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Abstract
The versatility of glutamate as the brain’s foremost excitatory neurotransmitter 
and modulator of neurotransmission and function is considered common 
knowledge. Years of research have continued to uncover glutamate’s effects and 
roles in several neurological and neuropsychiatric disorders, including 
depression. It had been considered that a deeper understanding of the roles of 
glutamate in depression might open a new door to understanding the patholo-
gical basis of the disorder, improve the approach to patient management, and lead 
to the development of newer drugs that may benefit more patients. This review 
examines our current understanding of the roles of endogenous and exogenous 
sources of glutamate and the glutamatergic system in the aetiology, progression 
and management of depression. It also examines the relationships that link the 
gut-brain axis, glutamate and depression; as it emphasizes how the gut-brain axis 
could impact depression pathogenesis and management via changes in glutamate 
homeostasis. Finally, we consider what the likely future of glutamate-based 
therapies and glutamate-based therapeutic manipulations in depression are, and 
if with them, we are now on the final chapter of understanding the neuroche-
mical milieu of depressive disorders.
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Core Tip: The versatility of glutamate as the brain’s foremost excitatory neurotransmitter, and modulator of 
intermediary metabolism in the gastrointestinal tract is considered common knowledge. Years of research 
suggest glutamate has a role to play in depression. Also, there is increasing evidence of a possible 
relationship between glutamate and the pathophysiology and/or treatment of depression. The complexity 
of depression suggests dysregulation of glutamate in sites such as the gastrointestinal tract and brain. The 
communication link involving dietary glutamate, the gut, endogenous glutamate, and the brain is a 
multidirectional pathway; the understanding of which is necessary to fully account for glutamate’s role in 
depression.

Citation: Onaolapo AY, Onaolapo OJ. Glutamate and depression: Reflecting a deepening knowledge of the gut and 
brain effects of a ubiquitous molecule. World J Psychiatr 2021; 11(7): 297-315
URL: https://www.wjgnet.com/2220-3206/full/v11/i7/297.htm
DOI: https://dx.doi.org/10.5498/wjp.v11.i7.297

INTRODUCTION
Clinical depression or major depressive disorder (MDD) is a chronic, debilitating, and disabling mental 
health disorder that affects over 300 million people (across all age groups) globally[1-4]. It contributes 
significantly to the global burden of disease and escalating incidence of suicides amongst teenagers and 
young adults worldwide. Globally, the prevalence of depression continues to increase[4,5]; with factors 
such as worsening poverty, increasing unemployment, adverse life events and genetics[4] being 
recognized as important risk factors for its development.

The discovery of monoamine oxidase inhibitors and tricyclic antidepressants opened opportunities 
for the treatment of depression and provided insights into the role of neurotransmitters such as 
dopamine, serotonin and norepinephrine in the pathophysiology of depression[6,7]. However, the 
shortcomings of the currently-approved pharmacotherapies such as the lag time between the effect of 
drugs on monoamine availability and their therapeutic effect, inadequate response, and the increasing 
incidence of treatment-resistant depression[7-9] means that there is still a critical need to better 
understand the pathophysiology of depression; and develop more-effective and efficient therapeutic 
interventions for depressive disorders.

The monoamine hypothesis supports the notion that the pathology in depression is primarily 
depletion in the levels of brain monoamine neurotransmitters including serotonin, norepinephrine, and 
dopamine[10-12]. In the almost seven decades since its formulation, it has largely explained the 
symptoms and response to currently available antidepressant therapy. However, inconsistencies in the 
hypothesis have resulted in further research to better understand depression pathophysiology and 
management. In the last three decades, there has been compelling clinical[13,14] and preclinical[15,16] 
evidence demonstrating the involvement of the glutamatergic system in the pathophysiology of 
depression.

Since the first mention of the glutamate hypothesis of depression in the 1990s[15], our understanding 
of the versatility of glutamate as the brain’s foremost excitatory neurotransmitter, and modulator of 
neurotransmission and function has increased considerably. Years of research have continued to 
uncover glutamate’s effects and roles in several neurological and neuropsychiatric disorders, including 
depression. More recently, the antidepressant actions of ketamine, an N-methyl-D-aspartate (NMDA) 
glutamate receptor antagonist especially in treatment-resistant depression[17,18] was reported; 
suggesting a deeper understanding of the roles of glutamate in depression could open new doors to 
understanding the pathological basis of the disorder, improve the approach to patient management, and 
lead to the development of newer drugs that may benefit more patients. Also, the roles of the gut-brain 
axis in glutamate signalling have been investigated, with reports that these could also impact the 
pathophysiology and treatment options in depression[19,20]. This review examines current 
understanding of the roles of endogenous and exogenous sources of glutamate and the glutamatergic 
system in the aetiology, progression and management of depression. It also examines the relationships 
that link the gut-brain axis, depression and glutamate (Figure 1); as it emphasizes how the gut-brain axis 
could impact depression pathogenesis and management via changes in glutamate homeostasis. Finally, 
we consider what the likely future of glutamate-based therapies and glutamate-based therapeutic 
manipulations in depression are, and if with them, we are now on the final chapter of understanding the 
neurochemical milieu of depressive disorder.

https://www.wjgnet.com/2220-3206/full/v11/i7/297.htm
https://dx.doi.org/10.5498/wjp.v11.i7.297
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Figure 1 Possible relationships that link dietary glutamate, the gut-brain axis, endogenous glutamate and depression.

