool for basic neuropathological, 
molecular or epigenetic markers of disease. Most recently, D. melanogaster have even 
been used to model insomnia in order to examine the effectiveness of sleep restriction 
therapy[101]. However, despite these advantages, transgenerational studies in D. 
melanogaster aimed at examining mechanisms of epigenetic inheritance remain 
relatively sparse. Yet, the limited research has produced some compelling evidence, 
nonetheless. In this section, we will summarise key findings by highlighting the 
transgenerational outcomes of environmental and chemical stress exposures on 
offspring phenotypes paired with the reported epigenetic processes implicated. We 
will then flag the neuropsychiatric conditions for which further D. melanogaster 
research could potentially shed new light on the pathological origins.

D. melanogaster are sensitive to the climate and temperature fluctuations[102,103] 
and have been instrumental in advancing our understanding of the heat stress 
response. Heat stress-associated deleterious effects on physiology and behaviour are 
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largely attributed to its denaturing effect on proteins, which undergo abnormal 
folding, entanglement and unspecific aggregation[104]. In addition to the disruption of 
singular proteins, heat stress can also disrupt other cellular mechanisms with the 
culmination of these individual disruptions being cell death[105]. The ubiquitous and 
highly conserved heat shock response is a complex cascade of different processes, the 
most central being the transcriptional up-regulation of genes coding for the family of 
heat shock proteins that were in fact first discovered in D. melanogaster[106,107]. In 
addition to the metabolic and physiological effects on the exposed organism[108,109], 
selective thermal variations can dramatically shift D. melanogaster physical phenotypes 
such as flight ability over generations (impaired by F2 generation and maintained till 
the F4 generation) in a sex-dependent manner[110,111]. Thus, imposing a suboptimal 
ambient environment for survival either by changing the housing temperature or 
through a transient shift of temperature represents the most etiologically relevant 
approaches to stressing D. melanogaster. These encapsulate studies of both cold 
tolerance[112] and heat tolerance (discussed in detail below, Table 2), and these allow 
us to investigate how genetic variation dictates response to the environment or vice 
versa. Research into the transgenerational effects of heat stress in D. melanogaster have 
yielded intriguing and robust evidence of altered offspring physiology and heat stress 
responses. More importantly, those studies have also revealed epigenetic mechanisms 
that are of particular interest to psychiatry. Perhaps the most compelling demon-
strations of environment-directed modifications of D. melanogaster epigenetics 
resulting in altered gene expression are the transgenerational studies of white gene 
expression following heat stress. The X chromosome residing white gene encodes for 
an ATP-binding cassette transporter that facilitates transport of the eye pigment 
precursors, guanine and tryptophan (red and brown pigment precursors, respectively) 
into the developing eyes during pupation[113]. Repression of white achieved by 
inserting the cellular memory module Fab-7 upstream of white to enhance chromatin 
silencing results in the loss of eye pigmentation[114]. Importantly, the Fab-7-mediated 
silencing process involves recruitment of Polycomb Group (PcG) proteins, which are 
essential in the propagation of chromatin structures and regulate gene silencing 
through S-phase of the cell cycle[115-117]. The mere developmental exposure to a 
mildly stressful temperature of 29 °C (typical housing temperature is 25 °C) 
suppressed Fab-7 expression, resulting in the de-repression of white and recovery of 
red eye pigmentation[118]. Importantly, that de-repression event was heritable down 
both male and female germ lines up till the F4 generation. That “founder effect” and 
maintenance of a de-repressed state across multiple generations indicates that 
inheritance of the temperature-modified chromatin state is maintained by the PcG 
protein complex. Of relevance to the human epigenome, the PcG protein complexes 
catalyse the formation and maintenance of the inactive histone mark H3K27me3[118], 
which as previously mentioned, is widely associated with neuropsychiatric conditions 
with abnormal histone modification patterns and aberrant gene transcriptional profiles
[119]. Yet, the regulation of differentially expressed genes by PcG protein complexes in 
neuropsychiatric conditions has not been reported. While PcG protein complex 
function has been of great interest to the oncology field given the tell-tale features of 
DNA hypermethylation and aberrant transcriptional silencing of tumour suppressor 
genes[120], a causative role in psychiatric disorders has yet to be established. PcG 
protein complexes serve as a master regulator of active gene transcription so 
understanding the intricacies of PcG regulation of chromatin states will be essential if 
targeting aberrant histone modifications are to be a major therapeutic focus of the 
future. Aside from changes at the white gene locus, the multi-generational effects of 
heat shock on other behavioural (social interaction, mating) and physiological 
(metabolic and endocrine health) parameters in D. melanogaster are yet to be compre-
hensively studied. It would be very interesting to investigate if PcG protein complexes 
also have the capacity to affect the social behaviour, cognition and physical attributes 
of D. melanogaster by manipulating the extent of histone methylation associated with 
neuropsychiatric risk genes.

