

Baisbideng® WJP | https://www.wjgnet.com

WJP World Journal of Psychiatry

Submit a Manuscript: https://www.f6publishing.com

World J Psychiatry 2023 May 19; 13(5): 160-173

DOI: 10.5498/wjp.v13.i5.160

ISSN 2220-3206 (online)

MINIREVIEWS

Neurobiological risk factors for problematic social media use as a specific form of Internet addiction: A narrative review

Sergey Yu Tereshchenko

Specialty type: Psychiatry

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): B, B Grade C (Good): C Grade D (Fair): D Grade E (Poor): 0

P-Reviewer: Oliveira AP, Portugal; Ye B China

Received: December 27, 2022 Peer-review started: December 27, 2022 First decision: February 2, 2023 Revised: February 13, 2023 Accepted: April 7, 2023 Article in press: April 7, 2023 Published online: May 19, 2023

Sergey Yu Tereshchenko, Department of Child's Physical and Mental Health, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Krasnoyarsk 660022, Russia

Corresponding author: Sergey Yu Tereshchenko, PhD, Doctor, Senior Researcher, Department of Child's Physical and Mental Health, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Partizana Zheleznyaka street, 3G, Krasnoyarsk 660022, Russia. legise@mail.ru

Abstract

Problematic social media use (PSMU) is a behavioral addiction, a specific form of problematic Internet use associated with the uncontrolled use of social networks. It is typical mostly for modern adolescents and young adults, which are the first generations fully grown up in the era of total digitalization of society. The modern biopsychosocial model of the formation of behavioral addictions, postulating the impact of a large number of biological, psychological, and social factors on addictive behavior formation, may be quite applicable to PSMU. In this narrative review, we discussed neurobiological risk factors for Internet addiction with a focus on current evidence on the association between PSMU and structural/ functional characteristics of the brain and autonomic nervous system, neurochemical correlations, and genetic features. A review of the literature shows that the vast majority of the mentioned neurobiological studies were focused on computer games addiction and generalized Internet addiction (without taking into account the consumed content). Even though a certain number of neuroimaging studies have been conducted for PSMU, there is practically no research on neuropeptide and genetic associations for PSMU to date. This fact points to the extremely high relevance of such studies.

Key Words: Internet addiction; Problematic social media use; Addictive behavior physiopathology; Neurobiology; Genetics

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The analysis of sources showed that the vast majority of neurobiological research was focused on the study of computer games addiction and generalized Internet addiction (without taking into account the content consumed). There is practically no research on neuropeptide and genetic associations for problematic social media use to date. This fact points to the extremely high relevance of such studies.

Citation: Tereshchenko SY. Neurobiological risk factors for problematic social media use as a specific form of Internet addiction: A narrative review. World J Psychiatry 2023; 13(5): 160-173 URL: https://www.wjgnet.com/2220-3206/full/v13/i5/160.htm DOI: https://dx.doi.org/10.5498/wjp.v13.i5.160

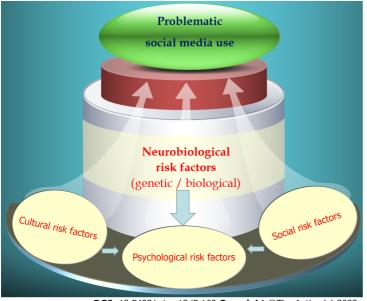
INTRODUCTION

The last few decades have been characterised by the complete digitalization of society and the ubiquitous penetration of Internet technologies into our daily lives[1,2]. The advantages associated with the widespread introduction of Internet technologies into people's daily lives are undeniable (for example, quick access to a large amount of information and various services, rapid dissemination of news on a global scale, the introduction of Internet technologies related to health, etc.). However, a certain number of Internet users, mainly adolescents and young adults, experience the phenomenon of Internet addiction or "problematic/compulsive use of the Internet" which is associated with several psychosocial problems[2,3]. The global concern about the impact of problematic Internet use (PIU) from the public and social health points of view became especially acute during the coronavirus disease (COVID) pandemic when each person had to use the Internet more often, and initially, predisposed individuals were losing control, showed more and more signs of pathological addictive behavior when diving into the network^[4]. In particular, this trend has affected the most technologically advanced segments of society – the first generations who grew up surrounded by the Internet and gadgets – adolescents and young adults^[5]. The situation can be significantly aggravated by the neurophysiological consequences of the pandemic, predisposing to the development of depression and anxiety, which are important risk factors of problematic social media use (PSMU)[6].

The modern "component bio-psychosocial model" of behavioral addiction formation postulates an individual combination of genetic/biological, psychological, social, and cultural factors leading, in the case of PSMU, to overuse of social media and negative consequences (Figure 1).

In this narrative review, we shall discuss neurobiological risk factors for Internet addiction with a focus on current evidence on the association between PSMU and structural/functional characteristics of the brain and autonomic nervous system, neurochemical correlations, and genetic features.

To find relevant publications, a search was conducted in PubMed, Scopus, Web of Science, and Reference Citation Analysis (https://www.referencecitationanalysis.com) for English-language sources using the following keywords and MeSH terms: "Internet addiction", "problematic social media use", "pathological social network use", "social media", "social networking", "specific Internet addiction", "video game addiction", "gaming disorder", "neurobiology", "behavior, addictive/physiopathology", "brain/physiopathology", "sympathetic nervous system", "parasympathetic nervous system", "neural pathways/physiopathology", "neurotransmitters", "biochemical correlates", "twin study", "genetics", "gene frequency", "genetic predisposition to disease", "polymorphism, single nucleotide".


TERMINOLOGY

The phenomenon of Internet addiction [7,8] was first described in the mid-1990s. There is currently no accepted formal definition of addictive online behaviour. Specialized literature offers such interchangeable terms as "problematic interactive media use" [9], "problematic Internet use", "pathological Internet use", "compulsive Internet use", and, finally, "Internet addiction". The European Network for Problematic Usage of the Internet (European research group) recommended in a recent review (2022) to use the term "problematic Internet use", as the most appropriate at this moment[4].

All of the above are umbrella terms, *i.e.*, reflect generalized (without reference to specific content and technology) PIU. Among the specific types of Internet activity, the following can be considered potentially addictive: Problematic video game use, PSMU, problematic Internet pornography use, Internet gambling, and web surfing addiction[10,11].

Only one of these five addictive behavior types, namely the problematic use of video games, is currently officially considered a mental disorder (Internet gaming disorder, diagnostic and statistical manual of mental disorders, fifth edition, American Psychiatric Association, 2013; gaming disorder, international classification of diseases-11, 2019). Recently, other specific forms of PIU have also been singled out: Online gambling disorder (it also includes intensive betting on online exchanges), online

DOI: 10.5498/wjp.v13.i5.160 Copyright ©The Author(s) 2023.

Figure 1 Component bio-psychosocial model of problematic social media use.

buying-shopping disorder, Internet streaming disorder, cyberchondria, cyberbullying, and digital hoarding[4].

PSMU is a behavioral addiction, a specific form of PIU associated with the uncontrolled use of social networks. It is typical mostly for modern adolescents and young adults, which are the first generations fully grown up in the era of total digitalization of society. There are currently no universally recognized and official criteria for the diagnosis of PSMU. The European Network for Problematic Usage of the Internet (European research group) suggests the following definition[4]: PSMU is a persistent state of control loss when using social networks, manifested by: Violation of control over interaction with social websites (for example, in terms of time, frequency, and duration of use); predominance of time spent on social networks leads to significant distress or deterioration in personal, family, social, educational, professional activities, or other important areas of functioning; continued or increased use of social networks, despite the negative consequences (for example, poor school performance, negative impact on health, social isolation, interpersonal conflicts, neglect of duties); duration, *i.e.*, the use of social networks can be continuous or episodic and repetitive but manifests itself over a long period (at least 12 mo).

Although the criteria for the diagnosis of PSMU are not formally established, the existing validation methods using questionnaires are based on the interpolation of classical symptoms for chemical and non-chemical types of addictive behavior[12]. Currently, there is a consensus on diagnostic criteria that clearly distinguish the pathological component of addiction from the normal daily use of the Internet by adolescents: The clinical diagnosis of PSMU, as well as generalized Internet addiction, should include six obvious signs[11,13,14]: Salience and mood modification, such as behavioral, cognitive, and emotional preoccupation: The growing importance of a social network for an adolescent in his or her system of interests and values; the use of a social network leads to a positive change in the emotional state; Compulsivity and loss of control: An obsessive desire to use the social network, impulsivity, loss of time control, excessive use of the social network (especially while reducing the allocated time for other activities); Tolerance: The need to spend more and more time communicating on a social network, including to alleviate episodes of dysphoria; Withdrawal/abstinence symptoms: Mood changes in the absence of access to a social network (depression, anxiety, aggressiveness); Conflict, impaired role performance: Loss of previous interests and entertainment, loss of educational, cultural, sports, and other opportunities as a result of excessive use of social networks; disputes and lies regarding the use of the social network; continued use of social networks, despite the negative consequences. Relapse: Rapid return to the use of the network after abstinence, unsuccessful independent attempts to control the use of the social network.

