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Abstract
BACKGROUND 
Oxidative stress results in the production of excess reactive oxygen species (ROS) 
and triggers hippocampal neuronal damage as well as occupies a key role in the 
pathological mechanisms of neurodegenerative disorders such as Alzheimer’s 
disease (AD). A recent study confirmed that magnesium had an inhibitory effect 
against oxidative stress-related malondialdehyde in vitro. However, whether 
Magnesium-L-threonate (MgT) is capable of suppressing oxidative stress damage 
in amyloid β (Aβ)25-35-treated HT22 cells and the AD mouse model still remains to 
be investigated.
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To explore the neuroprotective effect of MgT against oxidative stress injury in vitro and in vivo, and 
investigate the mechanism.

METHODS 
Aβ25-35-induced HT22 cells were preconditioned with MgT for 12 h. APPswe/PS1dE9 (APP/PS1) 
mice were orally administered with MgT daily for 3 mo. After MgT treatment, the viability of 
Aβ25-35-treated HT22 cells was determined via conducting cell counting kit-8 test and the cognition 
of APP/PS1 mice was measured through the Morris Water Maze. Flow cytometry experiments 
were applied to assess the ROS levels of HT22 cells and measure the apoptosis rate of HT22 cells or 
hippocampal neurons. Expression of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X (Bax), hypoxia-
inducible factor (HIF)-1α, NADPH oxidase (NOX) 4, Aβ1-42 and phosphatidylinositol-3-kinase 
(PI3K)/protein kinase B (Akt) pathway proteins was quantified by Western blot.

RESULTS 
In vitro data confirmed that Aβ25–35-induced HT22 cells had a significantly lower cell viability, 
higher ROS level and higher apoptosis rates compared with those of control cells (all P < 0.001). 
MgT prevented the Aβ25-35-triggered oxidative stress damage by elevating viability and decreasing 
ROS formation and apoptosis of HT22 cells (all P < 0.001). APP/PS1 mice exhibited worse 
cognitive performance and higher apoptosis rate of hippocampal neurons than wild-type (WT) 
mice (all P < 0.01). Meanwhile, significant higher expression of Aβ1-42 and NOX4 proteins was 
detected in APP/PS1 mice than those of WT mice (both P < 0.01). MgT also ameliorated the 
cognitive deficit, suppressed the apoptosis of hippocampal neuron and downregulated the 
expression of Aβ1-42 and NOX4 proteins in APP/PS1 mouse (all P < 0.05). Moreover, MgT 
intervention significantly downregulated HIF-1α and Bax, upregulated Bcl-2 and activated the 
PI3K/Akt pathway both in vitro and in vivo (all P < 0.05).

CONCLUSION 
MgT exhibits neuroprotective effects against oxidative stress and hippocampal neuronal apoptosis 
in Aβ25-35-treated HT22 cells and APP/PS1 mice.

Key Words: Alzheimer’s disease; Magnesium; Neuroprotective effect; Oxidative stress; Hippocampal; 
Neuronal apoptosis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The dysfunction of oxidative stress is considered to stimulate the production of reactive oxygen 
species and induce hippocampal neuron damage which are the significant hallmarks of neurodegenerative 
diseases such as Alzheimer’s disease. Recent studies have explored the in vitro anti-malondialdehyde 
effect of magnesium. However, the potential neuroprotective effect of Magnesium-L-threonate (MgT) 
against oxidative stress remains to be explored. Our study demonstrated that MgT exhibited neuropro-
tective effects on suppressing oxidative stress and hippocampal neuronal apoptosis in vitro and in vivo, 
suggesting the promising therapeutic potential of MgT in oxidative stress-associated neurodegenerative 
disorders.