GLUTAMATE AND DEPRESSION
Glutamate is an amino acid and the major excitatory neurotransmitter in the brain[21]. In the last few 
decades, there has been increasing insights into the roles played by the glutamatergic system (Figure 1) 
in the pathophysiology and treatment of mood disorders generally, and depressive disorders 
specifically[12,22,23]. Although glutamate is ubiquitous in the brain, excessive release of glutamate has 
been associated with excitotoxicity-induced brain injury[24]. The possible involvement of the glutama-
tergic system in mood disorders is supported by preclinical evidence of the antidepressant effects of 
NMDA antagonists[15,25]. Also, the results of early studies showing alterations in the levels of 
glutamate (peripherally and centrally) in persons with mood disorders confirmed this involvement[13,
26]. Alterations in excitatory and/or inhibitory neurotransmitters resulting in the alteration of 
functional connectivity patterns within large brain networks have also been reported[27]. More recently, 
there is overwhelming evidence of the anxiolytic and antidepressant response to subanaesthetic-doses 
of ketamine in clinical[27-30] and preclinical studies[31,32].

The ability of diet to cause depression and depression-like phenotypes has been reported[33,34]. 
Research has continued to show that the consumption of diets rich in fat, deficient in magnesium, or 
high in monosodium glutamate can cause depression-like behaviours such as decreased social 
interaction, anhedonia and behavioural despair in rodents[35-37]. While there have been suggestions 
that these effects are linked to the ability of dietary factors to alter the composition of the gut microbiota
[36,37], emerging evidence of the interactions between the gut microbiota and brain neurotransmitters 
such as dopamine, serotonin, gamma amino-butyric acid and glutamate[9,38] are opening new vistas 
into possible novel treatment modalities for depression.

Dietary glutamate and depression
Glutamate is an α-amino acid that is useful in the biosynthesis of proteins and important in 
intermediary metabolism, through its ability to link carbohydrate and amino acid metabolism via the 
tricarboxylic acid cycle[39,40]. Glutamate (in addition to being synthesized in the body in humans) is 
also derived from dietary sources such as cheese, meat, and several food-seasonings including 
monosodium glutamate[21,41].

While endogenous brain glutamate has been linked to the pathophysiology of psychiatric conditions 
such as schizophrenia and mood disorders, the possible role of dietary glutamate (Table 1) in the 
development of neuropsychiatric conditions is still being evaluated[42]. There have been suggestions 
that the consumption of diets containing high concentrations of monosodium glutamate could increase 
body levels of glutamic acid, resulting in hyperglutamatergic neurotransmission, which could possibly 
contribute to the development of depression[43]. Also, a few studies have reported that factors such as 
chronic stress that reduce brain levels of glutamate and glutamine causing hypoactive glutamatergic 
signaling in the mouse prefrontal cortex are also associated with the development of depression[44], 
suggesting that regarding brain glutamatergic transmission a delicate balance always needs to be 
maintained.

In the last few years, reports from preclinical studies have associated the use of monosodium 
glutamate with the development of behavioural phenotypes such as anxiety and depression; and the 
ability to influence brain endogenous glutamate and glutamatergic neurotransmission[35,42,44-46]. 
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Table 1 Dietary glutamate and depression

Subject Outcome Ref.

Human In non-obese participants, diets high in levels of glutamic acid were associated with greater depression symptomatology Kumar et al
[43]

Adult 
mice

While chronic immobilization stress decreased sodium-coupled neutral amino acid transporter (SNAT)-1 and 2 in neurons 
and glutamate transporter (GLT)1, SNAT3, and SNAT5 in astrocytes in the medial prefrontal cortex, glutamine—supple-
mented diet ameliorated these decrements

Baek et al[44]

Neonatal 
rats

Subcutaneous injection of monosodium glutamate (MSG) increased the immobility time in the forced swim test and the 
freezing reaction in the contextual fear conditioning. MSG also increased serotonin uptake in the cerebral cortices and caused 
deregulation of the hypothalamic-pituitary-adrenal axis

Quines et al
[35]

Mice Anxiolytic and memory-enhancing effects at low doses of MSG; however, at higher doses, anxiety and memory retardation 
were observed

Onaolapo et al
[45]

Mice Higher doses of dietary glutamate resulted in an increase in plasma glutamate and glutamine but no difference in total brain 
glutamate or glutamine levels

Onaolapo et al
[21,45,46]

Mice Anxiolytic response in females, and anxiogenic response in males following dietary MSG. A decrease in behavioural despair 
was observed in both sexes (females more than males)

Onaolapo et al
[46,47]

Mice Anxiogenic effect was observed following subchronic oral administration of MSG Onaolapo et al
[49]

There have also been reports from studies that monosodium glutamate could directly influence the 
concentrations of brain neurotransmitters such as serotonin and glutamate[21,35,45,47], although there 
have also been reports to the contrary[48].

The relationship between dietary monosodium glutamate and depression has been examined by a 
few studies[35,43,47]. The results of a clinical analysis that examined the relationship between the 
consumption of a diet high in glutamic acid and the development of depressive symptoms in a group of 
persons with schizophrenia revealed that in non-obese patients the consumption of high dietary 
glutamic acid was associated with an increase in depressive symptoms, although this was linked to the 
susceptibility of persons with one psychiatric condition to develop other co-morbidities[42]. A 
preclinical study by Quines et al[35] that examined the effects of monosodium glutamate administered 
parenterally in the neonatal period with exposure to behavioural paradigms on postnatal days 60-64 
reported the presence of anxiety and behavioural despair. However, studies from our laboratory 
revealed that while orally administered monosodium glutamate was associated with the development 
of anxiety behaviour, especially in male mice[21,45,49], an antidepressant effect was observed in the 
behavioural-despair paradigms irrespective of sex[47]. The results of these studies from our laboratory 
suggest that the antidepressant response observed when monosodium glutamate was administered by 
gavage (compared to the response following parenteral administration) could have been influenced by 
the gut microbiota or the gut-brain axis, or by the ability of monosodium glutamate (at these doses) to 
minimally increase brain levels of glutamate which could have antidepressant benefits as previously 
reported[44].