However, PSMU must be distinguished from intensive adaptive use of social networks. Adaptive intensive use of social networks itself does not have obvious negative consequences, has little effect on the parameters of well-being, and in many individual cases can play a positive role in the development of an adolescent by increasing a "social capital" [15-17].

PREVALENCE

The latest summarized data show that the average prevalence of PSMU among adolescents in 29 European countries is 7.4% [18]. The recent systematic review by Cheng *et al*[19] showed a high ethnic and geographic heterogeneity of PSMU prevalence within 5%–26%. The highest levels of PSMU prevalence are registered in collectivist societies in Asia and Africa[19]. Recent cross-national analysis of the psychometric characteristics from the social media disorder scale (SMDS) questionnaire among adolescents from 44 countries has shown high levels of validity and reliability (comparative fit index and Tucker-Lewis index = 0.963 and 0.951, root mean square error of approximation = 0.057)[20]. SMDS is recommended by the research group European Network for Problematic Usage of the Internet as preferred, since it evaluates primarily the psychopathological aspects of addiction, while the recently criticized Bergen social media addiction scale questionnaire does not clearly distinguish between simple excessive or prolonged use of social networks from pathological one, with signs of addiction[4]. The prevalence figures obtained by the authors of the SMDS were 7.3%-11.6% for the Dutch adolescent cohort[21]. Other studies using the SMDS have found similar results: 9.9%-10.0% in a Dutch sample in a longitudinal study[22], 9.4% in a representative sample of 3408 Finnish adolescents[23], and 8.0% in a large sample of Russian adolescents (n = 4514)[24].

PSYCHIATRIC AND SOMATIC COMORBIDITY

A large number of foreign studies have convincingly shown the pronounced comorbidity of Internet addiction with a wide range of psychopathological conditions. Depressive disorder and attention deficit hyperactivity disorder have the strongest association with Internet addiction, while anxiety disorder, obsessive-compulsive disorder; social phobia, and suicidal behavior also have a smaller but significant association[25-28]. A recent meta-analysis by Shannon *et al*[12] has shown that PSMU, as a specific form of Internet addiction, also reveals a moderate, but statistically significant, association with depression, anxiety, and stress[12]. Another recent meta-analysis demonstrated a significant but weak negative association of PSMU with life satisfaction and self-esteem (as parameters of well-being) and a moderate positive association with depression and loneliness (as indicators of distress)[29].

At present, not much is known about the association of Internet addiction with psychosomatic diseases, although such a connection is highly likely, given the presence of common pathogenesis factors (anxiety-depressive and obsessive-compulsive disorders). The study by Wei *et al*[30] based on an Internet survey demonstrated the association of Internet addiction with chronic pain syndromes, which the authors link with psychosomatic diseases and muscle overstrain. The study conducted by Cerutti et al[31] did not reveal a statistically significant association between Internet addiction and tension headache/migraine, although, in general, somatic symptoms were more often reported in the Internet addiction group[31]. In addition, it was discovered that PIU among adolescents was associated with chronic conditions, back pain, overweight, musculoskeletal pain, and also with sleep disorders[32,33]. According to a recent systematic review, a wide range of somatic health problems are associated with smartphone addiction among adults[34]. A general decrease in immune functions was observed in Internet-addictive individuals, which the authors link with a common risk factor, *i.e.*, stress, which can affect the activity of the sympathoadrenal axis and increase cortisol production [35]. It is characteristic that the high activity in the sympathetic part of the autonomic nervous system was detected when analyzing the heart rate of adolescents with Internet addiction[36,37]. A decrease in the quality of life, including the parameters of somatic health, was demonstrated in a systematic review by Masaeli and Billieux[38]. A pronounced connection between Internet addiction with the general level of somatization was revealed among young adults[39].

PATHOGENESIS OF INTERNET ADDICTION FROM A NEUROBIOLOGY POINT OF VIEW

To date, several etiopathogenetic models of the formation of Internet-dependent behavior among adolescents and young adults have been proposed[40]. Some researchers suggest the presence of mainly neurobiological risk factors linked with the lack of maturity in certain parts of the adolescent brain, which is manifested by insufficient effectiveness of volitional control, high impulsivity, and an overly activated brain reward circuitry[41,42]. However, the most recognized by researchers at present is the "component biopsychosocial model", which assumes a combination of psychosocial problems and neurobiological risk factors[40,43-45].

Middle and late stages of adolescence in brain development are characterized by different time frames of the formation of the limbic system and prefrontal cortex lobes[46]. The prolonged development of the prefrontal cortex in comparison with the limbic system during adolescence leads to weakened inhibition from cortex lobes concerning underlying subcortical structures and increased impulsivity, which contributes to a high risk of addictive behavior[47].

To date, a large number of studies have been devoted to the pathogenesis of Internet addiction using various neuroimaging techniques, including magnetic resonance imaging, positron and single photon emission computed emission tomography. These techniques have revealed a number of structural brain changes associated with Internet addiction[48-50]: Dcreased grey matter density in several areas, including prefrontal and orbitofrontal cortical layers and an additional motor area[51]; abnormal functional activity of brain regions associated with reward dependence[41]; activation of sensorimotor synchrony with a concomitant decrease in audiovisual synchrony [52]; activation of brain regions associated with compulsive craving and impulsivity; increased glucose metabolism in brain regions associated with impulsivity, reward dependence and the urge to repeat sensations^[53]; increased dopamine secretion with a concomitant decrease in dopamine receptor availability in the striatum[54]. Meta-analysis of 40 neurophysiological studies of PIU has shown that, regardless of the content, Internet-dependent behavior is characterized by a significant violation of inhibitory control, stop-signal task, decision-making, and working memory [55]. The meta-analysis by Zhang et al [56] has revealed the presence of a common pattern in a brain structural change related to chemical and behavioral addictions: Changes in prefrontal and insula areas associated with increased impulsivity [56]. Several meta-analyses and reviews have been published recently: Structural and functional brain alterations for a specific form of PIU - computer games addiction[57-59]. The features of electroencephalography in Internet addiction were analyzed in a recent review by Sharifat and Suppiah[60]. Distinctive characteristics of functional electroencephalography were revealed among patients with computer game addiction[61].

It should be noted that most of the above-mentioned studies have been conducted for cases of computer games addiction or generalized (undifferentiated by the content consumed) Internet addiction. The recently proposed for various types of behavioral addictions updated interaction of person-affect-cognition-execution (I-PACE) model theoretically substantiates the neurobiological mechanism of addictive behavior, which consists in an imbalance between structures of frontostriatal circuits (limbic/reward-oriented brain circuits and prefrontal control)[62]. The model has been intensively studied for gambling and gaming disorders, but not for PSMU. Despite this, a line of structural and functional neuroimaging findings concerning the I-PACE model for PSMU was published to date[63-68]. Neuroimaging studies for PSMU were analyzed by Wegmann et al[69]; a conclusion was made about the significant association of PSMU with reward processing and reinforcement learning. A recent study by Sadeghi et al^[70] has revealed that email addiction positively correlates with depression and gray matter volume of the left rostrolateral prefrontal cortex closely involved in cognitive processes[70].

There is some evidence of autonomic nervous system dysfunction involvement in the pathogenesis of Internet addiction, in particular, by the imbalance of the sympathetic and parasympathetic divisions⁷¹, 72]. A general decrease in immune functions was revealed among Internet-addictive individuals. The authors link this fact with a common risk factor, i.e. stress, which can affect the activity of the sympathoadrenal axis and increase cortisol production [35]. The role of chronic stress in the formation of PSMU has been shown by several studies [12,73,74]. It is characteristic that the high activity of the autonomic nervous system's sympathetic part was observed when analyzing the heart rate of adolescents with Internet addiction [36,37]. Data on the level of cortisol for Internet addiction are contradictory [75-77]; additional research is required, in particular, concerning the long-term cortisol content, which can be a good marker of chronic stress and mental problems^[78].

Several neurotransmitters and neurotrophic factors may be involved in the neurobiological mechanisms of Internet addiction formation [79-81]. Neurochemical pathways include metabolic disorders of dopamine, serotonin, opioids, and some other neurotransmitters that affect reward processing, executive functioning, salience attribution, and habit formation, as well as in the case of substance-use disorders[82]. The participation of these neurotransmitters is partially confirmed by the effectiveness of some pharmacological agents controlling the corresponding neurochemical pathways [83,84]. Exercise-based interventions also may be efficient for Internet addiction (including PSMU)[85], by regulating the autonomic nervous system, the morphology of some parts in the central nervous system, and the exchange of neurotrophic factors and neurotransmitters, in particular dopamine^[72].

Oxytocin, which is called the hormone of trust, social connection, and emotional attachment, is promising for the PSMU study. It plays an extremely important role in establishing emotional social contacts, including those using social networks [80,86]. Bonassi et al [87] showed that a low level of parental care was associated with low activity on Instagram for carriers of the A-allele in the polymorphic region rs2254298 for the oxytocin receptor gene[87]. The same group of researchers identified a greater number of followers among carriers of the A/A genotype in the region rs53576 for the oxytocin receptor gene in comparison with carriers of the G-allele[88].