Citation: Xiong Y, Ruan YT, Zhao J, Yang YW, Chen LP, Mai YR, Yu Q, Cao ZY, Liu FF, Liao W, Liu J. 
Magnesium-L-threonate exhibited a neuroprotective effect against oxidative stress damage in HT22 cells and 
Alzheimer’s disease mouse model. World J Psychiatry 2022; 12(3): 410-424
URL: https://www.wjgnet.com/2220-3206/full/v12/i3/410.htm
DOI: https://dx.doi.org/10.5498/wjp.v12.i3.410

INTRODUCTION
As a progressive neurodegenerative disease, Alzheimer’s disease (AD) occupies most cases of dementia, 
and it is clinically characterized by the deterioration of cognitive ability and brings a massive burden on 
AD patients’ survival quality and social medical cost[1]. Although the pathological mechanism of AD is 
still incompletely elucidated, it was reported that oxidative stress occupied a key role in the pathogenic 
mechanism of this disease[2]. Numerous researches indicated that oxidative stress was a vital issue 
during the development of the neurodegenerative diseases, including AD, amyotrophic lateral sclerosis 
and so on. Oxidative stress could also accelerate amyloid β (Aβ) aggregation and induce neuronal 
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apoptosis in the brain tissues, especially in the hippocampus[3-7]. Hence, the exploration of antiox-
idative stress agents suggests a promising therapeutic option for achieving a neuroprotective effect 
against neurodegenerative diseases associated with hippocampal neuronal damage.

Magnesium is one of the essential cations in the intracellular environment and is only second to 
potassium in concentration. Magnesium is involved in the synthesis of many enzymes that are 
important in various biological processes[8]. The concentration of brain magnesium is decreased in AD 
patients when compared with control subjects[9]. Based on this finding, recent research has assessed the 
application of the novel magnesium compound Magnesium-L-threonate (MgT), which increases brain 
magnesium concentration after oral administration, for ameliorating AD-associated pathological 
changes[10-12]. Although MgT exhibits a protective effect against synaptic damage in an AD mouse 
model[11], its effects on oxidative stress and hippocampal neuronal damage remain unexplored. It has 
been recently confirmed that magnesium has an inhibitory effect against oxidative-stress-related 
malondialdehyde (MDA) in vitro[13,14]; therefore, it has become of interest to investigate whether MgT 
is capable of suppressing oxidative stress damage in vivo. Therefore, this research explored the potential 
protective effects of MgT against oxidative stress and neuronal injury in Aβ25-35-treated HT22 cells and in 
APPswe/PS1dE9 (APP/PS1) mouse hippocampus.

For the in vitro experiment, in order to evaluate the capacity of MgT against Aβ25-35-triggered oxidative 
stress and neuronal damage and explore the related mechanism, HT22 cell was chosen as the cell model, 
and it is well known as the immortalized murine hippocampal neuron[15]. We also explored the in vivo 
potential neuroprotective effects of MgT against oxidative stress, Aβ production and hippocampal 
neuronal damage in APP/PS1 mouse, a typical animal model of AD[16].

MATERIALS AND METHODS
Experimental materials
MgT was acquired from Macklin (Shanghai, China); Aβ25-35 was purchased from MedChemExpress LLC 
(New Jersey, USA); The cell counting kit-8 (CCK-8) detection kit was provided from APExBIO 
Technology LLC (Houston, USA); A fluorescein isothiocyanate-annexin V/propidium iodide apoptosis 
agent was obtained from BD (New Jersey, USA); A reactive oxygen species (ROS) testing kit was 
supplied from Beyotime Biotechnology (Shanghai, China); The antibodies were purchased from Cell 
Signaling Technology (Danvers, USA), BioLegend (San Diego, USA) and Abcam (Cambridge, USA); The 
rest of experimental materials were bought from Thermo Fisher Scientific (Waltham, USA), CWBIO 
(Beijing, China) and Gibco (New York, USA).

HT22 cell culture and drug administration
Based on the previously described method, HT22 cell culture and differentiation procedures were 
carried out[17,18]. Briefly, HT22 cell was cultured in the normal cell culture medium and then differen-
tiated in N2 supplement-containing neurobasal medium for 1 d prior to drug administrations. 
According to the previous research[19], when it was exposed to 40 μmol/L Aβ25-35 for 1 d, the viability of 
HT22 cell would significantly decrease. Therefore, this study chose 40 μmol/L as the appropriate 
concentration of Aβ25-35 administration. Before Aβ25-35 treatment, the dilution of Aβ25-35 was carried out by 
using sterile saline and then it was kept at 37°C for 7 d for peptide pre-aging, as reported previously
[19]. In order to investigate whether MgT could be applied to inhibit the oxidative stress damage 
triggered by Aβ25-35 administration, HT22 cell was preconditioned with or without 50 μmol/L MgT for 
12 h prior to be processed with 40 μmol/L Aβ25-35 for 1 d.