Interestingly, and in contrast to the stable inheritance pattern mediated by PcG 
protein complexes, heat shock-induced de-repression of white gene expression 
involving disruption of the heterochromatin assembly was maintained through three 
generations of embryos but contingent on repeated exposure of the offspring 
themselves to heat stress[121]. In that study, the transgenerational effects of heat shock 
were associated with increased phosphorylation of ATF-2, a member of the 
CREB/ATF family of transcription factors. Interestingly, levels of phosphorylated 
ATF-2 are reported to be increased in the ventral parieto-occipital region of post-
mortem human brains when comparing between medicated and unmedicated patients 
with depression[122]; it is unknown if pATF-2 Levels could be predictive of a familial 
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Table 2 Studies of transgenerational epigenetic inheritance in Drosophila melanogaster of potential relevance to psychiatric conditions 
and mammalian preclinical models

Type of stress (if 
applicable to 
study)

Transgenerational shifts in 
progeny phenotypes

Epigenetic processes 
implicated in the 
inheritance process

Ref. Potentially relevant psychiatric 
conditions Ref.

Thermal stress 
(selection based on 
intolerance to heat 
stress)

Reduced ability to fly by F2 
generation, maintain through 
to F4 generation

Epigenetic mechanism not 
investigated; aspects of 
stress physiology that affect 
flight still unclear

Krebs and 
Thompson
[111], 2006

Relevance to human health presently unclear.

Mild heat 
stress(embryos 
maintained at 29 
°C)

De-suppression of white gene 
up to F4 generation

Disruption of polycomb 
group (PcG) protein 
complex affecting 
H3K27me3

Bantignies 
et al[114], 
2003 

Despite multiple reports of altered H3K27me3, the 
involvement of PcG protein complexes in human 
psychopathologies has not been established

Rat model of chronic stress reported 
increased ATF-2 gene expression in 
the frontal cortex of chronically 
stressed rats, which is decreased 
following chronic antidepressant 
treatment

Laifenfeld et al
[122], 2004

pATF-2 levels are increased in post 
mortem samples of unmedicated vs 
medicated patients with MDD. No 
differences detected for bipolar 
disorder or schizophrenia

Gourzis et al
[177], 2012 

Case report of decreased chromosome 
1 heterochromatin in FTLD, 
misdiagnosed as SZ. Altered size 
distribution of chromosome 1 
heterochromatic region in unrelated 
SZ patients compared to controls

Kosower et al
[178], 1995 

Risperidone inhibition of 
heterochromatin formation in human 
liposarcoma cells in vitro, in a process 
involving PKA signalling; extent of 
dysregulated heterochromatin in 
psychosis yet to be explored

Feiner et al
[125], 2019 

Heat shock (flies 
exposed to 37 °C 
for 1 h)

De-suppression of white gene 
sustained up to F3 generation 
required repeated exposure to 
the same paternal stressor. 
Gradual return to normal 
upon removal of heat shock

Disruption of pATF-2 
mediated heterochromatin 
assembly

Seong et al
[121], 2011 

Parental exposure to risperidone led 
to intergenerational effects on F1 
predator avoidance behaviours in 
zebrafish; potential human effects 
have not been investigated