A significant number of studies show a pathophysiological relationship between the functioning of the oxytocinergic system and the formation of various forms of addictive behavior[89]. The effectiveness of exogenous oxytocin in the treatment of various addiction types has been shown both in experimental animal studies^[90] and in a whole series of clinical studies^[89]. It is assumed that the relief of physical symptoms and an increase in emotional tone during withdrawal, reduction of anxiety, increased susceptibility to verbal interventions, facilitating the restoration of social contacts, and, finally, the physiological reduction of established tolerance are the main mechanisms of oxytocin therapeutic

impact for chemical addictions. The hypothesis of oxytocin's antistress effect as a possible protective factor seems convincing since psychological stress is an important etiological cause of the development of pathological addictions[91].

The following are promising neurotransmitters and neurotrophic factors in addition to oxytocin, whose role in the pathogenesis of addictive Internet behavior in adolescents is also highly probable, but still insufficiently studied:

Melanocortin (α -Melanocyte-stimulating hormone). An important role of melanocortin in the development of pathological addiction is suggested by recent studies by Orellana et al[92]. There was a tendency to increase melatonin levels in the presence of computer games addiction[93];

Neurotensin. It is actively involved in the modulation of dopamine signalling and the formation of pathological addictions, attempts have been made to treat some addictions with synthetic neurotensin [<mark>94</mark>];

Orexin. It is supposed to be involved in the formation of sleep disorders and addictive behavior[95]. Choi et al[93] demonstrated an increase of orexin in the plasma of adolescents with Internet gaming disorder a while ago[93];

Substance P (neurokinin A). Impairment in the production of substance P is thought to be associated with the development of various pathological addictions; active attempts are currently being made to treat addiction by modulating the activity of neurokinin receptors [96,97];

Brain-derived neurotrophic factor (BDNF). This is a neurotrophic factor that plays a role in the development of addiction [98,99]. Data on the association of BDNF expression with Internet-addictive behavior are contradictory. Some authors found elevated plasma levels among addicts, the others did not confirm such an association [72,81]. A recent study by Choi et al [93], which has been mentioned above, found no direct link between addiction and BDNF levels, although it revealed a negative correlation with the time spent playing a computer game^[93].

Glial cell line-derived neurotrophic factor (GDNF). It is a neurotrophic factor that plays an important role in supporting the function of dopaminergic neurons. A decrease in the level of GDNF in plasma was detected among Internet gaming addicts; besides, the expression of BDNF was negatively correlated with the severity of computer games addiction[100].

It is important to note that the vast majority of studies on neuropeptides and neurotrophic factors have been conducted for computer game addiction, as in the case of neuroimaging and neurophysiological research methods.

GENETICS OF INTERNET ADDICTION

Unlike other types of addictive behavior (for example, substance abuse or gambling), a very small number of studies have been devoted to the search for genetic predictors of Internet addiction. In the first twin study (2014) the authors managed to prove the presence of an innate component based on the results of a survey of 825 adolescents from the Chinese population. The component was estimated at 58%-66% [101]. Similar results were obtained a little later in the study of Turkish (19%-86%, 2014[102]) Dutch (48%, 2016[103]), Australian (41%, 2016[104]), and German (21%–44%, 2017[105]) twin cohorts. Positive genetic correlations (20%-40%, 2012) were also discovered in the study of various mobile phone use patterns by twins [106]. Although these data are limited by the volume of samples and various ethnic and geographic conditions, there is likely a tendency for a greater contribution of genetic factors in males.

Thus, the presence of a genetic component in Internet addiction formation has been convincingly shown by twin studies by the example of different populations, but no specific genes involved in the mechanisms of such heritability have been identified. Small pilot studies, however, verified polymorphic regions of nine candidate genes, the following are among those:

r1800497 [dopamine D2 receptor gene (DRD2), Taq1 A1 allele] and rs4680 [methionine variant of dopamine degradation enzyme catecholamine-o-methyltransferase gene (COMT)] – the first of such studies (2006-2007) conducted among adolescents in South Korea and showed an association between minor alleles connected with low dopamine production (rs4680) and a low number of dopamine receptors in the prefrontal cortex (rs1800497) with the presence of pathological Internet gaming disorder [107]. At the same time, DRD2 A2 allele (high-activity) homozygotes and A1 allele (low-activity) carriers demonstrated no significant differences concerning Internet addiction; neither differences were revealed when comparing COMT high-activity (H) variant homozygotes and low-activity (L) variant carriers [108]. Later, the association of the C allele carrier rs1800497 (DRD2 gene) with computer games addiction was confirmed for young adults[109]. Another study did not prove such a fact[110]. It is known that the DRD2 gene is in linkage disequilibrium with the ANKK1 gene, which plays a significant role in the formation of chemical addictions[111]. Therefore, by now, it is not possible to accurately establish the association of Internet addiction with the reception of dopamine at the DRD2 level[45]. The association of the homozygous variant Val/Val (GG) rs4680 (Val158Met, COMT gene) with addiction to computer games was further confirmed by the study by Yen et al[112] in 2022; In addition, a recent study by Kim et al[113] showed that the presence of interpersonal stress for DRD2 rs6277 T allele and

rs1800497 Taq1 A1 allele showed higher scale values of computer games addiction[113].

rs6277 (promoter of the DRD2 gene, 141C Ins/Del polymorphism) - although a direct association between rs6277 polymorphism and Internet addiction has not been established, the -141C polymorphism may play a role in the pathogenesis of addiction as a mediator of temperament characteristics [110]; the dopamine D4 receptor gene (DRD4 gene, VNTR polymorphism in exon 3) – as it was shown, the carriers of DRD4 4R/4R variants are more predisposed to the formation of generalized Internet addiction[108]. More recent studies have not shown an association with Internet-addictive behavior[114,115];

rs25531 (serotonin transporter gene (SS-5HTTLPR), short allelic variants) – the research by Lee et al [116] demonstrated that short allelic variants of the serotonin transporter gene might be associated with Internet addiction. Similar data were later obtained by Sun *et al*[108] but for men only[108]. As a large number of studies have shown, these genetic variants are also linked to a predisposition to depression, which is the most frequently detected comorbid condition among Internet-addictive individuals. Recent studies revealed that a link between depression and autistic personality traits with generalized Internet addiction could be modulated by such polymorphism (5-HTTLPR/rs25531), as well as ethnic and geographic factors[115,117].

rs1044396 [nicotinic acetylcholine receptor subunit alpha 4 gene (CHRNA4)] - study by Montag et al [118] revealed an association between Internet addiction and the rs1044396 CC genotype, which can also be associated with nicotine addiction and attention disorders. Later, Jeong et al[119] conducted a pilot study of the target exome, involving 30 adults with addiction to computer games and 30 healthy individuals, which included a study of 72 candidate genes. This study showed a statistically convincing association with one site only - rs1044396. No such association was found in another study [114];

rs2229910 [neurotrophic tyrosine kinase receptor type 3 gene (NTRK3)]- Kim et al[120] have conducted in turn a pilot study of the target exome involving 30 adults with addiction to computer games and 30 healthy individuals, which included a study of 83 polymorphic sites. Their study also revealed a statistically convincing association with one site only - rs2229910, presumably also associated with anxiety-panic, depressive disorders, obsessive-compulsive disorder, and psychologically determined eating disorders;

rs28364027 [Corticotropin Releasing Hormone Receptor 1 gene (CRHR1)] - a study involving Korean adolescent boys revealed that carriers of the AA genotype and the A allele were more predisposed to online computer games addiction[114]. It was previously determined that corticotropin-releasing hormone was involved in the mechanisms of negative effects realization when weaning from the addiction factor^[12] and was associated with the risk of alcohol dependence for adolescents, especially when combined with stressful effects [122-124];

rs1137070 [monoamine oxidase-A gene (MAOA), EcoRV polymorphism] - the association of this polymorphism with an addiction to computer games with a mediator effect of hostility was evaluated for young adults. Participants with the TT rs1137070 genotype had a higher odds ratio of 2.52 (1.37-4.64) for gambling addiction compared with carriers of the C allele[125];

rs2268498 [oxytocin receptor gene (OXTR)] - it has been shown that male carriers of the TT genotype (but not female) have lower levels of generalized Internet addiction compared to C allele carriers[126];

rs6265 (BDNF gene) - Russian researchers discovered in 2019-2020 that genetic polymorphism of BDNF rs6265 (Val66Met), as well as the abovementioned DRD4 exon 3 VNTR and NTRK3 rs2229910, are were with the risk of generalized Internet addiction for young adults[127].

The latest (2022) review by Werling and Grünblatt^[128] and the data presented in this article demonstrate that all currently known studies of genetic associations have been conducted for computer games addiction or (less often) for generalized Internet addiction. As far as is known, not a single study of genetic associations concerning PSMU has been published.

DISCUSSION

Neurobiology and genetics research on Internet-addictive behavior conducted over the last 10-15 years has allowed accumulating the necessary amount of knowledge to make certain intermediate conclusions, summarized recently in a significant number of meta-analyses and reviews. A large number of neuroimaging and neurophysiological studies have shown that Internet addiction is characterized by certain structural and functional features of the brain, accompanied by a significant violation of inhibitory control (increased impulsivity as a common factor in various forms of addictive behavior), stop-signal task, decision-making, and working memory. It has been discovered that, like other types of chemical and behavioral addictions, Internet addiction is characterized by an impairment of the metabolism of dopamine, serotonin, opioids, and some other neurotransmitters, which affects reward processing, executive functioning, salience attribution, and habit formation. A small number of pilot projects partially confirm the genetic basis of Internet addiction pathogenesis, previously demonstrated by twin studies.