Cell viability detection
The viability was assessed via the CCK-8 experiment for HT22 cell exposed to Aβ25-35 and MgT. Briefly, 
after different drug treatments for the three groups, each well of HT22 cells was incubated with 10 μL 
CCK-8 and the absorbance value was acquired at 450 nm by using an absorbance reader (California, 
USA).

Quantitative assessment of ROS production
Total intracellular ROS generation was detected using an oxidation-sensitive fluorogenic dichloro-
dihydro-fluorescein diacetate (DCFH-DA) probe and further quantified with flow cytometry, as 
described previously[20]. Briefly, after drug administration, HT22 cells were washed and reacted with 
10 μmol/L DCFH-DA probe during this experiment procedure. The cell samples were collected and 
finally detected using the flow cytometer (BD, USA). The percentages of DCFH-DA labeled cells 
represented the intracellular ROS level.

Mice and drug administrations
APP/PS1 male mice and wild-type (WT) litter-mate male mice were acquired from the Nanjing 
Biomedical Research Institute of Nanjing University (Nanjing, China). The animal experiment received 
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the approbation from the local animal ethical and welfare committee. All protocols were designed to 
minimize discomfort or pain to the mice. The mice were housed in a specific-pathogen-free environment 
(23 ± 1 °C, 12 h/12 h light/dark, 50% humidity) with free access to water and food.

In the animal experiment procedure, 6-mo-old mice weighing 33-35 g were set as three groups (three 
mice per group): MgT-treated APP/PS1 mice (registered as ‘TG + MgT group’), control APP/PS1 mice 
(TG group) and control WT mice (WT group). MgT-treated mice received daily administration of MgT 
(910 mg/kg/d) via drinking water for 3 mo on the basis of the previously described method[11]. The 
remaining mice (TG and WT groups) were treated with drinking water. After drug treatment, mice were 
used for the Morris Water Maze test and then killed under deep anesthesia (intraperitoneal injection, 
150 mg/kg pentobarbital sodium) to collect the hippocampal tissues for further biochemical investig-
ations.

Morris water maze test
All mice were behaviorally tested for cognitive ability using the Morris water maze after 3 mo of 
treatments with or without MgT, as previously described[1]. At the beginning, each mouse was 
pretrained in this water maze with the visible platform for 1 d. Subsequently, all mice received the 
hidden platform training for 5 d (4 trails per day, 90 s per trial). For each trail, the mice were released 
from four starting quadrant positions in a different order and swam for 90 s. If the exploration time of 
mouse was less than 90 s, the trails would stop and the time to find the hidden platform was recognized 
as escape latency. If the mouse missed the setting time, it would be guided to arrive in the platform and 
the escape latency of 90 s was recorded. For each mouse, before the statistical analysis was carried out, 
the escape latencies of four trails were averaged. Finally, the platform was taken out and the mice were 
tested on a 90 s probe test at 24 h after the hidden platform training. After each trail, mice should be 
dried with a clean towel and put on an electric blanket to keep their body warm. For each mouse, the 
latency to arrive in the removed platform, the percentage of the time spent in the target quadrant (the 
quadrant where the platform was previously settled) and the number of times crossed the target 
position (the previous location of the platform) were measured during the probe test.

Apoptosis detection
A fluorescein isothiocyanate-annexin V/propidium iodide testing agent was utilized to measure the 
apoptosis rate of HT22 cells. After drug administration, HT22 cells were washed, trypsin digested and 
incubated with this testing agent before flow cytometry. The allophycocyanin-annexin V/propidium 
iodide kit was also applied to assess the apoptosis rate of hippocampal neurons. After isolation of the 
hippocampal tissue, a single cell suspension was prepared, stained with anti-NeuN antibody, followed 
by appropriate Alexa-Fluor-488-conjugated secondary antibody, and finally detected with this kit for 
flow cytometric examination.