Endogenous brain glutamate and depression
Glutamate plays an important role in the modulation of synaptic plasticity and transmission. It is also 
the precursor of the inhibitory neurotransmitter gamma amino-butyric acid (GABA). Studies have 
shown that dysregulation of glutamatergic transmission or alterations in brain concentrations of 
glutamate is associated with derangement of brain function, development of excitotoxic brain injury, 
and cell death[24,47]. There have also been reports showing that alterations in glutamatergic 
neurotransmission contribute significantly to the development of peripheral and central nervous system 
disorders[50]. In the last few years, the possible relationships that exist between glutamate/glutama-
tergic system and the development of neuropsychiatric disorders such as depression have continued to 
be examined[22,24,51].

Several studies have linked dysregulation of glutamate neurotransmission with the development and 
progression of neurodevelopmental, neurodegenerative and psychiatric disorders such as autism, 
epilepsy and schizophrenia[52,53]. There is also emerging evidence (Table 2) linking the pathogenesis of 
depression to alterations in glutamate and glutamate signalling[12,52]. Levine et al[54], using a proton 
magnetic resonance spectroscopy (MRS) technique examined the relationship between cerebrospinal 
fluid (CSF) metabolites, such as glutamate and glutamine on depressive symptoms in hospitalized 
persons with severe unmedicated depression, and reported that compared to control subjects, glutamine 
level in the CSF of depressed patients was elevated. Also, using high performance liquid chromato-
graphy with fluorometric detection, Mitani et al[55] examined the relationship between plasma levels of 
glutamate on severity of depression and concluded that plasma levels of glutamate as well as alanine 
and L-serine were reflective of the severity of depression. The impact of brain glutamate levels on 
depression and depression phenotypes have been studied extensively[56-60]. Auer et al[56] and Hasler 
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Table 2 Endogenous glutamate and depression

Subject Method Outcome Ref.

Human Using a proton magnetic resonance 
spectroscopy technique

Compared to control subjects, glutamine levels in the cerebrospinal fluid of the 
depressed patients were elevated

Levine et al
[54]

Human High performance liquid chromatography 
with fluorometric detection

Plasma levels of glutamate as well as alanine and L-serine were reflective of the 
severity of depression

Mitani et al
[55]

Human Single voxel (1)H-Magnetic resonance 
spectroscopy in 19 patients with major 
depressive episodes

A significant decrease was observed in the levels of glutamate and glutamine in 
the anterior cingulate

Auer et al[56]

Human Magnetic resonance spectroscopy Depressed patients had reduced glutamine and glutamate levels in the 
dorsomedial/dorsal anterolateral prefrontal cortex

Hasler et al
[57]

Human Magnetic resonance spectroscopy Compared with controls, depressed patients showed an increase in glutamine 
levels

Godlewska et 
al[59]

Human Meta-analysis Decreased levels of glutamatergic metabolites were observed in the medial 
frontal cortex of depressed subjects

Moriguchi et 
al[60]

Human Meta-analysis Glutamate and glutamine concentrations were found to be lower in the anterior 
cingulate cortex in patients compared to controls

Luykx et al
[58]

Human Functional magnetic resonance imaging and 
magnetic resonance spectroscopy

Patients with anhedonic major depression showed decreased glutamine but 
normal glutamate and gamma-aminobutyric acid concentrations

Walter et al
[61]

Human Resting state functional magnetic resonance 
imaging

Decreased amplitude of low frequency fluctuation level in right putamen and 
right middle temporal cortex correlated positively with glutamate concentration 
in female patients with depression

Zhang et al
[66]

Mice Preclinical study Blockade of glutamate transporter-1 in the central amygdala and prefrontal 
cortex induced both anhedonia and anxiety

John et al[62,
63]

et al[57] using MRS reported region-specific changes in the levels of brain glutamate in patients with 
depression. The result of a recent meta-analysis of MRS studies also supported the hypothesis that 
glutamatergic neurotransmission was involved in the pathophysiology of depression[60]. In another 
meta-analysis, Luykx et al[58] also reported region and state specific alterations in glutamate and 
glutamine concentrations in depression. The importance of glutamatergic neurotransmission in 
depression has been further supported by studies that showed altered glutamine concentrations despite 
normal glutamate levels[59,61].

Abnormalities of the glutamatergic system such as those associated with glutamate clearance at the 
synaptic cleft and glutamate-related alterations in astrocytic energy modulation have also been 
observed in depression[61,62]. The results of preclinical studies have also demonstrated that blockade of 
astrocytic glutamate uptake in the prefrontal cortex and central nucleus of the amygdala was associated 
with the development of anhedonia and anxiety[62,63]. Furthermore, results from post-mortem and 
magnetic resonance imaging studies have also revealed the presence of altered expression of glutamate-
related genes, elevated levels of glutamate, reduced glutamine/glutamate ratio, and/or reduced levels 
of glutathione (a reservoir of neuronal glutamate) in brain regions such as the medial prefrontal cortex 
(which have been linked to depression symptomatology) in persons with depression[64-67].

