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Abstract
Accumulating translational evidence suggests that the 

long-chain omega-3 fatty acid docosahexaenoic acid 
(DHA) plays a role in the maturation and stability of 
cortical circuits that are impaired in different recurrent 
psychiatric disorders. Specifically, rodent and cell 
culture studies find that DHA preferentially accumulates 
in synaptic and growth cone membranes and promotes 
neurite outgrowth, dendritic spine stability, and synapto-
genesis. Additional evidence suggests that DHA may 
play a role in microglia-mediated synaptic pruning, as 
well as myelin development and resilience. In non-
human primates n -3 fatty acid insufficiency during 
perinatal development leads to widespread deficits 
in functional connectivity in adult frontal cortical 
networks compared to primates raised on DHA-fortified 
diet. Preterm delivery in non-human primates and 
humans is associated with early deficits in cortical DHA 
accrual. Human preterm birth is associated with long-
standing deficits in myelin integrity and cortical circuit 
connectivity and increased risk for attention deficit/
hyperactivity disorder (ADHD), mood, and psychotic 
disorders. In general, ADHD and mood and psychotic 
disorders initially emerge during rapid periods of 
cortical circuit maturation and are characterized by DHA 
deficits, myelin pathology, and impaired cortical circuit 
connectivity. Together these associations suggest that 
early and uncorrected deficits in fetal brain DHA accrual 
may represent a modifiable risk factor for cortical circuit 
maturation deficits in psychiatric disorders, and could 
therefore have significant implications for informing 
early intervention and prevention strategies.
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fatty acid (DHA) accrual on the maturation and long-
term stability of cortical circuitry is only beginning to be 
fully understood, extant translational evidence suggests 
that DHA plays a role in the initial development and 
early maturation of cortical circuits. Emerging evidence 
from human neuroimaging studies further suggests that 
psychiatric disorders that initially emerge in childhood and 
adolescence and associated with low blood DHA levels 
are characterized by frontal circuit deficits compared with 
healthy developing youth. Based on existing evidence, 
these associations could have significant implications for 
informing novel early intervention strategies aimed at 
reducing the transmission of psychopathology.
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INTRODUCTION
Over the past 30 years evidence has emerged from 
both animal and clinical research implicating long-
chain omega-3 (LCn-3) fatty acids in normal brain 
development and function. The principal LCn-3 
fatty acid found in mammalian brain gray matter 
is docosahexaenoic acid (DHA), which comprises 
approximately 10%-20% of total fatty acid composition 
in the adult frontal cortex[1,2]. Although the omega-3 
fatty acid precursors of DHA, including α-linolenic acid 
(ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), 
and docosapentaenoic acid (22:5n-3), cross the blood-
brain barrier, they are rapidly oxidized and consequently 
comprise < 1% of total brain fatty acid composition[3]. 
Mammals require a dietary source of n-3 fatty acids to 
procure and maintain adequate concentrations of DHA 
in peripheral and central tissues. Although DHA can be 
biosynthesized from the vegetable short-chain n-3 fatty 
acid precursor ALA via a series of microsomal desaturase, 
elongase, and peroxisomal reactions, preformed DHA 
is significantly more effective than ALA for increasing 
erythrocyte[4], breast milk[5,6], and cortical gray matter[7,8] 
DHA concentrations. Primary dietary sources of DHA 
include cold water fatty fish, milk and eggs fortified with 
DHA, and fish oil (FO) or algal supplements. 

Human infant, childhood, and adolescence are 
critical developmental periods associated with the 
formation and establishment of structural and functional 
connectivity between frontal lobe regions that mediate 
attention and executive function and limbic structures 
that mediate emotion and mood[9-11]. During this 
perinatal period DHA concentrations increase sharply 
in the frontal cortex[1] and may therefore play an 
important role in cortical circuit maturation. This is 
supported in part by recently emerging neuroimaging 