Western blotting
The proteins in HT22 cells or hippocampal tissue were quantified, probed with a series of specific 
primary antibodies and visualized with a Digital Imaging machine (Gel Logic, Rochester, New York, 
USA). The relative protein density was quantified as previously described[21]. The involved primary 
antibodies were diluted to 1:1000, except for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
(1:2000).

Statistical analysis
Significance was measured using one-way analysis of variance with Fisher’s least significant difference 
tests for multiple comparison using Prism 6 software (Graphpad, San Diego, CA, USA). For each group, 
data were shown as mean ± SE and P < 0.05 indicated significant differences.

RESULTS
MgT attenuated cytotoxicity in the Aβ25-35-treated HT22 cell
As demonstrated in Figure 1, Aβ25-35-exposed cells showed obvious lower cell viability than control cells 
(P < 0.001). Compared with Aβ25-35-exposed cells, the viability of MgT-Aβ25-35-exposed cells was obviously 
elevated (P < 0.001). Thus, all data of the CCK8 test illustrated that the pretreatment with MgT inhibited 
the cytotoxicity in the Aβ25-35-exposed HT22 cell model.

MgT suppressed ROS generation and hypoxia-inducible factor-1α overexpression in Aβ25–35-treated 
HT22 cell
Intracellular ROS level measured by the DCFH-DA test exhibited an obvious increase in Aβ25-35-adminis-
trated cells vs control cells (P < 0.001). Compared with Aβ25-35-treated cells, the ROS level was 
remarkably decreased in MgT-Aβ25-35-treated cells (P < 0.001) (Figure 2A and B). As indicated in 
Figure 2C and D, hypoxia-inducible factor (HIF)-1α protein expression was increased in the Aβ25-35-



Xiong Y et al. Neuroprotective effect of magnesium-L-threonate

WJP https://www.wjgnet.com 414 March 19, 2022 Volume 12 Issue 3

Figure 1 Magnesium-L-threonate administration inhibited the cytotoxicity in the amyloid β25-35-administrated HT22 cells. n = 3. cP < 0.001 vs 
former group. Aβ: Amyloid β; MgT: Magnesium-L-threonate.

exposed HT22 cells (P < 0.001), which was effectively downregulated by MgT treatment (P < 0.01).

MgT inhibited the apoptosis and regulated the expression of apoptotic-related proteins in the Aβ25-35-
treated HT22 cell
The effects of MgT treatment in regulating apoptosis and apoptotic-associated proteins expression were 
also measured, aiming to further assess the neuroprotective effect of MgT against neuronal damage in 
the Aβ25-35-treated HT22 cell. As displayed in Figure 3A and B, Aβ25-35-administrated group owned a 
higher apoptosis rate of HT22 cells than control group (P < 0.001), and the apoptosis rate was obviously 
reduced after MgT intervention (P < 0.001). What’s more, the Aβ25-35-administrated group had a lower B-
cell lymphoma 2 (Bcl-2) protein (an anti-apoptotic molecule[22]) expression level and a higher Bcl-2-
associated X (Bax) protein (a pro-apoptotic molecule[23]) expression level than control group (both P < 
0.001), while MgT treatment effectively promoted Bcl-2 expression (P < 0.001) and blocked Bax 
expression (P < 0.01) (Figure 3C-E).

MgT restored downregulated phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling 
pathway in Aβ25-35-exposed HT22 cell
The effects of MgT administration on regulating PI3K/Akt pathway, which was a classical pathway 
related to cell apoptosis[24], were also detected. As shown in Figure 4, Aβ25-35-exposed cells showed 
lower ratios of phosphorylated (p)-PI3K/PI3K and p-Akt/Akt than control cells (both P < 0.001). After 
MgT administration, these two ratios were significantly upregulated (both P < 0.001).