Finally, the rapid antidepressant effects of drugs such as tianeptine and NMDA receptor antagonist 
ketamine further validate the importance of glutamate and the glutamatergic transmission in depression
[22,68,69]. While reports provide some evidence for the involvement of endogenous glutamate in the 
pathogenesis and treatment of depression[22,50,69,70], the complexity of the disorder would suggest 
that the dysregulation of glutamate needs to occur in multiple sites (Figure 1) such as the 
gastrointestinal tract and brain, as can be seen if there is a communication link involving exogenous 
glutamate, the gut, endogenous glutamate, and then the brain in a multidirectional pathway which we 
would call the “GLUTAMATE-GUT-GLUTAMATE-BRAIN AXIS”.

The gut-brain axis and glutamate
The impact of the gut (microbiota and gut peptides) in times past was not considered significant in brain 
development and functioning. Previously, it was believed that the commensal bacteria and their genes 
which constitute the gut microbiome enjoy a symbiotic relationship with man. In this relationship, they 
reside in a nutritionally enriched and protected habitat of the human gastrointestinal tract, while they in 
turn protect humans against colonization of the gut by pathogenic bacteria and provide the body with a 
rich source of indigestible nutrients. In the light of new evidence, it is now clear that they also play a key 
role in the brain, either in health or disease.

The gut-brain axis or microbiome-gut-brain axis describes the bidirectional, at times multidimen-
sional system of communication that links the gastrointestinal tract with the central nervous system. It 
ensures that not only does the central nervous system modulate gastrointestinal function; the gut can 



Onaolapo AY et al. Glutamate and glutamate-based therapies in depression

WJP https://www.wjgnet.com 302 July 19, 2021 Volume 11 Issue 7

also regulate or modulate brain signalling and impact brain structure and function[19]. There is now 
ample evidence supporting the view that the microbiome-gut-brain axis can influence the development 
or progression of central nervous system disorders. Some of these include observations of psychiatric 
co-morbidities occurring in several enteric neuropathies such as chronic inflammatory intestinal 
disorders[38,71,72]. The presence of altered gut microbial flora and concentration in neurodevelop-
mental disorders such as autism[73,74] as well as the results of microbial challenge using pathogenic 
bacteria or pharmacological manipulations with pre or probiotics, are also pointers to the possible roles 
played by the gut microbiota in the development of brain disorders[72,75]. Further reports have also 
shown that the gut microbiota influences brain function via its ability to modulate endocrine, 
immunologic and neurocrine signalling pathways; and brain neurotransmitters[38,76].

Also, several possible mechanisms through which microbiome-gut-brain communication could 
impact the genesis or progression of central nervous system disorders have been proposed. There have 
been suggestions that communications occur through the activation of neurotransmitters such as 
serotonin, dopamine, GABA and noradrenaline in the enteric nervous system; these neurotransmitters 
are secreted by gut microbiota and are akin to the neurotransmitters in the central nervous system[76]. 
The possible role of gut peptides and metabolites as mediators of the gut-brain crosstalk have also been 
suggested[77].

Gut-brain axis and depression
Studies have continued to demonstrate the deleterious effects that alterations in gut microbiome 
composition and microbiome-related metabolites could exert on the development of obesity, 
autoimmune disorders, inflammatory bowel disease, irritable bowel syndrome, and neuropsychiatric 
disorders[77-80]. Also, scientific information showing how gut microbes and gut stimuli (such as 
intragastric infusion of glucose or fatty acid) can directly influence emotional and cognitive functions
[81,82] are pointers to the possible involvement of the gut-brain axis in psychiatric disorders. Several 
preclinical studies have also shown that the gut microbiota modulates brain behaviours such as 
behavioural despair, anhedonia and anxiety-like behaviours that have construct validity with clinical 
depression and anxiety[83-86]. Arentsen et al[84] and Kamimura et al[86] showed that compared to 
specific pathogen-free (SPF) mice, germ-free (GF) mice showed impaired social interactions choosing to 
spend more time with an object than conventionally raised mice. Huo et al[85] also observed that the 
exposure of GF mice and SPF mice to chronic restraint stress paradigm was associated with an increase 
in open field exploration time in GF compared to the SPF mice; with SPF mice exhibiting more anxiety-
like behaviours compared to GF mice. Chronic prebiotic administration has also been shown to exhibit 
anxiolytic and antidepressant behaviours in mice. The ability of the prebiotic to modulate behaviour 
correlated positively with its effects on hippocampal and hypothalamic gene expression and its ability 
to ensure a balance in the concentrations of short-chain fatty acids[87].

Although the mechanisms by which the gut microbiota influences mood and mood-related 
behaviours are still being studied; there have been suggestions that because the gut and brain share 
peptide and receptor similarities the gut microbiome is able to modulate brain function through the 
activity of gut peptides[77]. Also, studies evaluating the impact of gut microbiome modulation (using 
prebiotics and probiotics) on brain function have demonstrated that chronic treatment with prebiotic 
had both antidepressant and anxiolytic effects, which could be linked to reduction in stress-induced 
corticosterone and proinflammatory cytokine release, and modification of the expression of specific 
genes in the hippocampus[86,87]. Also, probiotics such as GABA-producing Lactococcus lactis strain have 
been shown to possess the capacity to modulate behaviours. In one study, in which Lactococcus lactis was 
grown in both glutamate and non-glutamate supplemented media, a significant increase in GABA 
production was observed in the glutamate supplemented medium[87], reinforcing the importance of 
glutamate in the modulation of mood and mood disorders.

