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Abstract
Mental health symptoms secondary to trauma exposure and substance use 
disorders (SUDs) co-occur frequently in both clinical and community samples. 
The possibility of a shared aetiology remains an important question in transla-
tional neuroscience. Advancements in genetics, basic science, and neuroimaging 
have led to an improved understanding of the neural basis of these disorders, 
their frequent comorbidity and high rates of relapse remain a clinical challenge. 
This project aimed to conduct a review of the field’s current understanding 
regarding the neural circuitry underlying posttraumatic stress disorder and SUD. 
A comprehensive review was conducted of available published literature 
regarding the shared neurobiology of these disorders, and is summarized in 
detail, including evidence from both animal and clinical studies. Upon 
summarizing the relevant literature, this review puts forth a hypothesis related to 
their shared neurobiology within the context of fear processing and reward cues. 
It provides an overview of brain reward circuitry and its relation to the 
neurobiology, symptomology, and phenomenology of trauma and substance use. 
This review provides clinical insights and implications of the proposed theory, 
including the potential development of novel pharmacological and therapeutic 
treatments to address this shared neurobiology. Limitations and extensions of this 
theory are discussed to provide future directions and insights for this shared 
phenomena.
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Core Tip: Traumatic stress disorders and substance use disorders are highly co-morbid 
in community and clinical samples. Recent findings from basic and clinical neuros-
cience support a shared neural basis of these disorders, specifically related to the 
processing of fear and reward cues. Understanding the overlapping neurobiology of 
these disorders will improve our understanding of disease aetiology and improve 
prevention and treatment efforts.

Citation: Michaels TI, Stone E, Singal S, Novakovic V, Barkin RL, Barkin S. Brain reward 
circuitry: The overlapping neurobiology of trauma and substance use disorders. World J 
Psychiatr 2021; 11(6): 222-231
URL: https://www.wjgnet.com/2220-3206/full/v11/i6/222.htm
DOI: https://dx.doi.org/10.5498/wjp.v11.i6.222

INTRODUCTION
Research focused on trauma and posttraumatic stress disorder (PTSD) dates back to 
1889, when Pierre Janet, a prominent French psychiatrist, published L’Automatisme 
Psychologique, an early attempt to describe how the mind processes traumatic events
[1]. Janet argued that patients suffering from dissociation and hysteria had unresolved 
traumatic memories and that this subconscious experience was routed in the physical 
effects of past negative experiences. When an individual experiences a traumatic 
event, they are overwhelmed with intensely negative emotions and are unable to 
accurately process and remember details surrounding the event[2]. The traumatic 
experience dissociates from conscious awareness. Janet believed that the individual 
would relive the memory of the trauma in fragmented pieces, such as emotional states, 
somatic conditions, visual images, or behavioral re-enactments. Janet was the first to 
identify dissociation as the crucial psychological technique involved in a variety of 
post-traumatic symptoms[1].

Decades of research on understanding the psychological and biological effects of 
trauma have provided support for many of Janet’s early observation[1]. Psychological 
distress following a traumatic event can manifest through a variety of symptoms 
including anxiety and exaggerated fear as well as anhedonia, dysphoria, anger, 
aggression, or dissociation[3]. The 5th edition of the Diagnostic and Statistical Manual 
of Mental Disorders (DSM-5) provides a description of seven different diagnoses 
which all relate to exposure to a prominent or stressful event, the most prevalent of 
these diagnoses are Acute Stress Disorder and PTSD. Criteria for PTSD include direct 
exposure to or indirect witnessing of a traumatic or stressful event, as well as the 
presence of intrusive symptoms, negative mood, dissociation, avoidance and/or 
arousal. These symptoms must cause clinically significant distress or impairment and 
must not be attributable to the effects of a substance, a medical condition, or a brief 
psychotic disorder[3]. Patients with PTSD must also display at least one or more 
symptom across each category (intrusive, avoidance, negative alterations in cognition 
and mood, alterations in arousal and reactivity). Interpersonal trauma is one of the 
most common criteria A events and is more likely to lead to poorer functional 
outcomes[3].