MgT ameliorated impaired cognition of AD mouse
The behavioral performance was recorded with the Morris water maze method to assess the effect of 
MgT intervention against memory deficit in AD mouse. Compared with WT group, TG group exhibited 
prolonged escape latency, while the escape latency was shortened in the TG + MgT group vs TG group 
(Figure 5A). The number of platform crossings and the percentage of target quadrant exploration time 
were significantly decreased in the TG group vs WT group (both P < 0.01), while these two cognitive 
scores were increased after MgT administration (crossings, P < 0.01; target quadrant exploration time; P 
< 0.05) (Figure 5B–D). The TG group had a longer latency to locate the removed platform than WT 
group (P < 0.001), and the latency was shorter in the TG + MgT group vs TG group (P < 0.01) 
(Figure 5E). Nevertheless, no obvious differences regarding the swimming speed and body weight were 
discovered among all groups (Figure 5F and G).

MgT suppressed hippocampal Aβ1–42, HIF-1α and NADPH oxidase (NOX)4 protein expression in AD 
mouse
Compared with WT group, elevated expression of HIF-1α, NOX4 (a reliable marker of oxidative stress
[25,26]) and Aβ1–42 proteins was seen in the TG group (HIF-1α and Aβ1–42, P < 0.001; NOX4, P < 0.01), 
while these indexes were all decreased in the TG + MgT group vs TG group (all P < 0.01) (Figure 6).

MgT prevented hippocampal neuronal apoptosis and regulated apoptosis-associated protein 
expression in AD mouse
The effects of MgT administration in ameliorating neuronal apoptosis and regulating the expression of 
apoptotic-associated proteins were also examined to further demonstrate the neuroprotective effect of 
MgT on APP/PS1 mouse hippocampus. As listed in Figure 7A and B, the apoptosis rate of hippocampal 
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Figure 2 Magnesium-L-threonate treatment suppressed the elevated reactive oxygen species level and hypoxia-inducible factor-1α 
protein expression in the amyloid β25-35-exposed HT22 cells. A, B: The percentages of dichloro-dihydro-fluorescein diacetate positive cells of each group; 
C: Protein band images of hypoxia-inducible factor (HIF)-1α and glyceraldehyde-3-phosphate dehydrogenase of each group; D: The HIF-1α protein expression level 
of each group. n = 3. aP < 0.05, bP < 0.01, cP < 0.001 vs former group. Aβ: Amyloid β; MgT: Magnesium-L-threonate; HIF: hypoxia-inducible factor; DCFH-DA: 
dichloro-dihydro-fluorescein diacetate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

neuron was elevated in the TG group vs WT group (P < 0.01), while TG + MgT group had a significant 
lower apoptosis rate than TG group (P < 0.01). Moreover, the downregulation of Bcl-2 expression and 
the upregulation of Bax expression were noticed in TG group vs WT group (both P < 0.001), while MgT 
treatment promoted Bcl-2 expression (P < 0.01) and suppressed Bax expression (P < 0.001) (Figure 7C-E).

MgT activated the PI3K/Akt pathway in AD mouse
The effect of MgT administration on the PI3K/Akt pathway was also detected in the in vivo experiment 
of this study. As shown in Figure 8, p-PI3K/PI3K and p-Akt/Akt ratios were reduced in TG group vs 
WT group (both P < 0.001), while these two ratios were obviously elevated after MgT administration (p-
PI3K/PI3K ratio, P < 0.05; p-Akt/Akt ratio, P < 0.001).
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Figure 3 Magnesium-L-threonate administration prevented the apoptosis and regulated the apoptotic-associated proteins expression in 
the amyloid β25-35-administrated HT22 cells. A, B: The apoptosis rate of each group; C: Protein band images of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X 
(Bax) and glyceraldehyde-3-phosphate dehydrogenase in each group; D: The Bcl-2 protein expression level of each group; E: The Bax protein expression level of 
each group. n = 3. aP < 0.05, bP < 0.01, cP < 0.001 vs former group. Aβ: Amyloid β; MgT: Magnesium-L-threonate; Bcl-2: B-cell lymphoma 2; Bax: Bcl-2-associated X; 
GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