Kalichak et al
[179], 2019 

Paramutation is not regarded as an 
established epigenetic process in 
mammals

de Vanssay 
et al[126], 
2012 

However, readers should be aware of 
this proof-of-concept study in mice

Yuan et al
[180], 2015

Paternal transmission of “white-tail-
tip” phenotype caused by paramutant 
allele in mice limited to one 
generation. Maternal miRNAs and 
piRNAs regulate (inhibit) germline 
transmission of paramutation

14 piRNAs differentially expressed in 
AD prefrontal cortex samples vs 
controls

Qiu et al[128], 
2017

Heat stress (flies 
raised at 29 °C)

Suppression of BX2 transgene 
cluster over multiple (50) 
generations

Paramutation of BX2 via 
maternally inherited 
piRNAs, triggered by heat 
stress which resulted in 
active transcription of 
piRNAs within that gene 
locus

Casier et al
[127], 2019 

Sequencing of CSF-derived exosome 
sncRNA revealed combination of 3 
miRNAs and 3 piRNAs detected AD 
and predicted the conversion of 
mild–cognitive impaired (MCI) 
patients to AD dementia. Greater 
predictive confidence when 
combining the smallRNA signature 
with pTau and Aβ 42/40 ratio 
pathology

Jain et al[129], 
2019

Forced cohabitation 
with predator or 

Stressed females shift 
behaviour to laying eggs on 

Maternal inheritance of 
chromosome III and NPF (

Dysregulation of NPY levels in the 
brain is a key pathophysiology of drug 

Bozler et al
[136], 2019 

Gonçalves et al
[181], 2016
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addiction. Manipulation of NPY 
neurotransmission has potentially 
beneficial behavioural outcomes, 
depending on the drug in question

NPY is implicated in human alcohol 
misuse disorders

Mayfield et al
[137], 2002 

Mottagui-
Tabar et al
[138], 2005

Thorsell and 
Mathe[139], 
2017 

Badia-Elder et 
al[140], 2003 

Schroeder et al
[142], 2005 

endoparasitoid 
wasps 

food rich in ethanol, and that 
preference is inherited 
through five generations

Drosophila homolog of 
NPY) gene locus, reduced 
NPF expression in the fan 
shaped body of the adult 
brain drives ethanol 
preference

NPY is also implicated in rodent 
models of alcohol misuse disorder

Robinson et al
[141], 2019

Stress-induced up-
regulation of Upd3 (
Drosophila homolog of IL-6) 
in somatic cells and testes, 
activating JAK/STAT 
pathway

Metabolic dysregulation in the F1 
offspring derived from male breeders 
exposed to early postnatal stress

van Steenwyk 
et al[146], 2018; 
van Steenwyk 
et al[93], 2020

Review of epigenetic mechanisms 
proposed to underlie intergenerational 
transmission of paternal trauma

Yehuda and 
Lehrner[182], 
2018 

Restraint stress Paternal restraint stress affects 
epigenome, transcriptome and 
metabolome of F1 progeny

Subsequent p38 activation 
results in dATF-2 
deactivation in germ cells 
leading to decreased 
H3K9me2 (repressive 
mark) at target genes. 
Repressive histone marks 
inherited by F1 progeny

Seong et al
[145], 2020 

Childhood adversity associated with 
altered DNA methylation of HPA axis 
and immune system genes; potentially 
inherited by offspring

Bick et al[154], 
2012 

ADHD is highly heritable, but the 
reasons are unclear despite the 
identification of candidate genes. 
Future studies should attempt to 
identify transgenerationally heritable 
epigenetic modifications as the basis 
for genetic vulnerability

Methylphenidate 
(MPH) treatment

Behavioural response to MPH 
is genetically variable and 
intergenerational effects can 
be observed in F1 offspring

Mechanism is unknown 
but MPH resulted in 
alterations to expression of 
many histone modifying 
genes

Rohde et al
[158], 2019 

Non-human primate studies indicate 
that MPH treatment affects normal 
puberty. The transgenerational 
implications of this finding for 
humans needs to be followed-up