There is now ample evidence suggesting that microbes play the role of signalling components in the 
gut-brain axis. This emerging concept of a microbiota-gut-brain axis suggests that our ability to 
modulate the gut microbiota may be a potential tool towards the development of novel therapies for 
complex brain disorders such as psychiatric disorders[19,71,72] (Table 3).

Is there a dietary glutamate-gut-endogenous glutamate-brain axis and how can it impact depression 
pathogenesis?
Glutamate is a multifunctional amino acid that is involved in intermediary metabolism in the 
gastrointestinal tract and is also crucial for the normal functioning and development of the brain. In the 
gut, it is derived from exogenous sources including dietary proteins and from free glutamate present in 
food additives; also, a fraction of the free glutamate in the lumen is from bacterial synthesis[88]. In the 
central and enteric nervous systems, respectively, glutamate is the major excitatory neurotransmitter[50,
89].

Glutamate and the glutamatergic pathways are also crucial to microbiota-gut-brain communication. 
There is increasing evidence that glutamate is both a neurotransmitter and neuromodulator of several 
functions[77,89]. Glutamate receptors and their transduction molecules have been demonstrated on the 
epithelial cells of the gut, splanchnic, vagal, and/or pelvic afferents[89-91]. The stimulation of gut 
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Table 3 Gut brain axis and depression

Subject Outcome Ref.

Germ-free mice Germ-free (GF) mice showed impaired social interactions, anxiety and derangement of brain-
derived neurotrophic factor levels

Crumeyrolle-Arias et al[83], 
Huo et al[85], and Kamimura 
et al[86]

GF and SPF mice Exposure of GF mice and specific pathogen-free (SPF) mice to chronic restraint stress paradigm 
revealed an increase in open field exploration time in GF compared to SPF mice. Also, SPF mice 
exhibited more anxiety-like behavior than GF mice under the same external stress

Arentsen et al[84]

C57BL/6J male mice Chronic administration of prebiotic (fructo-oligosaccharides and galacto-oligosaccharides) have 
been associated with antidepressant and anxiolytic effects

Kamimura et al[86]

Glutamate and non-
glutamate supplemented 
media

Gamma amino-butyric acid (GABA)-producing Lactococcus lactis strain increased GABA 
production in the glutamate supplemented medium

Burokas et al[87]

glutamate receptors by dietary or luminal glutamate has been associated with the activation of vagal 
afferents which directly or indirectly influence brain areas such as the cerebral cortex, limbic system, 
hypothalamus and basal ganglia[90,92]. Also, the activation of glutamate receptors present on 
splanchnic, vagal, and/or pelvic afferents, allows the communication of sensory inputs to regions of the 
brain involved in the gut-brain axis, while, also influencing efferent pathways that convey excitatory or 
inhibitory inputs to the gastrointestinal tract[89,91].

While in health, the enteric ganglia and the brain are impermeable to dietary or luminal glutamate; 
there have been reports suggesting that glutamate permeability in these systems increases in diseased 
states such as enteric neuropathies, or conditions that alter the integrity of the blood-brain-barrier. The 
gut microbiome also influences brain glutamate, with the results of metabolomic studies revealing that 
alterations in the composition of the gut saprophytic microflora also affected brain concentrations of 
glutamate[93,94]. Although there is enough scientific evidence in support of the impact of central 
glutamate and the glutamatergic system in depression, there is however a dearth of information 
regarding the possible ways luminal glutamate (either from dietary sources or microbial activities) may 
influence depression pathophysiology.

However, from the foregoing, it is evident that while exogenous glutamate (from dietary sources or 
secreted by gut microbiota) can influence brain function through activation of the gut glutamatergic 
pathways, endogenous glutamate can be influenced by gut microbial composition or metabolites to 
impact brain function. This shows that glutamate may be more important in the bidirectional 
communication system of the microbiome-gut-brain axis than previously considered.

GLUTAMATE AND DEPRESSION MANAGEMENT
In the preceding sections, the possible crucial roles that glutamate and glutamatergic neurotransmission 
play in the pathogenesis of mood disorders were discussed. The results of studies demonstrating the 
impact of glutamate dyshomeostasis and an imbalance between glutamatergic neurotransmission and 
synaptic plasticity on mood disorders have been pivotal in the search for novel pharmacotherapeutic 
strategies[51]. Also, evidence from studies demonstrating the possible antidepressant-like effects of 
agents acting at the glutamate receptors including NMDA receptors, α-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid (AMPA) and metabotropic glutamate (mGlu) receptors are all pointers to the 
possible roles of glutamate and glutamate receptors in depression management.

GLUTAMATE-BASED THERAPIES IN DEPRESSION
For more than six decades, drugs that modulate biogenic amines, increasing their availability at the 
synaptic cleft by selectively blocking the uptake of serotonin and/or norepinephrine have been used in 
the management of depression. While the safety profile of the newer biogenic amine drugs has 
improved considerably (compared to the older monoamine oxidase inhibitors and tricyclic antide-
pressants), they do not address the major drawbacks that have been associated with this mechanism[95-
97].