DISCUSSION
It was demonstrated that oxidative stress could trigger neuronal damage in the hippocampus tissues of 
the brain, which is the vital pathological mechanism of neurodegenerative diseases, including AD[27]. 
Recently, the findings of the in vitro study certified that extracellular magnesium concentration could act 
as a regulator that effectively influenced the level of MDA, a pathological marker closely associated with 
oxidative stress damage[13,14]. Several researches indicated that MgT could elevate the level of brain 
magnesium via oral administration[10,12]. Therefore, this research attempted to validate the effects of 
MgT against oxidative stress and neuronal damage in the Aβ25-35-treated HT22 cell and the hippocampus 
of APP/PS1 mouse, and investigated the involved mechanism.

Growing evidences have proved that during the pathological progression of neurogenerative disease, 
such as AD, abnormal oxidative stress resulted in the generation of ROS and hippocampal neuronal 
apoptosis thus leading to the deterioration of brain function[27,28]. The in vitro experiment part of this 
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Figure 4 Magnesium-L-threonate treatment suppressed the downregulation of phosphatidylinositol-3-kinase/protein kinase B pathway in 
the amyloid β25-35-exposed HT22 cells. A: Protein band images of phosphorylated (p)-phosphatidylinositol-3-kinase (PI3K), PI3K, p-protein kinase B (Akt), Akt 
and glyceraldehyde-3-phosphate dehydrogenase of each group; B: The p-PI3K/PI3K ratio of each group; C: The p-Akt/Akt ratio of each group. n = 3. aP < 0.05, bP < 
0.01, cP < 0.001 vs former group. Aβ: Amyloid β; MgT: Magnesium-L-threonate; PI3K: phosphatidylinositol-3-kinase; Akt: protein kinase B; GAPDH: glyceraldehyde-
3-phosphate dehydrogenase.

study, oxidative stress, was detected by assessing the ROS level and cell apoptosis was detected by 
measuring the apoptosis rate and quantifying the expression of apoptosis-associated proteins. The in 
vitro data revealed that MgT remarkably blocked the oxidative stressors Aβ25-35-induced[28] oxidative 
damage and apoptosis in the HT22 cells as proved by the elevation of cell viability, the reduction of ROS 
generation, the decrease of apoptosis rate and Bax expression, and the upregulation of Bcl-2 expression 
after MgT administration. In line with these in vitro results, the in vivo data confirmed the suppressive 
effect of MgT treatment against oxidative stress-triggered hippocampal neuronal damage via downregu-
lating the expression level of the oxidative stress marker NOX4 protein and inhibiting the apoptosis of 
the hippocampal neuron in the AD mouse model. Additionally, it has been confirmed that the increased 
ROS induced by oxidative stress can lead to abnormal production of Aβ which can worsen the 
pathological process of AD[29]. In our in vivo study, the measurement of Aβ1–42 expression by western 
blotting confirmed the inhibitory effect of MgT against Aβ production in the AD mouse model.

Numerous researches verified the key role of HIF-1α in the mediation of oxygen homeostasis within 
the cellular environment. A close relationship was discovered between HIF-1α level and oxygen 
balance: HIF-1α level remained low under the physiological situation while it was significantly elevated 
under the hypoxia condition[30,31]. Moreover, recent study revealed that the high glucose-triggered 
oxidative stress accelerated Aβ aggregation via the regulation of the ROS/HIF-1α mechanism in vitro, 
which supported a strong relationship between ROS and HIF-1α, and that the crosstalk between the two 
could deteriorate the Aβ production under abnormal oxidative stress condition[32]. Another research 
also indicated the crosstalk between HIF-1α and ROS in RAW 264.7 cell model[33]. Therefore, the effect 
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Figure 5 Magnesium-L-threonate administration prevented the memory deficit of APPswe/PS1dE9 mouse. A: The escape latency of each group; 
B: The swimming track explored the removed platform of each group; C: The number of platform crossings of each group; D: The percentage of the time spent in the 
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target quadrant of each group; E: The latency located the removed platform of each group; F: The swimming speed of each group; G: The body weight of each group. 
n = 3. aP < 0.05, bP < 0.01, cP < 0.001 vs former group. MgT: Magnesium-L-threonate; TG: APPswe/PS1dE9 mice group; WT: Wild-type mice group.