data that suggests that DHA status is positively 
correlated with frontal cortex structural and functional 
integrity in human subjects across the lifespan[12]. 
Moreover, preterm delivery is associated with early 
deficits in cortical DHA accrual, long-standing deficits 
in cortical circuit maturation, and increased risk for 
developing psychiatric disorders. Lastly, psychiatric 
disorders which frequently initially emerge during 
rapid periods of cortical circuit maturation and are 
characterized by DHA deficits, myelin pathology, and 
impaired cortical circuit connectivity (see below). These 
associations support the hypothesis that LCn-3 fatty 
acids play a role in the early development of cortical 
circuits and that LCn-3 fatty acid insufficiency may 
represent a modifiable neurodevelopmental risk factor 
for psychiatric disorders. This review critically evaluates 
translational evidence implicating LCn-3 fatty acids 
in cortical circuit development, highlights plausible 
molecular and ultrastructural mechanisms, and explores 
potential relevance to the pathoetiology of recurrent 
neuropsychiatric disorders.

RODENT NEURODEVELOPMENT
During perinatal rodent brain development, cortical 
DHA concentrations increase sharply in conjunction with 
active periods of neurogenesis, neuroblast migration, 
and synaptogenesis[13]. For example, there is a 5-fold 
increase in cortical DHA levels during the late gestation 
compared with early gestation[13]. DHA preferentially 
accumulates in neuronal growth cone[14,15] and mature 
synaptic[16,17] membranes where it modulates membrane 
signaling dynamics and synaptogenesis[18,19]. DHA also 
increases neurotrophic factor expression including nerve 
growth factor (NGF) and brain-derived growth factor 
(BDNF)[20,21], and promotes neurite outgrowth[22-26].  
Dietary-induced deficits in brain DHA accrual during 
perinatal maturation are associated with reductions in 
neurogenesis[27,28], delays in neuronal migration and 
embryonic cortical plate expansion[29,30], and reduced 
synaptic plasticity and connectivity[24]. Additionally, DHA 
and its bioactive metabolites are protective against a 
variety of neuronal insults associated with oxidative 
stress and lipid peroxidation in the fetal[31-33] and adult 
rat brain[34-39]. 

One consequence of changing the fatty acid composition 
of cellular membranes that is relevant to synaptic 
maturation and function is the alteration of phospholipid 
composition. Specifically, perinatal deficits in DHA accrual 
are associated with selective reductions in neuronal 
membrane phosphatidylserine concentrations[40,41], 
whereas perinatal FO supplementation selectively 
increases neuronal membrane phosphatidylserine 
concentrations[23,42]. Importantly, phosphatidylserine 
modulates the activity of signal transduction proteins 
including protein kinase C (PKC)[43]. PKC plays a pivotal 
role in filamentous actin (F-actin) cytoskeletal structural 
plasticity required for neurite outgrowth, growth cone 
motility, dendritic spine formation and stability, as well 
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as neurotransmitter release dynamics[44]. This response 
is mediated in part by PKC-mediated phosphorylation of 
substrate proteins including myristoylated alanine-rich 
C kinase substrate (MARCKS) which cross-links actin 
filaments in a phosphorylation-reversible manner[45]. 
Moreover, MARCKS binds membranes in part by 
electrostatic interactions between phosphatidylserine 
and the highly basic phosphorylation site domain in 
a phosphorylation-reversible manner[46]. Consistent 
with this mechanism, we demonstrated that perinatal 
deficits in DHA accrual were associated with a significant 
reduction in membrane-bound MARCKS, and an 
associated increase in cytosolic MARCKS, in the rat 
hippocampus[47]. These findings suggest that lower 
membrane phosphatidylserine content in response to 
reduced DHA levels are associated with a dysregulation 
in the signal transduction processes that regulate F-actin 
cytoskeletal structural plasticity. 

Electrostatic binding of MARCKS with membrane 
phosphatidylserine also inhibits phospholipase Cβ1-mediated 
hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) 
by sequestering PIP2 in lateral membrane domains[48]. 
Therefore, reductions in MARCKS membrane binding 
would also be predicted to increase Gqα-linked receptor-
initiated hydrolysis of PIP2 into diacylglycerol (DAG) 
and inositol triphosphate (IP3) which increase PKC 
activity and intracellular calcium release, respectively. 
Moreover, free DHA inhibits PKC translocation and 
activity[49-52], and we previously demonstrated that 
perinatal deficits in DHA accrual were associated with 
significant alterations in the subcellular distribution 
PKC isozymes in the rat hippocampus[47]. Importantly, 
increases in PKC-mediated phosphorylation of MARCKS 
leads to a reduction in the tensile strength of the F-actin 
cytoskeleton and associated deficits in dendritic spine 
formation and stability[53]. Moreover, higher brain DHA 
levels are associated with elevated dendritic spine 