Delayed therapeutic onset, low remission rates, and increased treatment refractoriness are among the 
major limitations or drawbacks of the standard pharmacological agents for depression treatment[95,96]. 
Again, up to a third of patients are diagnosed with the treatment-resistant phenotype, adding 
significantly to the global burden of depression[98]. These limitations are evidence of therapeutics that 
were still based on an incomplete understanding of disease pathogenesis.
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Evidence of ketamine’s quick and relatively sustained antidepressant, anti-suicidal, and anti-
anhedonic effects in treatment-resistant depression has been documented; and it represents a turning 
point in our understanding of the possibly crucial role that the glutamatergic system plays in 
depression. Such findings also prompted further research into developing novel glutamate-based 
therapeutic targets with better antidepressant effects and without dissociative side-effects, meaning an 
improvement over ketamine. The results of animal studies evaluating immobility in the forced swim 
test and tail suspension tests highlighted that both competitive and non-competitive NMDA receptor 
antagonists had antidepressant-like effects[15]. Decades later, these findings eventually culminated in 
the approval of esketamine (Spravato®) by the US Food and Drug Administration[99] and the European 
Medicines Agency[100]; esketamine was selectively approved for use (in addition to a known antide-
pressant) in adults with treatment-resistant MDD. Apart from this, clinical investigations also continue 
to affirm that a single intravenous bolus administration of ketamine can evoke a rapid (within 2 h) and 
lasting (up to 7 d) antidepressant action[101-103].

NMDA antagonists
Ketamine: In humans, ketamine’s ability to alleviate depressive symptoms (Table 4) was first 
highlighted by a small, randomized, double-blind study demonstrating that a single subanaesthetic (0.5 
mg/kg) dose of ketamine administered intravenously improved depressive symptoms within 72 h in 
seven persons with treatment resistant MDD[68]. A larger, double-blind, placebo-controlled, crossover 
study also found that a single ketamine infusion (0.5 mg/kg over 40 min) had a rapid, robust and mildly 
sustained antidepressant effect (1 wk) in treatment-resistant MDD[104]. Adverse effects that included 
confusion, euphoria, dizziness, perceptual disturbances, blood pressure elevation and increased libido 
were self-limiting[104].

Since the first clinical study that demonstrated the antidepressant effects of ketamine, several other 
studies have continued to examine its efficacy across other depression phenotypes[104,105]. 
Diazgranados et al[105] demonstrated the rapid anti-depressant effects of a single ketamine infusion in 
persons with treatment-resistant bipolar depression, which was replicated in a double-blind, 
randomized, crossover, placebo-controlled study[104]. The impact of ketamine on reducing suicides has 
also been examined. Ketamine was reported to have a rapid and significant anti-suicidal effect in 
persons with MDD[101]. While the discovery of ketamine’s antidepressant effect was met with 
enthusiasm, its associated sedative and psychotomimetic effects remain limitations to its use. Therefore, 
efforts continue to be directed towards blunting these effects. Studies have tried to research the effects of 
augmenting ketamine with other drugs that are probably better-tolerated; these drugs such as riluzole 
and lamotrigine have been examined for their ability to either improve ketamine antidepressant effects 
and/or reduce its psychotomimetic effects[106-108]. However, a number of these studies reported that 
these add-ons showed no significant ability to improve the course of the antidepressant response 
(compared to ketamine alone) or reduce the side effects of ketamine[107,108]. Anand et al[106] on the 
other hand reported lamotrigine’s ability to decrease the perceptual abnormalities induced by ketamine.

Memantine and amantadine: The dampening of the enthusiasm that arose from the rapid and robust 
antidepressant effects of ketamine due its psychotomimetic side-effects prompted research into the 
possible antidepressant activities of other non-competitive NMDA receptor antagonists such as 
memantine, which has been reported to be devoid of these effects, at least at therapeutic doses[109-111]. 
The anti-depressant effects of memantine, a low-affinity, non-competitive, open-channel NMDA 
receptor antagonist which is approved for use in the management of Alzheimer’s disease has been 
extensively studied [104,112]. The results of a preclinical study by Kos and Popik[111] revealed a dose-
dependent antidepressant-like response in the tail-suspension test, with the response observed at a dose 
of 15 mg/kg persisting with sub-chronic administration. However, the results of clinical studies have 
shown mixed results[110,111]. In one double-blind, placebo-controlled trial in which memantine was 
administered at doses of between 5-20 mg/d, no significant effects were observed[113]. This result was 
also supported by another double-blind placebo-controlled study that examined the effect of memantine 
administered at 10 mg/kg on late-onset depression[113]. However, the result of a large double-blind 
randomized Finnish study reported a significant antidepressant effect with memantine in persons with 
co-morbid alcohol dependence[114].

Amantadine is another NMDA receptor antagonist with possible influence on the serotonergic, 
dopaminergic and monamine-oxidase systems. The antidepressant effects of amantadine have been 
observed in situations where it is administered in combination with standard antidepressants such as 
fluoxetine and imipramine[115,116]. However, clinical trials are limited, mostly using amantadine as an 
augmentation agent (up to 300 mg/daily) in treatment resistant MDD, where it had shown some 
modest effects[117].

Subtype-selective NMDA (NR2B) receptor blockers: Investigations into subtype-selective blockers of 
the NMDA receptor (Table 4) have also been undertaken to by-pass the psychotomimetic effects of 
ketamine. Along this line, agents such as Ro 25-6981 that can block NR2B receptors have been studied. 
In preclinical experiments, the NR2B antagonist Ro 25-6981 exhibited behavioural antidepressant-like 
effects in the forced swim test[118]. The NR2B-selective NMDA antagonist (CP-101,606) that was well-
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Table 4 Glutamate-based therapies in depression

Study Receptor type Outcome Ref.