An important aspect and trend in modern research on Internet-addictive behavior is an attempt to avoid the study of generalized, undifferentiated Internet addiction in favor of analyzing its specific

forms, such as computer games addiction and PSMU[24,129,130]. At the same time, the vast majority of the mentioned neurobiological studies were focused on computer games addiction (e.g. 85% of patients for functional magnetic resonance imaging[131]) and generalized Internet addiction (without taking into account the consumed content). Even though a certain number of neuroimaging studies have been conducted for PSMU[66,67,69], there is practically no research on neuropeptide and genetic associations for PSMU to date. Attempts to use neuroimaging to look for common neurobiological mechanisms between PSMU and other addictions have so far produced conflicting results, at least in relation to the prefrontal cortex[66,67,132-134].

Although studies of generalized Internet addiction - especially for women - can be partially extrapolated to PSMU (taking into account common gender and psychosocial characteristics for some populations^[24]), it is extremely important to study the directly verified PSMU, which differs significantly from computer games addiction. Further research is needed to better identify commonalities and differences in the neurobiology of different types of addictive online behavior in the context of the content consumed, the devices and technologies used, and the stability of symptoms across age. The study of neuropeptides directly involved in social bonding: Oxytocin and vasopressin, as well as orexin, melatonin, and neurotrophic factors (BDNF and GDNF), looks promising for PSMU neuromolecular associations.

Genetic studies conducted on small samples, conflicting and still quite scarce, should also be expanded to specific forms of Internet addiction, such as PSMU and smartphone addiction. Replication studies with a large number of participants are urgently needed, as well as genome-wide association and polygenic risk score estimate projects.

CONCLUSION

In this narrative review, we discussed neurobiological risk factors for Internet addiction with a focus on current evidence on the association between PSMU and structural/functional characteristics of the brain and autonomic nervous system, neurochemical correlations, and genetic features. A review of the literature shows that the vast majority of the mentioned neurobiological studies were focused on computer games addiction and generalized Internet addiction (without taking into account the consumed content). Even though a certain number of neuroimaging studies have been conducted for PSMU, there is practically no research on neuropeptide and genetic associations for PSMU to date. This fact points to the extremely high relevance of such studies.

FOOTNOTES

Author contributions: Tereshchenko SY analyzed the data and wrote the manuscript.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Russia

ORCID number: Sergey Yu Tereshchenko 0000-0002-1605-7859.

S-Editor: Li L L-Editor: A P-Editor: Cai YX

REFERENCES

- Bickham DS. Current Research and Viewpoints on Internet Addiction in Adolescents. Curr Pediatr Rep 2021; 9: 1-10 [PMID: 33457108 DOI: 10.1007/s40124-020-00236-3]
- Brand M. Can internet use become addictive? Science 2022; 376: 798-799 [PMID: 35587961 DOI: 2 10.1126/science.abn4189]
- Fineberg NA, Demetrovics Z, Stein DJ, Ioannidis K, Potenza MN, Grünblatt E, Brand M, Billieux J, Carmi L, King DL, Grant JE, Yücel M, Dell'Osso B, Rumpf HJ, Hall N, Hollander E, Goudriaan A, Menchon J, Zohar J, Burkauskas J, Martinotti G, Van Ameringen M, Corazza O, Pallanti S; COST Action Network, Chamberlain SR. Manifesto for a

European research network into Problematic Usage of the Internet. Eur Neuropsychopharmacol 2018; 28: 1232-1246 [PMID: 30509450 DOI: 10.1016/j.euroneuro.2018.08.004]

- Fineberg NA, Menchón JM, Hall N, Dell'Osso B, Brand M, Potenza MN, Chamberlain SR, Cirnigliaro G, Lochner C, 4 Billieux J, Demetrovics Z, Rumpf HJ, Müller A, Castro-Calvo J, Hollander E, Burkauskas J, Grünblatt E, Walitza S, Corazza O, King DL, Stein DJ, Grant JE, Pallanti S, Bowden-Jones H, Ameringen MV, Ioannidis K, Carmi L, Goudriaan AE, Martinotti G, Sales CMD, Jones J, Gjoneska B, Király O, Benatti B, Vismara M, Pellegrini L, Conti D, Cataldo I, Riva GM, Yücel M, Flayelle M, Hall T, Griffiths M, Zohar J. Advances in problematic usage of the internet research - A narrative review by experts from the European network for problematic usage of the internet. Compr Psychiatry 2022; 118: 152346 [PMID: 36029549 DOI: 10.1016/j.comppsych.2022.152346]
- Gjoneska B, Potenza MN, Jones J, Corazza O, Hall N, Sales CMD, Grünblatt E, Martinotti G, Burkauskas J, Werling AM, 5 Walitza S, Zohar J, Menchón JM, Király O, Chamberlain SR, Fineberg NA, Demetrovics Z. Problematic use of the internet during the COVID-19 pandemic: Good practices and mental health recommendations. Compr Psychiatry 2022; 112: 152279 [PMID: 34700188 DOI: 10.1016/j.comppsych.2021.152279]
- de Mello AJ, Moretti M, Rodrigues ALS. SARS-CoV-2 consequences for mental health: Neuroinflammatory pathways 6 linking COVID-19 to anxiety and depression. World J Psychiatry 2022; 12: 874-883 [PMID: 36051596 DOI: 10.5498/wjp.v12.i7.874]
- OReilly M. Internet addiction: a new disorder enters the medical lexicon. CMAJ 1996; 154: 1882-1883 [PMID: 8653648]
- 8 Young KS. Psychology of computer use: XL. Addictive use of the Internet: a case that breaks the stereotype. Psychol Rep 1996; **79**: 899-902 [PMID: 8969098 DOI: 10.2466/pr0.1996.79.3.899]
- Pluhar E, Kavanaugh JR, Levinson JA, Rich M. Problematic interactive media use in teens: comorbidities, assessment, 9 and treatment. Psychol Res Behav Manag 2019; 12: 447-455 [PMID: 31308769 DOI: 10.2147/PRBM.S208968]
- 10 Kaess M, Klar J, Kindler J, Parzer P, Brunner R, Carli V, Sarchiapone M, Hoven CW, Apter A, Balazs J, Barzilay S, Bobes J, Cozman D, Gomboc V, Haring C, Kahn JP, Keeley H, Meszaros G, Musa GJ, Postuvan V, Saiz P, Sisask M, Varnik P, Resch F, Wasserman D. Excessive and pathological Internet use - Risk-behavior or psychopathology? Addict Behav 2021; 123: 107045 [PMID: 34332272 DOI: 10.1016/j.addbeh.2021.107045]
- Kuss DJ, Griffiths MD. Online social networking and addiction--a review of the psychological literature. Int J Environ *Res Public Health* 2011; 8: 3528-3552 [PMID: 22016701 DOI: 10.3390/ijerph8093528]
- Shannon H, Bush K, Villeneuve PJ, Hellemans KG, Guimond S. Problematic Social Media Use in Adolescents and 12 Young Adults: Systematic Review and Meta-analysis. JMIR Ment Health 2022; 9: e33450 [PMID: 35436240 DOI: 10.2196/33450
- Block JJ. Issues for DSM-V: internet addiction. Am J Psychiatry 2008; 165: 306-307 [PMID: 18316427 DOI: 13 10.1176/appi.ajp.2007.07101556
- Northrup JC, Lapierre C, Kirk J, Rae C. The Internet Process Addiction Test: Screening for Addictions to Processes 14 Facilitated by the Internet. Behav Sci (Basel) 2015; 5: 341-352 [PMID: 26226007 DOI: 10.3390/bs5030341]
- 15 Pellegrino A, Stasi A, Bhatiasevi V. Research trends in social media addiction and problematic social media use: A bibliometric analysis. Front Psychiatry 2022; 13: 1017506 [PMID: 36458122 DOI: 10.3389/fpsyt.2022.1017506]
- Mahamid FA, Berte DZ, Bdier D. Problematic internet use and its association with sleep disturbance and life satisfaction 16 among Palestinians during the COVID-19 pandemic. Curr Psychol 2022; 41: 8167-8174 [PMID: 34334988 DOI: 10.1007/s12144-021-02124-5]
- Zhao L, Liang C, Gu D. Mobile Social Media Use and Trailing Parents' Life Satisfaction: Social Capital and Social 17 Integration Perspective. Int J Aging Hum Dev 2021; 92: 383-405 [PMID: 32098476 DOI: 10.1177/0091415020905549]
- Boer M, van den Eijnden RJJM, Boniel-Nissim M, Wong SL, Inchley JC, Badura P, Craig WM, Gobina I, Kleszczewska 18 D, Klanšček HJ, Stevens GWJM. Adolescents' Intense and Problematic Social Media Use and Their Well-Being in 29 Countries. J Adolesc Health 2020; 66: S89-S99 [PMID: 32446614 DOI: 10.1016/j.jadohealth.2020.02.014]
- Cheng C, Lau YC, Chan L, Luk JW. Prevalence of social media addiction across 32 nations: Meta-analysis with subgroup 19 analysis of classification schemes and cultural values. Addict Behav 2021; 117: 106845 [PMID: 33550200 DOI: 10.1016/j.addbeh.2021.106845]
- 20 Boer M, van den Eijnden RJJM, Finkenauer C, Boniel-Nissim M, Marino C, Inchley J, Cosma A, Paakkari L, Stevens GWJM. Cross-national validation of the social media disorder scale: findings from adolescents from 44 countries. Addiction 2022; 117: 784-795 [PMID: 34605094 DOI: 10.1111/add.15709]
- 21 Boer M, Stevens GWJM, Finkenauer C, Koning IM, van den Eijnden RJJM. Validation of the Social Media Disorder Scale in Adolescents: Findings From a Large-Scale Nationally Representative Sample. Assessment 2022; 29: 1658-1675 [PMID: 34189943 DOI: 10.1177/10731911211027232]
- 22 van den Eijnden R, Koning I, Doornwaard S, van Gurp F, Ter Bogt T. The impact of heavy and disordered use of games and social media on adolescents' psychological, social, and school functioning. J Behav Addict 2018; 7: 697-706 [PMID: 30264607 DOI: 10.1556/2006.7.2018.65]
- Paakkari L, Tynjälä J, Lahti H, Ojala K, Lyyra N. Problematic Social Media Use and Health among Adolescents. Int J 23 Environ Res Public Health 2021; 18 [PMID: 33672074 DOI: 10.3390/ijerph18041885]
- Tereshchenko S, Kasparov E, Semenova N, Shubina M, Gorbacheva N, Novitckii I, Moskalenko O, Lapteva L. 24 Generalized and Specific Problematic Internet Use in Central Siberia Adolescents: A School-Based Study of Prevalence, Age-Sex Depending Content Structure, and Comorbidity with Psychosocial Problems. Int J Environ Res Public Health 2022; 19 [PMID: 35805263 DOI: 10.3390/ijerph19137593]
- 25 González-Bueso V, Santamaría JJ, Fernández D, Merino L, Montero E, Jiménez-Murcia S, Del Pino-Gutiérrez A, Ribas J. Internet Gaming Disorder in Adolescents: Personality, Psychopathology and Evaluation of a Psychological Intervention Combined With Parent Psychoeducation. Front Psychol 2018; 9: 787 [PMID: 29892241 DOI: 10.3389/fpsyg.2018.00787]
- Weinstein A, Lejoyeux M. Internet addiction or excessive internet use. Am J Drug Alcohol Abuse 2010; 36: 277-283 26 [PMID: 20545603 DOI: 10.3109/00952990.2010.491880]
- Durkee T, Carli V, Floderus B, Wasserman C, Sarchiapone M, Apter A, Balazs JA, Bobes J, Brunner R, Corcoran P, 27 Cosman D, Haring C, Hoven CW, Kaess M, Kahn JP, Nemes B, Postuvan V, Saiz PA, Värnik P, Wasserman D.