Given the diversity and complexity of individual responses to trauma, it has been 
difficult to fully understand the neurobiological substrates involved in PTSD. The 
majority of basic neuroscience and neuroimaging research on PTSD has focused 
primarily on two areas; the effect of stress on sympathetic nervous system functioning 
and the impact of trauma on frontal striatal brain circuitry[4]. Although such research 
has begun to shed light on the adverse neurobiological effects of repeated stress, many 
patients continue to suffer from the effects of trauma and are resistant to empirically 
validated treatments for PTSD[5]. An emerging area of research that may help to 
further elucidate the neurobiological mechanism of trauma relates to the important 
role of reward circuitry in translational models of PTSD. After providing an overview 
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of animal and clinical research on the biological effects of PTSD, this article will review 
recent research that suggests an important role for the brain’s reward pathway in 
understanding the neurobiological effects of complex trauma.

THE PHYSIOLOGY AND NEUROBIOLOGY OF PTSD
The human stress response and PTSD
During stress, the sympathetic nervous system prepares an individual for action while 
the pituitary-adrenocortical system dampens initial physiological aspects of arousal
[6]. The hypothalamic (HPA) axis releases corticotrophin releasing factor (CRF) which 
stimulates the release of cortisol from the adrenal cortex, and increases the release of 
catecholamine neurotransmitters within several regions of the brain[7]. 
Catecholamines have an integral role in the adaptive response to stress through the 
breakdown of glycogen, the suppression of the insulin release, and increased 
functioning of the cardiovascular system[6]. Increased levels of norepinephrine (NE) 
and epinephrine (EPI) during stress result in increased neuronal activity in limbic 
areas such as the amygdala, and hypothalamus, and decreased activation of cortical 
areas involved in higher-order cognitive functioning[8].

For individuals at risk for developing PTSD, traumatic experiences can alter the 
normal functioning of the sympathetic nervous system. Many of the core symptoms of 
PTSD reflect a state of hyperarousal including exaggerated startle response, initiating 
and maintaining sleep and poor concentration[9]. Patients with PTSD demonstrate 
exaggerated sympathetic nervous system responses including tachycardia and skin 
conductance during acute stress and increased sensitivity of the HPA axis[10]. 
Compared to healthy controls, patients with PTSD have reduced baseline cortisol 
levels, and increased levels of CRF[11]. Several studies have demonstrated that 
patients with PTSD have higher urinary secretion levels of NE, and EPI, compared to 
controls and that neurotransmitters levels correlate with the severity of self-reported 
PTSD symptoms[10,12]. Previous PTSD studies have reported related abnormalities in 
sensory processing including deficits in the P50 and P300 evoked potential component
[13].

Abnormalities in HPA axis and neurotransmitter function can alter neural circuitry 
both structural and functional changes of, especially in brain circuits integral to 
affective and cognitive processing. While high levels of cortisol enhance the formation 
of emotional memories (mediated by the increased amygdala function) and facilitates 
fear conditioning, high levels of cortisol upon trauma exposure decreases 
hippocampus function, resulting in memory and learning deficits[14]. Structural 
changes occur as well; high levels of stress can result in dendritic hypertrophy of the 
prefrontal cortex (PFC), and dendritic remodeling of the amygdala[15].

Between stimulus and response
How does the brain process sensory information that may be perceived as a threat? 
LeDoux was among the first to demonstrate the underlying neural circuitry of fear 
(Figure 1) For example, imagine that a door slams shut in the middle of the night, 
waking you up from sleep. The initial sensory information about the threat is relayed 
to the thalamus and then quickly sent to the amygdala, activating the stress response 
and generates an immediate reaction. The body begins to sweat, a diaphoretic 
response that precipitates a rapid response. The hippocampus and PFC process 
contextual information about the stimulus by providing reasoning (perhaps it was a 
windy day) and episodic memory (a slamming door has never caused you any harm) 
that dampens the stress response and allow an individual to relax, returning to 
baseline. The signal from the thalamus to the amygdala is rapid, while signals from the 
hippocampus and PFC are transmitted with less velocity[16]. Recent translational 
research has demonstrated how structural, chemical and functional differences in each 
of these brain areas evolve in the neurobiology of PTSD.