Mattison et al
[155], 2011

G418 has been successfully used to 
rescue PTC deficiencies in a cell 
culture model for frontotemporal 
dementia. However, its broader utility 
for treating neuropsychiatric 
conditions remains unknown

Kuang et al
[164], 2020 

G418 treatment 
(toxic stress)

Exposure of F0 females to 
G418 resulted in reduction of 
Polycomb group gene 
expression in up till F3 
generation

Maternal Polycomb group 
expression in early 
embryogenesis affects 
expression of the zygotic 
genome, which can be 
inherited

Stern et al
[168], 2014 

PTC mutations of neuronal UPF3B 
gene associated with nonspecific 
mental retardation with or without 
austism

Laumonnier et 
al[183], 2010 

PTC: Premature termination codon; IL: Interleukin.

history of MDD or other forms of stress-related psychopathology. The D. melanogaster 
ATF-2 is known to be an essential regulator of heterochromatin assembly through its 
co-localisation with HP1, a crucial adaptor molecule for DNA methyltransferases that 
are recruited along the heterochromatin assembly by H3K9me marks. Thus, despite 
the lack of evidence at this time, it has been speculated that the general disruption of 
gene expression in psychiatric conditions such as SZ involves a combination of 
abnormal DNA methylation and histone methyltransferase activity[123,124], and that 
recurring environmental stress could be key triggers for the familial manifestations of 
psychosis. It is especially important that this aspect of epigenetic pathology be 
examined given more recent in vitro evidence that antipsychotics such as risperidone 
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have the capacity to inhibit heterochromatin formation[125].
Studies of heat stress have also uncovered other heat-induced epigenetic responses 

involving paramutation and the resulting transgenerational inheritance of small non-
coding RNAs via the maternal lineage. de Vanssay et al[126] described a paramutation 
event involving P-transposable-element repression in the germ line (termed trans-
silencing effect, TSE) that converted other homologous clusters typically incapable of 
TSE into strong silencers[126]. The transgenerational effects of this paramutation 
persisted through 50 generations of progeny and was found to specifically require 
aubergine gene-mediated piRNA biogenesis but not Dicer-2 mediated siRNA 
production. Interestingly, this paramutation is triggered by heat stress and the pattern 
of piRNA up-regulation is transmitted via the maternal lineage[127]. Thus, one of the 
persistent epigenetic modifications in response to stress in humans could be the 
emergence of actively transcribed piRNA loci. While piRNAs are not a core focus of 
molecular psychiatry, piRNAs have started to gain attention in the domain of 
neurodegenerative diseases after having been found to be differentially expressed in 
prefrontal cortical tissue of post-mortem AD brains[128]. That has led to questions of 
their role in disease pathogenesis and the possibility of using them as a reliable 
biomarker for human disease. In support of the latter notion, miRNA and piRNA 
profiling of human cerebrospinal fluid-derived exosomes has more recently been 
proposed to have utility in diagnosing AD, as well as predicting the conversion from 
mild cognitive impairment to AD dementia[129]. There is sexual dimorphism in the 
clinical manifestation of AD with more women than men being diagnosed and 
maternal transmission is more frequently observed than paternal transmission[130]; 
but the potential involvement of maternally inherited miRNAs or piRNAs to confer 
AD risk is completely unknown at this time. In D. melanogaster it has been established 
that piRNAs are maternally inherited and aging is associated with an increased 
presence of novel heterochromatic-only secondary piRNAs[131-134]. However, 
evidence of a similar pattern of inheritance role in humans has yet to be discovered. 
Our understanding of piRNA in the context of psychiatry and behaviour is barely in 
its infancy, and there remains much to be uncovered regarding the piRNA 
pathogenesis and its direct consequences across the range of neuropsychiatric diseases. 
Perhaps further studies in D. melanogaster can uncover novel piRNA-mediated disease 
mechanisms for psychiatry conditions that are skewed to maternal transmission.