density and resilience[54-56], whereas perinatal deficits 
in DHA accrual are associated with reductions in 
synaptic connections[24]. It also relevant that elevations 
in PKC activity have been implicated in dendritic 
spine loss in response to chronic stress[57] and chronic 
inflammation[58,59]. Together, these findings suggest 
that DHA promotes synapse maturation and stability by 
decreasing PKC-mediated dismantlement of the F-actin 
cytoskeleton within synaptic terminals (Figure 1).

In addition to playing a role in the formation 
of new synapses, PKC, MARCKS, and the F-actin 
cytoskeleton also play a role in neurotransmitter vesicle 
trafficking and release efficacy within mature presynaptic 
terminals[60]. A role of DHA in this dynamic process is 
supported by findings of alterations in neurotransmitter 
vesicle distribution within presynaptic terminals[61,62] 

and abnormalities in the release, i.e., increased basal 
release and deficits in stimulated release, of multiple 
neurotransmitter systems including dopamine[63-65], 
serotonin[66], and acetylcholine[67,68] in the DHA-deficient 
rat brain. It is relevant therefore that a dyregulation in 
dopamine[69-73], serotonin[74,75], and acetylcholine[76,77] 
have been implicated in the pathophysiology and 
treatment of mood and psychotic disorders as well as 
neurocognitive impairment. Increased glutamatergic 
synaptic efficacy is required for the induction of long-
term potentiation (LTP) and the formation of new 
axodendritic synaptic connections subserve the 
maintenance of LTP[78-80]. Importantly, deficits in DHA 
accrual during perinatal development are associated 
with impaired LTP and a significant reduction in 
glutamate synapses in the rat hippocampus[24]. LTP is 
also thought to mediate the consolidation and storage 
of new memories[81,82], and perinatal deficits in DHA 
accrual are associated with impaired learning on 
hippocampus-dependent spatial learning tasks[83-85] 
and olfactory discrimination tasks[86-88]. Together, these 
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Figure 1  Potential ultrastructural mechanisms by which membrane DHA deficits could lead to a loss in synaptic connectivity. A: Under normal physiological 
conditions, synaptic membrane phosphatidylserine (gray circles) bind MARCKS (black circles) at the membrane which also cross-links and tethers F-actin to 
support dendritic spine cytoskeletal structural stability. Binding of MARCKS with membrane phosphatidylserine also inhibits phospholipase Cβ1-mediated hydrolysis 
of phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) which increases PKC activity. PKC-mediated phosphorylation of MARCKS reduces the 
tensile strength of the F-actin cytoskeleton leading to the eventual collapse of the spine; B: Under conditions of membrane DHA deficits, reductions in membrane 
phosphatidylserine and membrane-bound MARCKS increase PKC activity and destabilizes the F-actin cytoskeleton leading to spine collapse. Elevated PKC activity 
secondary to membrane DHA deficits may also reduce the resilience of dendritic spines to other pathophysiological factors including chronic stress or inflammation. 
DHA: Docosahexaenoic acid; PKC: Protein kinase C; MARCKS: Myristoylated alanine-rich C kinase substrate.
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perinatal brain DHA accrual on myelin integrity and 
circuit connectivity.