Figure 6 Magnesium-L-threonate treatment prevented the upregulation of amyloid β1-42, hypoxia-inducible factor-1α and NADPH oxidase 4 
proteins in APPswe/PS1dE9 mouse hippocampus. A: Protein band images of hypoxia-inducible factor (HIF)-1α, NADPH oxidase (NOX) 4, amyloid β (Aβ)1-

42 and glyceraldehyde-3-phosphate dehydrogenase of each group; B: The HIF-1α protein expression of each group; C: The NOX4 protein expression of each group; 
D: The Aβ1-42 protein expression of each group. n = 3. aP < 0.05, bP < 0.01, cP < 0.001 vs former group. MgT: Magnesium-L-threonate; TG: APPswe/PS1dE9 mice 
group; WT: Wild-type mice group; Aβ: Amyloid β; HIF: hypoxia-inducible factor; NOX: NADPH oxidase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

of MgT administration on HIF-1α expression was also investigated. The observations from in vivo and in 
vitro investigations indicated that MgT significantly suppressed the HIF-1α overexpression in Aβ25-35-
treated HT22 cells and APP/PS1 mice.

PI3K/Akt pathway is an important cellular pathway occupying a pivotal role in the mediation of cell 
apoptosis[34]. A recent study demonstrated that Rotundifuran-induced ROS production could lead to 
cell apoptosis via suppressing the PI3K/Akt pathway in the cervical cancer cell model[35]. Another 
study also showed that inhibition of apoptosis was correlated with the ROS-mediated PI3K/Akt 
pathway in a streptozotocin-treated INS-1 cell model[24]. Based on the above findings, dysregulation of 
the PI3K/Akt signaling pathway supports the relationship between oxidative stress and apoptosis. The 
present experimental procedure also detected the effect of MgT administration on the PI3K/Akt 
pathway. According to the results from Western blotting, the PI3K/Akt pathways were downregulated 
in Aβ25-35-administrated HT22 cells and APP/PS1 mice, which were restored by MgT administration.

In light of the findings that MgT administration exhibited neuroprotective effects against oxidative 
stress and hippocampal neuronal apoptosis in this AD mouse model, which were the vital pathological 
mechanisms underlying the cognitive deficit of AD[3,36], the cognitive ability of MgT-treated APP/PS1 
mouse was measured. In this experiment, the results acquired from the Morris water maze test 
confirmed that MgT treatment ameliorated the cognitive deficit in this AD animal model, but the further 
mechanism underlying the memory protective effect of MgT needs to be further investigated.
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Figure 7 Magnesium-L-threonate administration regulated the neuronal apoptosis and mediated the expression of apoptotic-related 
proteins in APPswe/PS1dE9 mouse hippocampus. A, B: The apoptosis rate of hippocampal neuron of each group; C: Protein band images of B-cell 
lymphoma 2 (Bcl-2), Bcl-2-associated X (Bax) and glyceraldehyde-3-phosphate dehydrogenase of each group; D: The Bcl-2 protein expression level of each group; 
E: The Bax protein expression level of each group. n = 3. aP < 0.05, bP < 0.01, cP < 0.001 vs former group. MgT: Magnesium-L-threonate; TG: APPswe/PS1dE9 mice 
group; WT: Wild-type mice group; Bcl-2: B-cell lymphoma 2; Bax: Bcl-2-associated X; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

There are several limitations in this experiment. In this study, APP/PS1 mice were applied as the 
animal model of AD. Although this animal model was a typical and common model of AD and it could 
be employed to mimic the cognitive impairment and pathological changes of AD[16], it might not reflect 
all types of this disease. Therefore, it is necessary to conduct further explorations to validate the above-
mentioned effects of MgT on other types of Alzheimer’s disease, animal models of other neurodegen-
erative diseases and clinical trials.