Given the role of intrusive memories in PTSD, many have speculated that 
hippocampal dysfunction is a critical component of the underlying neurobiology. The 
hippocampus has a high concentration of corticosteroid receptors that are involved in 
the termination of the stress response through the negative feedback of the HPA axis
[17]. Both animal and human studies have demonstrated that high levels of stress can 
damage the hippocampus, resulting in memory impairments[18]. During an acute 
stress response, high levels of cortisol can diminish dendritic branching in the 
hippocampus while augmenting neurogenesis in the amygdala, enhancing the 
emotional salience of the event, but impairing memory functioning[15,19]. When 
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Figure 1 Fear brain circuitry.

compared with healthy controls, patients with PTSD demonstrate impairments in 
short-term memory and some studies (but not all) have demonstrated reduced 
hippocampal volumes in patients with PTSD[20]. Patients with PTSD often have 
difficulty describing details related to traumatic events and some studies have 
correlated hippocampal regional cerebral blood flow with PTSD symptom seve-rity
[21,22].

The amygdala receives input from the thalamus as well as sensory processing 
regions of the neocortex, and transmits signals to autonomic brain structures, thereby 
playing a critical role in both the sympathetic and parasympathetic stress respo-nse[23,
24]. In human studies, the amygdala has been demonstrated to have a critical role in 
processing emotional stimuli, and in the formation of emotionally salient memories
[25]. It also has a role in fear conditioning, whereby a neutral conditioned stimulus is 
associated with an unconditioned stressful stimulus. Exposure to the conditioned 
stimulus initiates the stress response, activates the amygdala, and engages the 
autonomic nervous system[26]. Lesion of the amygdala interrupts fear learning and 
the conditioned response in animals[27,28]. Human neuroimaging studies have 
confirmed the involvement of this region in fear learning, conditioning and extinction
[29,30]. Compared to healthy controls, patients with PTSD demonstrate increased 
activation of the amygdala when presented with trauma-related cues, as well as when 
presented with unrelated affective stimuli[31,32]. Amygdala response in patients with 
PTSD has been found to correlate with self-reported symptom severity[33,34].

Alterations in prefrontal cortical (PFC) activity may help to link the role of memory 
impairment in PTSD as well as increased amygdala activation during the stress 
response[20]. In patients with PTSD, repeated exposure to trauma damages these 
neural structures. The ability to extinguish emotional memories involves the ventro-
medial PFC as well as the amygdala while extinguishing conditioned fear involves the 
anterior cingulate cortex and the amygdala[24,35]. Activation of the medial PFC also 
occurs when inhibiting fearful responses or altering one’s perception of a negative 
emotional event and therefore decreased functioning of the PFC may explain why 
patients with PTSD exhibit difficulties in extinguishing fearful memories[36,37].

COMORBIDITY OF PTSD AND SUBSTANCE USE DISORDERS
Clinical observations, case reports and epidemiological studies first suggested high 
rates of comorbidity between PTSD and substance use disorders (SUD), prompting 
translational research examining the possibility of overlapping neural mechanisms. 
Many studies have demonstrated a high comorbidity of PTSD with drug addiction in 
both clinical and community samples[38,39]. Approximately 36% to 50% of those that 
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meet criteria for SUD also meet criteria for lifetime PTSD, and those with PTSD 
predictably have a history of drug abuse or dependence[40]. Comorbidity of these 
disorders is associated with negative treatment outcomes, increased risk for chronic 
diseases, and poorer functionality[41]. Co-twin studies have also demonstrated a link 
between childhood trauma and the later development of SUD[42].

Robinson and Berridge[43] proposed a model of addiction that demonstrates how 
repeat drug use disrupts normal reward processing. The Incentive-Sensitization 
Theory postulates that although increased pleasure is initially an important part of 
addiction behavior, regular substance use increases an individual’s sensitivity to drug 
cues, causing them to become hyper-responsive to drug cravings, even in the absence 
of pleasure[43]. This hyper-sensitization produces goal-directed behavior (“wanting”) 
not only in the absence of subjective pleasure, but also in the absence of consciously 
being aware of “wanting”. Recent research has supported this theory, demonstrated 
that substance use can alter brain reward circuitry[43].