Predator stress is another form of environmental stress that applies to D. melano-
gaster and studies have revealed that it is sufficiently severe to induce shifts in 
reproductive behaviours. Females housed in cohabitation conditions with endopara-
sitoid wasps develop a preference to lay eggs on ethanol-rich food as ethanol protects 
the larvae from wasp infection[135]. That change in oviposition behaviour was found 
to be driven by neuropeptide F (the D. melanogaster homolog of Neuropeptide Y, NPY) 
and persisted despite removal of the endoparasitoid wasps. More impressively, a 
recent study reported that exposure to predatory wasps is also an environmental 
stressor that triggers a similar transgenerational modification of egg laying behaviour 
over five generations[136]. That shift towards ethanol-rich substrates was established 
to be superficially maternally transmitted and involved inheritance of Chromosome III 
within which resides the NPF gene that is differentially expressed in the fan shaped 
body of the adult female brain. Here, it is worth noting that NPY is of major interest to 
substance misuse disorders and has been implicated in human alcohol use disorder
[137-139] as well as in rodent models[140-142]. Since genetic vulnerability remains the 
core disease-causing factor for humans, and given that unbiased genetic screening, 
QTL analyses or GWAS studies are easily paired with functional studies in D. melano-
gaster[143,144], the latter presents as a viable alternative organism to study gene-
environment interactions and the triggers that drive alcoholism, with perhaps the next 
step being a pursuit of the epigenetic mechanisms underlying those pathologies.

Interestingly, by using restraint stress to model strong psychological stress, Seong et 
al[145] found that paternal stress altered the epigenome, transcriptome, and metabo-
lome in a dATF2 pathway-dependent manner[145]. A host of genes involved in 
metabolic health (amino acid metabolism, glycolysis, TCA cycle) were differentially 
expressed in the F1 offspring, which is consistent with the observations of similar 
paternal stress studies in mice[93,146]. The intergenerational effects in D. melanogaster 
were proposed to be caused by stress-induced up-regulation of Upd3 gene in the testes 
[the D. melanogaster homolog of the pro-inflammatory cytokine Interleukin-6 (IL-6)], 
which was confirmed by overexpression studies of Upd3 in paternal somatic cells with 
corresponding studies of the offspring outcomes. The overall intergenerational effects 
were proposed to be mediated by stress-induced increases in Upd3 that causes 
abnormal phosphorylation of dATF-2 in D. melanogaster germ cells, resulting in 
decreased H3K9me2 repressive marks that are inherited by the F1 offspring to 
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ultimately disrupt heterochromatin assembly and gene transcription. In humans, it 
remains to be clarified whether IL-6 (or other pro-inflammatory cytokines) correlates 
with sperm DNA damage[147,148]. However, it is well-established that inflammation 
has a significant role in the pathogenesis of various neuropsychiatric conditions 
including MDD[149-151] and SZ[152,153]. It would be interesting to elucidate the 
relationship of SNPs and risk gene loci with H3K9me2 repressive marks, and its 
contribution to the development of those conditions especially in familial cases. 
Additionally, given initial evidence suggesting that traumatic stress has long-term 
epigenetic consequences including altering the DNA methylation patterns of genes 
relevant to HPA axis function and the immune (inflammation) response[154], future 
D. melanogaster studies should also focus on DNA methylation as a key epigenetic 
mechanism mediating the transgenerational inheritance of stress-induced pathologies.