CONCLUSION
It can be demonstrated in this study that MgT intervention has neuroprotective effects against oxidative 
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Figure 8 Magnesium-L-threonate treatment activated the phosphatidylinositol-3-kinase/protein kinase B pathway in APPswe/PS1dE9 
mouse hippocampus. A: Protein band images of phosphorylated (p)-phosphatidylinositol-3-kinase (PI3K), PI3K, p-protein kinase B (Akt), Akt and glyceraldehyde-
3-phosphate dehydrogenase of each group; B: The p-PI3K/PI3K ratio of each group; C: The p-Akt/Akt ratio of each group. n = 3. aP < 0.05, bP < 0.01, cP < 0.001 vs 
former group. MgT: Magnesium-L-threonate; PI3K: phosphatidylinositol-3-kinase; Akt: protein kinase B; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; WT: 
Wild-type mice group; TG: APPswe/PS1dE9 mice group.

stress and hippocampal neuronal damage in Aβ25–35-treated HT22 cells and AD mouse model. Our study 
suggests a promising therapeutic agent for the amelioration of oxidative stress and hippocampal 
neuronal damage-associated neurodegenerative disorders.

ARTICLE HIGHLIGHTS
Research background
The increasing prevalence of Alzheimer’s disease (AD) in the elderly population has posed a huge 
financial and medical burden on the society. Effective methods to block the progression of the cognitive 
deterioration in AD patients are urgently required. As oxidative stress accounts for a pivotal role in the 
pathological mechanism of neurodegenerative diseases, including AD, anti-oxidative stress treatments 
may provide a promising therapeutic direction. Recent study had explored the anti-malondialdehyde 
effect of magnesium in vitro, however the potential anti-oxidative stress damage effect of Magnesium-L-
threonate (MgT) still remains to be verified.

Research motivation
This research investigated the suppressive effect of MgT against oxidative stress injury, thus developing 
a therapeutic reference basis for the future explorations.
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Research objectives
This research aimed to determine the neuroprotective effect of MgT against oxidative stress damage and 
explore the related mechanism which may bring a research foundation for the feasibility of MgT.

Research methods
As the cell and animal models, amyloid β (Aβ)25-35-treated HT22 cells and APPswe/PS1dE9 (APP/PS1) 
mice were treated with MgT administration. After the MgT administration, cell counting kit-8 detection 
was applied to analysis the viability of HT22 cells and the Morris Water Maze test was used to record 
the cognition of APP/PS1 mice. Reactive oxygen species (ROS) production of HT22 cells and cell 
apoptosis of both models were all quantified by using the flow cytometry assay. The expression of 
hypoxia-inducible factor (HIF)-1α, NADPH oxidase (NOX) 4, Aβ1-42, B-cell lymphoma 2 (Bcl-2), Bcl-2-
associated X (Bax) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway proteins 
was quantified by Western blotting.

Research results
MgT effectively suppressed the HT22 cellular injury triggered by Aβ25-35-induced oxidative stress by 
elevating the viability, blocking the ROS formation and downregulating HIF-1α. MgT significantly 
ameliorated the impaired cognitive performance of APP/PS1 mouse and inhibited the upregulation of 
Aβ1-42, NOX4 and HIF-1α protein expression. In addition, MgT obviously suppressed the cell apoptosis, 
regulated apoptotic-related proteins and upregulated the PI3K/Akt pathway in both models. In future 
research, further explorations are required to confirm the above-mentioned effects of MgT in more 
disease models.

Research conclusions
This study demonstrates the protective effect of MgT against oxidative stress injury in Aβ25-35-treated 
HT22 cells and APP/PS1 mice.

Research perspectives
This study provides a promising therapeutic agent to ameliorate the oxidative stress damage-associated 
neurodegenerative diseases. More investigations to demonstrate this effect of MgT on other types of 
Alzheimer’s disease, in vivo models of other neurodegenerative diseases and clinical experiments are 
required in further research.
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