Pathological Internet Use and Risk-Behaviors among European Adolescents. Int J Environ Res Public Health 2016; 13 [PMID: 27005644 DOI: 10.3390/ijerph13030294]

- Jiang Q, Huang X, Tao R. Examining Factors Influencing Internet Addiction and Adolescent Risk Behaviors Among 28 Excessive Internet Users. Health Commun 2018; 33: 1434-1444 [PMID: 28850266 DOI: 10.1080/10410236.2017.1358241]
- 29 Huang C. A meta-analysis of the problematic social media use and mental health. Int J Soc Psychiatry 2022; 68: 12-33 [PMID: 33295241 DOI: 10.1177/0020764020978434]
- Wei HT, Chen MH, Huang PC, Bai YM. The association between online gaming, social phobia, and depression: an 30 internet survey. BMC Psychiatry 2012; 12: 92 [PMID: 22839747 DOI: 10.1186/1471-244X-12-92]
- Cerutti R, Presaghi F, Spensieri V, Valastro C, Guidetti V. The Potential Impact of Internet and Mobile Use on Headache 31 and Other Somatic Symptoms in Adolescence. A Population-Based Cross-Sectional Study. Headache 2016; 56: 1161-1170 [PMID: 27255862 DOI: 10.1111/head.12840]
- 32 Suris JC, Akre C, Piguet C, Ambresin AE, Zimmermann G, Berchtold A. Is Internet use unhealthy? Swiss Med Wkly 2014; 144: w14061 [PMID: 25474244 DOI: 10.4414/smw.2014.14061]
- Tereshchenko S, Kasparov E, Smolnikova M, Shubina M, Gorbacheva N, Moskalenko O. Internet Addiction and Sleep 33 Problems among Russian Adolescents: A Field School-Based Study. Int J Environ Res Public Health 2021; 18 [PMID: 34639694 DOI: 10.3390/ijerph181910397]
- Ratan ZA, Parrish AM, Zaman SB, Alotaibi MS, Hosseinzadeh H. Smartphone Addiction and Associated Health Outcomes in Adult Populations: A Systematic Review. Int J Environ Res Public Health 2021; 18 [PMID: 34832011 DOI: 10.3390/ijerph182212257
- Reed P, Vile R, Osborne LA, Romano M, Truzoli R. Problematic Internet Usage and Immune Function. PLoS One 2015; 35 10: e0134538 [PMID: 26244339 DOI: 10.1371/journal.pone.0134538]
- Krivonogova O, Krivonogova E, Poskotinova L. Heart Rate Variability, Time Estimation and Internet-Dependent Behaviour in 16-17-Year-Old Adolescents: A Study in Russian Arctic. Life (Basel) 2021; 11 [PMID: 34072330 DOI: 10.3390/life11060497]
- Poskotinova LV, Krivonogova OV, Zaborsky OS. Cardiovascular response to physical exercise and the risk of Internet 37 addiction in 15-16-year-old adolescents. J Behav Addict 2021; 10: 347-351 [PMID: 33909593 DOI: 10.1556/2006.2021.000211
- Masaeli N, Billieux J. Is Problematic Internet and Smartphone Use Related to Poorer Quality of Life? Curr Addict Rep 38 2022; 9: 235-250 [PMID: 35729927 DOI: 10.1007/s40429-022-00415-w]
- 39 Zamboni L, Portoghese I, Congiu A, Carli S, Munari R, Federico A, Centoni F, Rizzini AL, Lugoboni F. Internet Addiction and Related Clinical Problems: A Study on Italian Young Adults. Front Psychol 2020; 11: 571638 [PMID: 33240160 DOI: 10.3389/fpsyg.2020.571638]
- Cimino S, Cerniglia L. A Longitudinal Study for the Empirical Validation of an Etiopathogenetic Model of Internet 40 Addiction in Adolescence Based on Early Emotion Regulation. Biomed Res Int 2018; 2018: 4038541 [PMID: 29707569 DOI: 10.1155/2018/4038541]
- Hong SB, Zalesky A, Cocchi L, Fornito A, Choi EJ, Kim HH, Suh JE, Kim CD, Kim JW, Yi SH. Decreased functional 41 brain connectivity in adolescents with internet addiction. PLoS One 2013; 8: e57831 [PMID: 23451272 DOI: 10.1371/journal.pone.0057831]
- Kuss DJ, Lopez-Fernandez O. Internet addiction and problematic Internet use: A systematic review of clinical research. 42 World J Psychiatry 2016; 6: 143-176 [PMID: 27014605 DOI: 10.5498/wjp.v6.i1.143]
- Luo T, Qin L, Cheng L, Wang S, Zhu Z, Xu J, Chen H, Liu Q, Hu M, Tong J, Hao W, Wei B, Liao Y. Determination the 43 cut-off point for the Bergen social media addiction (BSMAS): Diagnostic contribution of the six criteria of the components model of addiction for social media disorder. J Behav Addict 2021; 10: 281-290 [PMID: 34010148 DOI: 10.1556/2006.2021.00025]
- Kim HS, Hodgins DC. Component Model of Addiction Treatment: A Pragmatic Transdiagnostic Treatment Model of 44 Behavioral and Substance Addictions. Front Psychiatry 2018; 9: 406 [PMID: 30233427 DOI: 10.3389/fpsyt.2018.00406]
- Vaccaro AG, Potenza MN. Diagnostic and Classification Considerations Regarding Gaming Disorder: Neurocognitive 45 and Neurobiological Features. Front Psychiatry 2019; 10: 405 [PMID: 31258494 DOI: 10.3389/fpsyt.2019.00405]
- Casey BJ, Jones RM, Hare TA. The adolescent brain. Ann NY Acad Sci 2008; 1124: 111-126 [PMID: 18400927 DOI: 46 10.1196/annals.1440.010
- He J, Crews FT. Neurogenesis decreases during brain maturation from adolescence to adulthood. Pharmacol Biochem 47 Behav 2007; 86: 327-333 [PMID: 17169417 DOI: 10.1016/j.pbb.2006.11.003]
- Park B, Han DH, Roh S. Neurobiological findings related to Internet use disorders. Psychiatry Clin Neurosci 2017; 71: 48 467-478 [PMID: 27450920 DOI: 10.1111/pcn.12422]
- Weinstein A, Livny A, Weizman A. New developments in brain research of internet and gaming disorder. Neurosci 49 Biobehav Rev 2017; 75: 314-330 [PMID: 28193454 DOI: 10.1016/j.neubiorev.2017.01.040]
- 50 Weinstein A, Lejoyeux M. New developments on the neurobiological and pharmaco-genetic mechanisms underlying internet and videogame addiction. Am J Addict 2015; 24: 117-125 [PMID: 25864599 DOI: 10.1111/ajad.12110]
- 51 Yuan K, Cheng P, Dong T, Bi Y, Xing L, Yu D, Zhao L, Dong M, von Deneen KM, Liu Y, Qin W, Tian J. Cortical thickness abnormalities in late adolescence with online gaming addiction. PLoS One 2013; 8: e53055 [PMID: 23326379 DOI: 10.1371/journal.pone.0053055]
- Liu J, Gao XP, Osunde I, Li X, Zhou SK, Zheng HR, Li LJ. Increased regional homogeneity in internet addiction disorder: 52 a resting state functional magnetic resonance imaging study. Chin Med J (Engl) 2010; 123: 1904-1908 [PMID: 20819576]
- Park HS, Kim SH, Bang SA, Yoon EJ, Cho SS, Kim SE. Altered regional cerebral glucose metabolism in internet game 53 overusers: a 18F-fluorodeoxyglucose positron emission tomography study. CNS Spectr 2010; 15: 159-166 [PMID: 20414165 DOI: 10.1017/S1092852900027437]
- Kim SH, Baik SH, Park CS, Kim SJ, Choi SW, Kim SE. Reduced striatal dopamine D2 receptors in people with Internet 54 addiction. Neuroreport 2011; 22: 407-411 [PMID: 21499141 DOI: 10.1097/WNR.0b013e328346e16e]