Randomized, double-
blind study

NMDAR 
antagonist

A single subanaesthetic (0.5 mg/kg) dose of ketamine administered 
intravenously improved depressive symptoms within 72 h in seven persons 
with treatment resistant major depressive disorder (MDD)

Berman et al[68]

Double-blind, placebo-
controlled, crossover 
study

NMDAR 
antagonist

A single ketamine infusion (0.5 mg/kg over 40 min) had a rapid, robust and 
mildly sustained antidepressant effect (1 wk) in treatment resistant MDD

Zarate et al[104]

Open label study NMDAR 
antagonist

Rapid anti-depressant effects of a single ketamine infusion in persons with 
treatment-resistant bipolar depression

DiazGranados et al[105]

Preclinical NMDAR 
antagonist

Memantine exhibited a dose-dependent antidepressant-like response in the 
tail-suspension test, with the response observed at a dose of 15 mg/kg 
persisting with sub-chronic administration

Kitanaka et al[112]

Double-blind placebo 
controlled

NMDAR 
antagonist

Memantine administered at doses of between 5-20 mg/d, showed no 
significant effects on depression phenotypes

Parsons et al[110], Kos and 
Popik[111], and Muhonen et 
al[114]

Preclinical NMDAR 
antagonist

The antidepressant effects of amantadine have been observed in situations 
where it is administered in combination with standard antidepressants such 
as fluoxetine and imipramine

Czarnecka et al[115] and Maj 
and Rogóz[116]

Preclinical NMDA (NR2B) 
receptor blockers

Ro 25-6981 exhibited behavioural antidepressant-like effects in the forced 
swim test

Mathews et al[118] and 
Refsgaard et al[119]

Preclinical NR2B-selective 
NMDA 
antagonist

CP-101,606 that was well-tolerated and devoid of psychotropic side effects 
was also used in a clinical trial involving subjects with traumatic brain injury

Refsgaard et al[119]

Randomized, placebo-
controlled, double-blind 
study

NR2B-selective 
NMDA 
antagonist

CP-101,606 demonstrated efficacy in treatment-refractory MDD subjects Merchant et al[120]

Cross-over pilot study NR2B-selective 
NMDA 
antagonist

Oral formulation of MK-0657 in persons with treatment-resistant MDD 
showed a significant antidepressant effect compared with placebo while no 
improvement in symptoms was noted using the primary efficacy measure

Preskorn et al[121]

Preclinical AMPA-
antagonist

LY392098 and LY451616 exhibited antidepressant effects in a number of 
animal models of depression; including the inescapable stressors, learned-
helplessness models, and exposure to chronic mild stress models

Li et al[122] and Lauterborn 
et al[123]

Preclinical mGLu LY341495, MSG0039, and MPEP exhibited significant antidepressant effects 
in rodent models of behavioural despair

Jaso et al[7] and Chaki et al
[130]

NMDA: N-methyl-D-aspartate; NMDAR: N-methyl-D-aspartate receptor; AMPA: α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; mGLu: 
Metabotropic glutamate.

tolerated and devoid of psychotropic side effects was also used in a clinical trial involving subjects with 
traumatic brain injury[119].

Other selective NMDA NR2B antagonists such as MK-0657 have also been examined. Again, in a 
randomized, placebo-controlled, double-blind study, the anti-depressant efficacy of CP-101,606 was 
demonstrated in treatment-refractory MDD subjects[120], while the result of a crossover pilot study that 
evaluated the potential antidepressant efficacy and tolerability of an oral formulation of MK-0657 in 
persons with treatment-resistant MDD observed a significant antidepressant effect compared with 
placebo using recognized secondary efficacy scales; with no improvement noted when symptoms were 
assessed using the primary efficacy measure[121].

Other glutamate receptors
The AMPA glutamate receptors are main contributors in excitatory neurotransmission, as they mediate 
the fast, rapidly desensitizing excitation of many synapses. The potential beneficial role of AMPA 
receptor modulators (Table 4) in the treatment of mood disorders has been highlighted by studies that 
have shown that AMPA receptor potentiators such as LY392098 and LY451616 possess antidepressant 
effects in a number of animal models of depression; including the inescapable stressors, learned-
helplessness models, and exposure to chronic mild stress models[122]. Also, they do not seem to affect 
the extracellular concentration of monoamines[122]; yet they enhance the neurotrophic actions of BDNF 
mRNA and protein in primary neuronal cultures[122,123]. However, of the AMPA receptor positive 
allosteric modulators being investigated for MDD treatment, ORG-26576 was amongst the most-
promising until it failed Phase II trial. Currently, while the potential roles of AMPA receptor modulators 
in experimental models of depression are still being researched, the world is still waiting for drugs 
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whose actions are primarily linked to this. Stimulation of the AMPA receptor has also been associated 
with mediating the antidepressant-like effects of ketamine and group II mGlu receptor antagonist 
MGS0039[124], with suggestions that increased transmission via glutamatergic AMPA receptors 
possibly provide a common mechanism of antidepressant response[51].