BRAIN REWARD CIRCUITRY AND SUD
Data from several studies suggest that the reward circuit of the brain (the mesocortical 
dopamine pathway) provides a common molecular pathway with which to 
understand SUD. The mesolimbic pathway involves connections between the ventral 
tegmental area (VTA), the nucleus accumbens (NAc) in the ventral striatum, and the 
PFC. The mesolimbic dopamine reward circuit controls the reinforcing and rewarding 
effects related to food, sex, and social interaction[44]. Drug-induced adaptations in 
mesolimbic dopamine system (includes common adaptations to many different drugs) 
mediate changes in reward mechanisms that in part underlie addiction — including 
tolerance, dependence-withdrawal, sensitization, and relapse. Drug-induced 
adaptations include regulation of dopamine and opioid systems (mechanisms of 
tolerance and sensitization), regulation of glutamate systems (influences drug-related 
memories), upregulation of the cyclic adenosine monophosphate (cAMP) pathway, 
and transcription factor cAMP Response Element-Binding (CREB) protein, 
(mechanisms of drug tolerance, dependence, and withdrawal), structural changes in 
VTA neurons (influences drug tolerance), and structural changes in NAc neurons 
(influences drug sensitization)[45].

Many studies show that dopamine and accumbens neurons often become most 
active in anticipation of rewards, not during the reward phase, and also activated by 
the anticipation of aversive stimuli and events[46,47]. The role of the mesolimbic DA 
system is to increase the salience of stimuli and events associated with activation of the 
system. Stimuli are imbued with salience, making them “wanted” incentive stimuli. 
Alcaro et al[46] have theorized the role of the mesolimbic pathway as driving an 
organism toward “seeking” behaviors, searching to boost the salience of activities that 
are life-promoting while avoiding those that are harmful to survival. This proposed 
role is not only congruent with evidence of the importance of SUD, but also a 
mechanism that explains the connection of the VTA to the hippocampus, amygdala, 
and PFC, all of which have been implicated in the neurobiology of PTSD.

OVERLAPPING NEUROBIOLOGY OF PTSD AND SUD
Both animal models and clinical studies of PTSD have noted deficits in reward 
processing consistent with hypofunctionality of the mesolimbic pathway. Upon 
exposure to chronic stress, animal models demonstrate reduced striatal dopaminergic 
activity and decreased reward-seeking behavior that mimic symptoms of anhedonia 
experienced by PTSD patients[48]. Corral-Frias et al[49] utilized a novel animal model 
of PTSD to demonstrated that inactivation of the VTA can lead to long-term behavioral 
changes that mimic the clinical symptoms of PTSD. Inactivation of the VTA through 
either a dopamine antagonist or bilateral dissection can also lead to chronic changes in 
baseline VTA dopaminergic cell firing, demonstrating that trauma can lead to long-
term alterations of the reward pathway. Evidence of deficits in the brain reward and 
reinforcement circuits in patients with PTSD also supports the involvement of the 
mesolimbic dopamine reward circuit[50,51]. In clinical studies, PTSD patients spend 
less time engaging in reward-seeking behavior compared to controls, report lower 
levels of reward expectation and are less satisfied with monetized rewards[52,53]. 
When compared to healthy controls, patients with PTSD demonstrate reduced 
bilateral striatal activation when responding to positive to reward gains and reported 
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significantly higher levels of motivational and social deficits[50]. Collectively, these 
findings suggest a strong overlap in the brain regions involved in both fear processing 
and addiction. In particular, the VTA, through its connections to the amygdala, 
hippocampus and PFC, may serve as the common substrate of this overlapping 
circuitry, explaining the high co-morbidity in PTSD and SUD.

Several rodent models provide converging evidence for the overlapping circuitry of 
these two disorders, including the dorsal and ventral subdivisions of medial PFC and 
their respectively outputs to the amygdala and NAc (Figure 2). The prelimbic (PL) 
cortex projects to the basal (BA) nucleus of the amygdala, which excites the central 
(CE) nucleus of the amygdala, thereby promoting the expression of conditioned fear
[54]. The BA also receives excitatory input from lateral amygdala, which also drives 
the expression of conditioned fear. The infralimbic (IL) cortex, in contrast, excites a 
class of GABAergic inhibitory neurons (the intercalated cell masses) which inhibit the 
CE, thereby promoting extinction of the conditioned fear[55]. PL and IL control drug 
seeking via their differential projections to the core and shell subdivisions of the NAc. 
The PL projects to the core, which promotes the expression of drug-seeking behavior. 
The IL projects to the shell, which also promotes the expression of extinction[56].