Methylphenidate (Ritalin) is a frontline prescription psychostimulant for the 
treatment of attention deficit hyperactivity disorder (ADHD) and narcolepsy. The 
increasing frequency of prescription has been the cause for concern regarding over-
prescription and overdiagnosis. Methylphenidate treatment has been reported to 
result in significant developmental delay to puberty with hormonal imbalance in non-
human primates[155]. While the impacts on spermatogenesis or sperm health were not 
investigated in that study, separate work on the major metabolite of methylphenidate, 
ritalinic acid, has found a significant increase of human sperm motility and viability in 
vitro[156]. However, any effects of long-term methylphenidate treatment on pubertal 
growth, sperm development in vivo and the sperm epigenome are unknown presently. 
D. melanogaster studies have contributed tremendously to advancing our under-
standing of the genetics of neuropsychiatric conditions. A prime example is they have 
been used to identify ADHD candidate genes[157] and to determine the transcriptomic 
response to methylphenidate, which correlate to their locomotor responses to drug 
treatment[158]. The latter study also identified putative candidate genes through 
whole genome transcriptomic analysis that accounted for the variability in drug 
response. Collectively, that body of work establishes D. melanogaster as a valid 
organism to further probe the transgenerational effects of methylphenidate exposure 
on male reproductive health and progeny behaviours. The aetiology of ADHD 
remains poorly understood but epidemiological data indicates approximately 80% 
heritability for both adults and children[159,160] despite only 22% of the disease 
liability being linked to common gene variants[161]. Given that knockdown of D. 
melanogaster homologues of ADHD candidate genes produces abnormal locomotor 
phenotypes that are also responsive to treatment by ADHD prescription compounds
[162,163], D. melanogaster would continue to serve as an ideal organism for future 
investigations into the epigenetic factors underlying the high degree of heritability of 
ADHD.

Recently, one study investigating new therapeutic options for treating fronto-
temporal dementia (FTLD)[164] explored the use of aminoglycosides–a class of gram-
negative bacilli antibiotics that have the capacity to induce eukaryotic ribosomal 
readthrough of premature termination codon (PTC) sequences to yield a full-length 
protein. Aminoglycosides have successfully been used to treat various diseases 
involving PTC mutations such as cystic fibrosis[165], Duchenne muscular dystrophy
[166] and Rett syndrome[167], but have yet to be employed for neuropsychiatric 
conditions. In using a cell culture screening assay to conduct proof-of-principle studies 
with non-sense mutations of progranulin associated with FTLD, Kuang et al[164] 
identified two aminoglycosides that rescued the expression of the progranulin. It is 
worth noting that one of those aminoglycosides, G418 (also known as geneticin), has 
previously been reported to exert transgenerational effects on maternal Polycomb levels 
in D. melanogaster F2 embryos that persisted into the F3 generation[168]. Importantly, 
G418 exposure lead to growth retardation and delay in pupation times. While the 
transgenerational implications of G418 would be minimal since FTLD is associated 
with advanced aging, we believe it is important that readers be aware of such potential 
risks to offspring should aminoglycosides continue to be explored as therapeutic 
options for conditions in a younger fertile population.

CONCLUSION
Looking towards the future, improving the prospects for neuropsychiatric patients 
requires the field of psychiatry to have a more comprehensive understanding of the 
causes of various conditions, especially regarding how basic molecular and epigenetic 
pathologies interact and contribute to the overall disease phenotype. A major step 
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would be the incorporation of epigenome profiling since it is the key molecular 
intermediary linking genetics (susceptibility) to the environment (stress-related 
triggers). In highlighting the key findings of studies of C. elegans and D. melanogaster, 
we hope readers can come to appreciate the value of conducting basic research 
employing these two key non-mammalian organisms to potentially uncover novel 
molecular and epigenetic pathologies. Multiple stress-induced epigenetic modific-
ations that affect the individual have significance in a variety of human neurological 
conditions, but further findings that progeny are also transgenerationally affected will 
have broader implications for health projections for future generations. At a time when 
stress (physical and mental) is prevalent and largely unavoidable, there is great 
urgency to understand the current mental health crisis and work towards new 
approaches for treatment and prevention. Of course, it is openly acknowledged that 
complex human behavioural responses and adaptations related to psychopathologies 
cannot be modelled in simple organisms. However, many fundamental molecular 
mechanisms that regulate neuronal behaviour have been conserved across phyla, and 
those molecular and neuronal circuitries can be interrogated in a rapid manner in 
simple model organisms Therefore, invertebrate research should be regarded as being 
tremendously beneficial and highly complementary to human and mammalian model 
research, and further investments should be made in this regard. An expanded 
combination of clinical studies, rodent models and molecular studies in model 
organisms provides an extremely powerful multi-tiered approach to understanding 
the molecular basis of psychiatric disorders. Focusing on the epigenetic pathologies 
associated with neuropsychiatric conditions will undoubtedly lead to the development 
of novel approaches for treatment.
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