Kainate receptors are now recognized as important mediators of the pre- and postsynaptic actions of 
glutamate and GABA, through mechanisms that are still being evaluated[125]. The results of some 
studies have associated genetic variations in certain kainate receptor subtypes with the therapeutic 
outcome of antidepressant medications like citalopram and venaflaxine[125-127]. While it is generally 
accepted that kainate receptors have modulatory effects on synaptic transmission, the paucity of 
selective kainate receptor subtype agonists or antagonists has hampered research into the possible 
mechanisms through which kainite receptors modulate brain function and/or impact the pathogenesis 
and treatment of depressive disorders[125].

mGlu receptors have been shown to regulate glutamate’s neuronal transmission through the ability to 
alter neurotransmitter release or modulate the post-synaptic responses to glutamate release. There is 
enough evidence from studies to support the notion that regulation of glutamatergic neurotransmission 
through mGlu receptors is associated with the development of mood, leading to suggestions that they 
could serve as novel targets in depression management[128,129]. Modulation of the mGlu receptor has 
also been reported to increase neurogenesis and neurotransmitter release that has now been associated 
with therapeutic response in humans[128]. Several mGlu2, mGlu3 and mGlu5 receptors’ (Table 4) 
negative allosteric modulators (LY341495, MSG0039, MPEP) have been reported to have significant 
antidepressant effects in rodent models of behavioural despair[7,130]. Also type III mGluRs (4-8) are 
mostly expressed presynaptically, modulating glutamate release and response; but while a number of 
preclinical studies have identified possible type III mGluR novel drug targets such as the mGluR7[131,
132], there is a dearth of clinical studies evaluating the possible therapeutic benefits of these type III 
mGluRs in depression. There have however been reports that a positive allosteric modulator of mGluR7 
(AMN082) has antidepressant-like properties in rodent models of behavioural despair[7], that can be 
linked to its ability to modulate glutamate transmission in the hippocampus[133].

CAN THE RELATIONSHIP BETWEEN GLUTAMATE AND THE GUT-BRAIN AXIS BE OF 
THERAPEUTIC BENEFIT IN DEPRESSION?
There is ample evidence that dietary and endogenous glutamate (directly or indirectly) influences 
glutamatergic neurotransmission in the gastrointestinal tract and the brain, respectively. The gut 
microbiome has been shown to be involved in the synthesis and release of neuroactive molecules, 
including those involved in the pathogenesis of depression. Alterations in glutamate concentration and 
glutamatergic neurotransmission have also been linked to the pathophysiology of depressive disorders. 
Scientific evidence has shown that diet influences the gut microbiota composition and density, and that 
both diet and gut microbiota influence emotional behaviour and neurological processes[134,135]. By 
direct evidence and inference, we now know there is a complex interplay involving diet, the gut 
microbiome and depression. Hence, specific dietary patterns that can help prevent or mitigate mood 
disorders, possibly via shifts in gut microbiota equilibrium can be identified and offered as components 
of clinical management.

Also, the use of dietary intervention may prove to be attractive and cost-effective as an alternative or 
adjuvant therapy in the clinical management of depression. However, despite the tantalizing prospect, 
the directionality and mechanism of the relationship involving diet, the gut microbiome, and depression 
are still subjects of research. That being said, diets rich in vegetables, fruits, cereals, nuts, seeds, pulses 
and moderate amounts of dairy, eggs, fish and unsaturated fats have been associated with a lower 
incidence of depression[136-139], a view not supported by some studies[140,141]. Research has shown 
that different microbiota profiles may be associated with positive or negative mental health, 
emphasizing the behavioural impact of the gut microbiome. Also, if we know that behaviour is 
determined by the brain’s neurotransmitter milieu, then the link involving diet, the gut microbiome, 
neurotransmitters and depression will be easier to appreciate.

Humans with depression have been shown to harbor variations in gut microbiota which tend 
towards a general pattern of increases in potentially harmful and inflammation promoting bacteria such 
as Proteobacteria, and a decrease in commensal bacteria, which are normally more abundant[77,141-144]. 
However, the lack of a specific depression-associated gut microbiota profile is a major challenge[9]. 
Despite this, the presence of bacteria that produce neuroactive molecules strengthens the link between 
gut microbiota and behavioural disorders such as depression. In vitro and in vivo studies have 
demonstrated the ability of intestinally cultured strains of Lactobacillus brevis and Bifidobacterium dentium 
to efficiently produce GABA from monosodium glutamate enriched medium or monosodium glutamate 
supplemented food, respectively[145,146]; leading to suggestions that this could represent a promising 
therapeutic approach for depression management. Also, Lactobacillus rhamnosus (JB-1) has been shown 
to reduce stress-induced corticosterone levels in mice and ameliorate depression-like behaviour in the 
forced swim test; while also increasing brain glutamate and glutamatergic activity[9]. Other specific 
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relationships involving glutamate are still being investigated, and their direct implications for therapy 
are being considered.

CONCLUSION
The limitations of the amine theory redirected the research focus to what was supposedly missing in the 
scientific understanding of the aetiology, course and management of depression. The discovery of the 
antidepressant effect of ketamine brought attention to the impact that manipulation of the glutamatergic 
system can have on the management of depression. Also, the role of diet and the gut microbiome in 
glutamate homeostasis is being continuously examined. As it becomes evident that gut microbes are 
involved in the synthesis and secretion of molecules that directly impact the brain, including glutamate, 
we now know that their manipulation through diet can become a cornerstone for the prevention and 
management of behavioural disorders. However, while glutamate-based therapies for depression are 
still in their infancy (and much more is dietary manipulation of glutamate balance via the gut microbes), 
it appears that understanding the diet, gut microbiome, gut-brain axis and glutamate link may be the 
next frontier in advancing our understanding of depression.
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