Functional magnetic resonance imaging studies provide consistent support for 
similar networks in human studies of fear and addiction (Figure 3). The dorsal portion 
of the anterior cingulate cortex is associated with fear expression during conditioning 
behavioral tasks, and overlaps with proximal regions that are activated when SUD 
patients respond regarding their craving levels after exposure to cocaine-related cues
[57-59]. These findings are congruent with results from positron emission tomography 
mapping of cerebral blood flow using 15O-labeled water[60]. The ventral medial PFC 
(vmPFC) is activated during fear extinction recall and during recall of addiction cues 
in individuals with SUD disorders[57,61]. During states of cocaine craving, the vmPFC 
is deactivated, suggesting a failure to engage extinction[54]. Collectively, these studies 
suggest that the vmPFC is homologous to rodent IL, whereas the dorsal regions of 
anterior cingulate cortex are homologous to rodent PL.

CONCLUSION
This review examined evidence in support of a shared neurological origin between 
PTSD and SUD, in an effort to explain the high rates of comorbidity. It is clear that 
abnormalities in the PFC and VTA are central to the pathology of both disorders. The 
VTA is negatively affected during trauma and stress, and results in a decrease of 
dopaminergic activity and a subsequent alteration in the reward pathway. The PFC is 
involved in drug seeking behavior as well as the extinction of fear conditioning, 
playing a role in both addiction and PTSD. This review did not examine the genetic 
vulnerabilities nor neurodevelopmental pathways that may confer increased risk for 
either or both disorders, and it remains an important question whether the shared 
biology reviewed here is due to more distal risk factors, or are a result of one disorder 
conferring increased risk for the other.

It is important to gain a better understanding of the connection between PTSD and 
SUD in order to develop improved treatments that target both disorders. Despite 
shared neurobiology, there are few treatment options that target both, although 
notably some do exist (e.g., Seeking Safety). Yet many patients are not able to benefit 
from combined treatment interventions during the earlier stages of substance use 
recovery, and clinicians often struggle to determine the priority of treatment[62]. Many 
individuals diagnosed with comorbid PTSD-SUD believe that the outcomes of their 
disorders are interconnected, yet are not offered treatment for PTSD alongside SUD 
interventions[63].

Understanding comorbidity may also further prevention efforts, consistent with the 
“self-medication” hypothesis, as individuals with untreated trauma utilize substance 
as unhealthy coping mechanisms[64]. Earlier identification, access to care, and 
treatment of trauma across the lifespan is critical for intervening before the 
development of SUD or other maladaptive behaviours. Further research must leverage 
mechanisms between these two disorders, to ensure a more effective and efficient 
treatment option.
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Figure 2 Conditioned fear in cocaine use. The dorsal and ventral subdivisions of medial prefrontal cortex are shown at the center, with their respective 
outputs to the amygdala controlling fear shown at right, and those to the nucleus accumbens, controlling cocaine, seeking shown at left. Green depicts pathways that 
activate fear and cocaine seeking. Red depicts pathways that inhibit fear and cocaine seeking[65]. Citation: Peters J, Kalivas PW, Quirk GJ. Extinction circuits for fear 
and addiction overlap in prefrontal cortex. Learn Mem 2009; 16(5): 279-288. Copyright ©Cold Spring Harbor Laboratory Press 2009. Published by Cold Spring Harbor 
Laboratory Press[65].

Figure 3 Functional magnetic resonance imaging and positron emission tomography studies of fear and addiction. Green dots represented 
human dorsal anterior cingulate cortex that correlated with fear expression functional magnetic resonance imaging[65]. Blue dots represent regions that correspond 
with drug cravings after exposure to cocaine-related cues. Red dots represent regions associated with fear extinction recall. Yellow dots represent regions activated 
during addiction-related cues. Citation: Peters J, Kalivas PW, Quirk GJ. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 2009; 16(5): 
279-288. Copyright ©Brain Innovation 2009. Published by Cold Spring Harbor Laboratory Press[65].
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