- Ioannidis K, Hook R, Goudriaan AE, Vlies S, Fineberg NA, Grant JE, Chamberlain SR. Cognitive deficits in problematic 55 internet use: meta-analysis of 40 studies. Br J Psychiatry 2019; 215: 639-646 [PMID: 30784392 DOI: 10.1192/bjp.2019.3]
- Zhang M, Gao X, Yang Z, Wen M, Huang H, Zheng R, Wang W, Wei Y, Cheng J, Han S, Zhang Y. Shared gray matter 56 alterations in subtypes of addiction: a voxel-wise meta-analysis. Psychopharmacology (Berl) 2021; 238: 2365-2379 [PMID: 34313804 DOI: 10.1007/s00213-021-05920-w]
- Zheng H, Hu Y, Wang Z, Wang M, Du X, Dong G. Meta-analyses of the functional neural alterations in subjects with 57 Internet gaming disorder: Similarities and differences across different paradigms. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94: 109656 [PMID: 31145927 DOI: 10.1016/j.pnpbp.2019.109656]
- McGlade EC, Han DH, Kim SM, Shi X, Cline K, Yurgelun-Todd D, Renshaw PF. Proton magnetic resonance 58 spectroscopy (MRS) in individuals with internet gaming. Front Psychiatry 2022; 13: 1031947 [PMID: 36620656 DOI: 10.3389/fpsyt.2022.1031947]
- 59 Solly JE, Hook RW, Grant JE, Cortese S, Chamberlain SR. Structural gray matter differences in Problematic Usage of the Internet: a systematic review and meta-analysis. Mol Psychiatry 2022; 27: 1000-1009 [PMID: 34642454 DOI: 10.1038/s41380-021-01315-7
- Sharifat H, Suppiah S. Electroencephalography-detected neurophysiology of internet addiction disorder and internet gaming disorder in adolescents - A review. Med J Malaysia 2021; 76: 401-413 [PMID: 34031341]
- Lee JY, Choi CH, Park M, Park S, Choi JS. Enhanced resting-state EEG source functional connectivity within the default 61 mode and reward-salience networks in internet gaming disorder. Psychol Med 2022; 52: 2189-2197 [PMID: 35193713 DOI: 10.1017/S0033291722000137]
- Brand M, Wegmann E, Stark R, Müller A, Wölfling K, Robbins TW, Potenza MN. The Interaction of Person-Affect-62 Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neurosci Biobehav Rev 2019; 104: 1-10 [PMID: 31247240 DOI: 10.1016/j.neubiorev.2019.06.032]
- Leménager T, Dieter J, Hill H, Hoffmann S, Reinhard I, Beutel M, Vollstädt-Klein S, Kiefer F, Mann K. Exploring the 63 Neural Basis of Avatar Identification in Pathological Internet Gamers and of Self-Reflection in Pathological Social Network Users. J Behav Addict 2016; 5: 485-499 [PMID: 27415603 DOI: 10.1556/2006.5.2016.048]
- Liu C, Ren L, Li K, Yang W, Li Y, Rotaru K, Wei X, Yücel M, Albertella L. Understanding the Association Between 64 Intolerance of Uncertainty and Problematic Smartphone Use: A Network Analysis. Front Psychiatry 2022; 13: 917833 [PMID: 35898626 DOI: 10.3389/fpsyt.2022.917833]
- Dieter J, Hoffmann S, Mier D, Reinhard I, Beutel M, Vollstädt-Klein S, Kiefer F, Mann K, Leménager T. The role of 65 emotional inhibitory control in specific internet addiction - an fMRI study. Behav Brain Res 2017; 324: 1-14 [PMID: 28174031 DOI: 10.1016/j.bbr.2017.01.046]
- He Q, Turel O, Bechara A. Brain anatomy alterations associated with Social Networking Site (SNS) addiction. Sci Rep 66 2017; 7: 45064 [PMID: 28332625 DOI: 10.1038/srep45064]
- 67 Montag C, Markowetz A, Blaszkiewicz K, Andone I, Lachmann B, Sariyska R, Trendafilov B, Eibes M, Kolb J, Reuter M, Weber B, Markett S. Facebook usage on smartphones and gray matter volume of the nucleus accumbens. Behav Brain Res 2017; 329: 221-228 [PMID: 28442353 DOI: 10.1016/j.bbr.2017.04.035]
- Montag C, Zhao Z, Sindermann C, Xu L, Fu M, Li J, Zheng X, Li K, Kendrick KM, Dai J, Becker B. Internet 68 Communication Disorder and the structure of the human brain: initial insights on WeChat addiction. Sci Rep 2018; 8: 2155 [PMID: 29391461 DOI: 10.1038/s41598-018-19904-y]
- Wegmann E, Müller SM, Ostendorf S and Brand M. Highlighting Internet-Communication Disorder as Further Internet-69 Use Disorder When Considering Neuroimaging Studies. Current Behavioral Neuroscience Reports 2018; 5: 295-301 [DOI: 10.1007/s40473-018-0164-7]
- Sadeghi S, Takeuchi H, Shalani B, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, 70 Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Magistro D, Sassa Y, Kawashima R. Brain Anatomy Alterations and Mental Health Challenges Correlate to Email Addiction Tendency. Brain Sci 2022; 12 [PMID: 36291212 DOI: 10.3390/brainsci12101278]
- Lu DW, Wang JW, Huang AC. Differentiation of Internet addiction risk level based on autonomic nervous responses: the Internet-addiction hypothesis of autonomic activity. Cyberpsychol Behav Soc Netw 2010; 13: 371-378 [PMID: 20712495 DOI: 10.1089/cyber.2009.0254]
- 72 Li S, Wu Q, Tang C, Chen Z, Liu L. Exercise-Based Interventions for Internet Addiction: Neurobiological and Neuropsychological Evidence. Front Psychol 2020; 11: 1296 [PMID: 32670157 DOI: 10.3389/fpsyg.2020.01296]
- 73 Gori A, Topino E, Griffiths MD. The associations between attachment, self-esteem, fear of missing out, daily time expenditure, and problematic social media use: A path analysis model. Addict Behav 2023; 141: 107633 [PMID: 36753932 DOI: 10.1016/j.addbeh.2023.107633]
- Cannito L, Annunzi E, Viganò C, Dell'Osso B, Vismara M, Sacco PL, Palumbo R, D'Addario C. The Role of Stress and 74 Cognitive Absorption in Predicting Social Network Addiction. Brain Sci 2022; 12 [PMID: 35625029 DOI: 10.3390/brainsci12050643
- Tsumura H, Fukuda M, Kanda H. Blunted cortisol and normal sympathetic nervous system responses to an acute psychosocial stressor in internet addiction. Heliyon 2022; 8: e12142 [PMID: 36582718 DOI: 10.1016/j.heliyon.2022.e12142]
- 76 Balaganesh S, Balasubramaniam A, Indiran MA, Rathinavelu PK, Kumar MPS. Determination of salivary cortisol and salivary pH level in gaming teenagers - A cross-sectional study. J Oral Biol Craniofac Res 2022; 12: 838-842 [PMID: 36186268 DOI: 10.1016/j.jobcr.2022.09.005]
- Chun JW, Choi J, Cho H, Choi MR, Ahn KJ, Choi JS, Kim DJ. Role of Frontostriatal Connectivity in Adolescents With 77 Excessive Smartphone Use. Front Psychiatry 2018; 9: 437 [PMID: 30258373 DOI: 10.3389/fpsyt.2018.00437]
- Heinze K, Lin A, Reniers RLEP, Wood SJ. Longer-term increased cortisol levels in young people with mental health 78 problems. Psychiatry Res 2016; 236: 98-104 [PMID: 26749569 DOI: 10.1016/j.psychres.2015.12.025]
- 79 Montag C, Sindermann C, Becker B, Panksepp J. An Affective Neuroscience Framework for the Molecular Study of

Internet Addiction. Front Psychol 2016; 7: 1906 [PMID: 28018255 DOI: 10.3389/fpsyg.2016.01906]

- Sindermann C, Sariyska R, Elhai JD, Montag C. Molecular genetics of neurotransmitters and neuropeptides involved in 80 Internet use disorders including first insights on a potential role of hypothalamus' oxytocin hormone. Handb Clin Neurol 2021; 182: 389-400 [PMID: 34266607 DOI: 10.1016/B978-0-12-819973-2.00026-5]
- 81 Carpita B, Muti D, Nardi B, Benedetti F, Cappelli A, Cremone IM, Carmassi C, Dell'Osso L. Biochemical Correlates of Video Game Use: From Physiology to Pathology. A Narrative Review. Life (Basel) 2021; 11 [PMID: 34440519 DOI: 10.3390/life11080775]
- Antons S, Brand M, Potenza MN. Neurobiology of cue-reactivity, craving, and inhibitory control in non-substance 82 addictive behaviors. J Neurol Sci 2020; 415: 116952 [PMID: 32534370 DOI: 10.1016/j.jns.2020.116952]
- Solly JE, Grant JE, Chamberlain SR. Pharmacological interventions for Problematic Usage of the Internet (PUI): A 83 narrative review of current progress and future directions. Curr Opin Behav Sci 2022; 46: 101158 [PMID: 35746944 DOI: 10.1016/j.cobeha.2022.101158]
- Egorov AY, Grechanyi SV. [Current approaches to the treatment and correction of Internet addiction]. Zh Nevrol Psikhiatr 84 Im S S Korsakova 2019; 119: 152-159 [PMID: 31407696 DOI: 10.17116/jnevro2019119061152]
- Chen BC, Chen MY, Wu YF, Wu YT. The Relationship of Social Media Addiction With Internet Use and Perceived 85 Health: The Moderating Effects of Regular Exercise Intervention. Front Public Health 2022; 10: 854532 [PMID: 35602127 DOI: 10.3389/fpubh.2022.854532]
- Li S, Ma S, Wang D, Zhang H, Li Y, Wang J, Li J, Zhang B, Gross J, De Dreu CKW, Wang WX, Ma Y. Oxytocin and the 86 Punitive Hub-Dynamic Spread of Cooperation in Human Social Networks. J Neurosci 2022; 42: 5930-5943 [PMID: 35760532 DOI: 10.1523/JNEUROSCI.2303-21.2022]
- Bonassi A, Cataldo I, Gabrieli G, Foo JN, Lepri B, Esposito G. Oxytocin Receptor Gene Polymorphisms and Early 87 Parental Bonding Interact in Shaping Instagram Social Behavior. Int J Environ Res Public Health 2020; 17 [PMID: 33022913 DOI: 10.3390/ijerph17197232]
- Carollo A, Bonassi A, Cataldo I, Gabrieli G, Tandiono M, Foo JN, Lepri B, Esposito G. The relation between oxytocin 88 receptor gene polymorphisms, adult attachment and Instagram sociability: An exploratory analysis. Heliyon 2021; 7: e07894 [PMID: 34611556 DOI: 10.1016/j.heliyon.2021.e07894]
- 89 Pedersen CA. Oxytocin, Tolerance, and the Dark Side of Addiction. Int Rev Neurobiol 2017; 136: 239-274 [PMID: 29056153 DOI: 10.1016/bs.irn.2017.08.003]
- Leong KC, Cox S, King C, Becker H, Reichel CM. Oxytocin and Rodent Models of Addiction. Int Rev Neurobiol 2018; 90 140: 201-247 [PMID: 30193705 DOI: 10.1016/bs.irn.2018.07.007]
- Lee MR, Weerts EM. Oxytocin for the treatment of drug and alcohol use disorders. Behav Pharmacol 2016; 27: 640-648 91 [PMID: 27603752 DOI: 10.1097/FBP.000000000000258]
- Orellana JA, Cerpa W, Carvajal MF, Lerma-Cabrera JM, Karahanian E, Osorio-Fuentealba C, Quintanilla RA. New 92 Implications for the Melanocortin System in Alcohol Drinking Behavior in Adolescents: The Glial Dysfunction Hypothesis. Front Cell Neurosci 2017; 11: 90 [PMID: 28424592 DOI: 10.3389/fncel.2017.00090]
- 93 Choi MR, Cho H, Chun JW, Yoo JH, Kim DJ. Increase of orexin A in the peripheral blood of adolescents with Internet gaming disorder. J Behav Addict 2020; 9: 93-104 [PMID: 31957460 DOI: 10.1556/2006.8.2019.65]
- 94 Ferraro L, Tiozzo Fasiolo L, Beggiato S, Borelli AC, Pomierny-Chamiolo L, Frankowska M, Antonelli T, Tomasini MC, Fuxe K, Filip M. Neurotensin: A role in substance use disorder? J Psychopharmacol 2016; 30: 112-127 [PMID: 26755548 DOI: 10.1177/0269881115622240]
- Hoyer D, Jacobson LH. Orexin in sleep, addiction and more: is the perfect insomnia drug at hand? Neuropeptides 2013; 95 47: 477-488 [PMID: 24215799 DOI: 10.1016/j.npep.2013.10.009]
- Sandweiss AJ, Vanderah TW. The pharmacology of neurokinin receptors in addiction: prospects for therapy. Subst Abuse 96 Rehabil 2015; 6: 93-102 [PMID: 26379454 DOI: 10.2147/SAR.S70350]
- Koob GF. The dark side of emotion: the addiction perspective. Eur J Pharmacol 2015; 753: 73-87 [PMID: 25583178 97 DOI: 10.1016/j.ejphar.2014.11.044]
- 98 Li X, Wolf ME. Multiple faces of BDNF in cocaine addiction. Behav Brain Res 2015; 279: 240-254 [PMID: 25449839 DOI: 10.1016/j.bbr.2014.11.018]
- Geoffroy H, Noble F. BDNF During Withdrawal. Vitam Horm 2017; 104: 475-496 [PMID: 28215305 DOI: 99 10.1016/bs.vh.2016.10.009]
- Jeong JE, Paik SH, Choi MR, Cho H, Choi JS, Choi SW, Kim DJ. Altered Plasma Levels of Glial Cell Line-Derived 100 Neurotrophic Factor in Patients with Internet Gaming Disorder: A Case-Control, Pilot Study. Psychiatry Investig 2019; 16: 469-474 [PMID: 31247707 DOI: 10.30773/pi.2019.04.02.2]
- 101 Li M, Chen J, Li N, Li X. A twin study of problematic internet use: its heritability and genetic association with effortful control. Twin Res Hum Genet 2014; 17: 279-287 [PMID: 24933598 DOI: 10.1017/thg.2014.32]
- Ayorech Z, Baldwin JR, Pingault JB, Rimfeld K, Plomin R. Gene-environment correlations and genetic confounding 102 underlying the association between media use and mental health. Sci Rep 2023; 13: 1030 [PMID: 36658215 DOI: 10.1038/s41598-022-25374-0]
- Vink JM, van Beijsterveldt TC, Huppertz C, Bartels M, Boomsma DI. Heritability of compulsive Internet use in 103 adolescents. Addict Biol 2016; 21: 460-468 [PMID: 25582809 DOI: 10.1111/adb.12218]
- Long EC, Verhulst B, Neale MC, Lind PA, Hickie IB, Martin NG, Gillespie NA. The Genetic and Environmental 104 Contributions to Internet Use and Associations With Psychopathology: A Twin Study. Twin Res Hum Genet 2016; 19: 1-9 [PMID: 26693596 DOI: 10.1017/thg.2015.91]
- 105 Hahn E, Reuter M, Spinath FM, Montag C. Internet addiction and its facets: The role of genetics and the relation to selfdirectedness. Addict Behav 2017; 65: 137-146 [PMID: 27816039 DOI: 10.1016/j.addbeh.2016.10.018]
- 106 Miller G, Zhu G, Wright MJ, Hansell NK, Martin NG. The heritability and genetic correlates of mobile phone use: a twin study of consumer behavior. Twin Res Hum Genet 2012; 15: 97-106 [PMID: 22784459 DOI: 10.1375/twin.15.1.97]
- 107 Han DH, Lee YS, Yang KC, Kim EY, Lyoo IK, Renshaw PF. Dopamine genes and reward dependence in adolescents

with excessive internet video game play. J Addict Med 2007; 1: 133-138 [PMID: 21768948 DOI: 10.1097/ADM.0b013e31811f465f]

- 108 Sun C, Spathis R, Sankaranarayanan K, Chan CW and Lum JK. Genetic-linked inattentiveness protects individuals from internet overuse: A Genetic study of internet overuse evaluating hypotheses based on addiction, inattention, noveltyseeking and harm-avoidance. Informing Science 2016; 19: 173-200 [DOI: 10.28945/3520]
- Paik SH, Choi MR, Kwak SM, Bang SH, Chun JW, Kim JY, Choi J, Cho H, Jeong JE, Kim DJ. An association study of 109 Taq1A ANKK1 and C957T and - 141C DRD2 polymorphisms in adults with internet gaming disorder: a pilot study. Ann Gen Psychiatry 2017; 16: 45 [PMID: 29234453 DOI: 10.1186/s12991-017-0168-9]
- Lee M, Cho H, Jung SH, Yim SH, Cho SM, Chun JW, Paik SH, Park YE, Cheon DH, Lee JE, Choi JS, Kim DJ, Chung 110 YJ. Circulating MicroRNA Expression Levels Associated With Internet Gaming Disorder. Front Psychiatry 2018; 9: 81 [PMID: 29593587 DOI: 10.3389/fpsyt.2018.00081]
- 111 Dick DM, Wang JC, Plunkett J, Aliev F, Hinrichs A, Bertelsen S, Budde JP, Goldstein EL, Kaplan D, Edenberg HJ, Nurnberger J Jr, Hesselbrock V, Schuckit M, Kuperman S, Tischfield J, Porjesz B, Begleiter H, Bierut LJ, Goate A. Family-based association analyses of alcohol dependence phenotypes across DRD2 and neighboring gene ANKK1. Alcohol Clin Exp Res 2007; 31: 1645-1653 [PMID: 17850642 DOI: 10.1111/j.1530-0277.2007.00470.x]
- 112 Yen JY, Lin PC, Lin HC, Lin PY, Chou WP, Ko CH. Association of Internet gaming disorder with catechol-Omethyltransferase: Role of impulsivity and fun-seeking. Kaohsiung J Med Sci 2022; 38: 70-76 [PMID: 34558801 DOI: 10.1002/kjm2.12454]
- Kim E, Lee D, Do K, Kim J. Interaction Effects of DRD2 Genetic Polymorphism and Interpersonal Stress on Problematic 113 Gaming in College Students. Genes (Basel) 2022; 13 [PMID: 35328003 DOI: 10.3390/genes13030449]
- Park J, Sung JY, Kim DK, Kong ID, Hughes TL, Kim N. Genetic association of human Corticotropin-Releasing Hormone 114 Receptor 1 (CRHR1) with Internet gaming addiction in Korean male adolescents. BMC Psychiatry 2018; 18: 396 [PMID: 30572854 DOI: 10.1186/s12888-018-1974-6]
- 115 Cerniglia L, Cimino S, Marzilli E, Pascale E, Tambelli R. Associations Among Internet Addiction, Genetic Polymorphisms, Family Functioning, and Psychopathological Risk: Cross-Sectional Exploratory Study. JMIR Ment Health 2020; 7: e17341 [PMID: 33361057 DOI: 10.2196/17341]
- 116 Lee YS, Han DH, Yang KC, Daniels MA, Na C, Kee BS, Renshaw PF. Depression like characteristics of 5HTTLPR polymorphism and temperament in excessive internet users. J Affect Disord 2008; 109: 165-169 [PMID: 18045695 DOI: 10.1016/j.jad.2007.10.020]
- 117 Zhang Y, Yao S, Schmitt H, Becker B, Kendrick KM, Montag C. Molecular genetic associations between a prominent serotonin transporter gene polymorphism (5-HTTLPR/rs25531) and individual differences in tendencies toward autistic traits and generalized internet use disorder in China and Germany. Brain Behav 2022; 12: e2747 [PMID: 36106519 DOI: 10.1002/brb3.2747
- 118 Montag C, Kirsch P, Sauer C, Markett S, Reuter M. The role of the CHRNA4 gene in Internet addiction: a case-control study. J Addict Med 2012; 6: 191-195 [PMID: 22722381 DOI: 10.1097/ADM.0b013e31825ba7e7]
- 119 Jeong JE, Rhee JK, Kim TM, Kwak SM, Bang SH, Cho H, Cheon YH, Min JA, Yoo GS, Kim K, Choi JS, Choi SW, Kim DJ. The association between the nicotinic acetylcholine receptor a4 subunit gene (CHRNA4) rs1044396 and Internet gaming disorder in Korean male adults. PLoS One 2017; 12: e0188358 [PMID: 29240768 DOI: 10.1371/journal.pone.0188358
- 120 Kim JY, Jeong JE, Rhee JK, Cho H, Chun JW, Kim TM, Choi SW, Choi JS, Kim DJ. Targeted exome sequencing for the identification of a protective variant against Internet gaming disorder at rs2229910 of neurotrophic tyrosine kinase receptor, type 3 (NTRK3): A pilot study. J Behav Addict 2016; 5: 631-638 [PMID: 27826991 DOI: 10.1556/2006.5.2016.077
- 121 Koob GF, Zorrilla EP. Neurobiological mechanisms of addiction: focus on corticotropin-releasing factor. Curr Opin Investig Drugs 2010; 11: 63-71 [PMID: 20047160]
- Ray LA, Sehl M, Bujarski S, Hutchison K, Blaine S, Enoch MA. The CRHR1 gene, trauma exposure, and alcoholism risk: 122 a test of G × E effects. Genes Brain Behav 2013; 12: 361-369 [PMID: 23473364 DOI: 10.1111/gbb.12032]
- Blomeyer D, Treutlein J, Esser G, Schmidt MH, Schumann G, Laucht M. Interaction between CRHR1 gene and stressful 123 life events predicts adolescent heavy alcohol use. Biol Psychiatry 2008; 63: 146-151 [PMID: 17597588 DOI: 10.1016/j.biopsych.2007.04.026]
- 124 Chen AC, Manz N, Tang Y, Rangaswamy M, Almasy L, Kuperman S, Nurnberger J Jr, O'Connor SJ, Edenberg HJ, Schuckit MA, Tischfield J, Foroud T, Bierut LJ, Rohrbaugh J, Rice JP, Goate A, Hesselbrock V, Porjesz B. Singlenucleotide polymorphisms in corticotropin releasing hormone receptor 1 gene (CRHR1) are associated with quantitative trait of event-related potential and alcohol dependence. Alcohol Clin Exp Res 2010; 34: 988-996 [PMID: 20374216 DOI: 10.1111/j.1530-0277.2010.01173.x
- Yen JY, Chou WP, Lin HC, Wu HC, Tsai WX, Ko CH. Roles of Hostility and Depression in the Association between the 125 MAOA Gene Polymorphism and Internet Gaming Disorder. Int J Environ Res Public Health 2021; 18 [PMID: 34199135 DOI: 10.3390/ijerph18136910]
- 126 Sariyska R, Lachmann B, Reuter M, Cheng C, Gnisci A, Kaliszewska-Czeremska K, Laconi S, Zhong S, Toraman D and Montag C. Internet use: molecular influences of a functional variant on the OXTR gene, the motivation behind using the Internet, and cross-cultural specifics. Pers. Individ. Differ 2016; 100: 512 [DOI: 10.1016/j.paid.2016.05.286]
- Kibitov AO, Trusova AV, Chuprova NA, Solovieva MG, Grechaniy SV, Soldatkin VA, Yakovlev AN, Ilyuk RD, 127 Nikolishin AE, Krupitsky EM, Shmukler AB, Egorov AY. [An associations of possible genetic risk markers for Internet addiction with childhood trauma experience and personality traits in young adults : preliminary results]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121: 77-83 [PMID: 34460161 DOI: 10.17116/jnevro202112107177]
- Werling AM, Grünblatt E. A review of the genetic basis of problematic Internet use. Curr Opin Behav Sci 2022; 46: 128 101149 [DOI: 10.1016/j.cobeha.2022.101149]
- Ryding FC, Kaye LK. "Internet Addiction": a Conceptual Minefield. Int J Ment Health Addict 2018; 16: 225-232 [PMID: 129 29491771 DOI: 10.1007/s11469-017-9811-6]

- 130 Griffiths MD. Conceptual Issues Concerning Internet Addiction and Internet Gaming Disorder: Further Critique on Ryding and Kaye (2017). Int J Ment Health Addict 2018; 16: 233-239 [PMID: 29491772 DOI: 10.1007/s11469-017-9818-z]
- 131 Sepede G, Tavino M, Santacroce R, Fiori F, Salerno RM, Di Giannantonio M. Functional magnetic resonance imaging of internet addiction in young adults. World J Radiol 2016; 8: 210-225 [PMID: 26981230 DOI: 10.4329/wjr.v8.i2.210]
- Turel O, He Q, Xue G, Xiao L, Bechara A. Examination of neural systems sub-serving facebook "addiction". 132 Psychological reports 2014; 115: 675-95 [PMID: 25489985 DOI: 10.2466/18.PR0.115c31z8]
- He Q, Turel O, Brevers D, Bechara A. Excess social media use in normal populations is associated with amygdala-striatal 133 but not with prefrontal morphology. Psychiatry research. Neuroimaging 2017; 269: 31-35 [PMID: 28918269 DOI: 10.1016/j.pscychresns.2017.09.003]
- 134 Casale S. Problematic social media use: Conceptualization, assessment and trends in scientific literature. Addict Behav *Rep* 2020; **12**: 100281 [PMID: 32426449 DOI: 10.1016/j.abrep.2020.100281]

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