PRIMATE NEURODEVELOPMENT
Consistent with rodent studies, DHA concentrations 
increase sharply in the developing monkey brain 
during perinatal development[103,104], and baboons 
born preterm exhibit cortical DHA deficits compared 
with term births[105,106]. Primate perinatal n-3 fatty 
acid deficiency is associated with deficits in visual 
attention[107], polydipsia (excessive thirst)[108], and 
deficits in visual acuity and electroretinogram 
abnormalities[103,104]. Electroretinogram abnormalities 
have also been observed in neonatal baboons born 
preterm[109]. Consistent with dysregulated dopamine 
activity, perinatal n-3 fatty acid deficiency is associated 
increased home cage stereotypy and locomotion 
bouts[110]. A recent neuroimaging study found that 
resting-state functional connectivity among prefrontal 
cortical networks was impaired in young adult monkeys 
raised on an n-3 fatty acid deficient diet compared with 
monkeys raised on FO-fortified diet[111]. Specifically, 
n-3 fatty acid deficient monkeys exhibited reduced 
connectivity between the dorsal anterior insula (seed 
region) and ventromedial prefrontal, orbitofrontal, 
dorsolateral prefrontal cortices as well as with superior 
temporal sulcus and medial parietal areas. Although 
not specifically investigated, tracer studies demonstrate 
monosynaptic connections between monkey orbito-
frontal cortex and amygdala[112]. Together these findings 
suggest that uncorrected deficits in cortical DHA accrual 
during perinatal brain development leads to reduced 
connectivity within prefrontal cortical networks in young 
adult non-human primates. 

HUMAN NEURODEVELOPMENT
During human neonatal development, DHA accumulates 
in brain tissue at a rapid rate during the third trimester 
in association with active periods of neurogenesis, 
neuroblast migration, differentiation, synaptogenesis, 
and gray matter expansion[113,114]. Importantly, the 
third trimester of gestation is also a period associated 
with the initial formation of connections between brain 
regions including the uncinate fasciculus and superior 
longitudinal fasciculus[115]. Postpartum the neonatal 
brain continues to grow from approximately 350 g 
at birth to approximately 925 g at 1 year of age[116], 
during which DHA represents approximately 9% of total 
cortical fatty acid composition[1,117]. Neonates are wholly 
reliant on maternal breast milk (or formula) as the sole 
source of DHA. Term infants fed formulas without DHA 
consistently exhibit significantly lower erythrocyte and 
postmortem brain cortex DHA concentrations relative 
to breastfed infants or infants fed formula containing 
DHA[118-125]. The recognition that human breast milk 
DHA represents an important source for postnatal infant 

findings provide additional support for a role of cortical 
DHA in activity-dependent synaptic plasticity and 
synaptogenesis.

Critical to the “fine tuning” of cortical circuits during 
postnatal development is the pruning of extraneous 
and aberrant synapses. For example, during the peri-
adolescent period there is a substantial (approximately 
50%) pruning of glutamatergic connections between 
the rat frontal cortex and the amygdala[89]. While there 
is currently little known about the role of DHA in cortical 
synaptic pruning, in the developing rat visual system 
DHA deficits were associated with aberrant axonal 
innervation outside the main terminal zones of the 
superior colliculus which was transient and consistent 
with a delay in synaptic pruning[90]. It is also relevant 
that synaptic pruning is mediated in part by microglial 
phagocytosis[91,92], and a recent study found that DHA 
application to cultured microglia stimulated phagocytosis 
(M2 phenotype) and decreased the production and 
secretion of pro-inflammatory cytokines including 
TNF-α (M1 phenotype)[93]. The latter study also 
demonstrated that DHA application increased microglia 
BDNF biosynthesis, which was positively correlated 
with microglia phagocytosis, and BDNF expression is 
reduced in the frontal cortex of DHA-deficient rats[21]. 
A second study found that deficits in brain DHA accrual 
during perinatal development increased microglial pro-
inflammatory cytokine production in the neonatal rat 
hippocampus, consistent with a non-phagocytotic pro-
inflammatory phenotype[94]. These preliminary findings 
suggest that deficits in brain DHA accrual during 
perinatal development may disrupt synaptic pruning by 
altering the phenotype of microglia. 

An important aspect of cortical circuit maturation 
is the myelination of axons, and DHA accumulates in 
myelin during perinatal rat development[17,95]. While 
there is currently little known about the role of DHA in 
the maturation of myelin sheaths and axonal conduction, 
intracerebroventricular administrations of either EPA or 
DHA in 2-day-old rats increased the expression myelin-
related genes in different brain regions[96]. However, 
maternal FO supplementation, as well as maternal n-3 
fatty acid deficiency, during pregnancy and lactation 
was found to impair auditory brainstem responses in 
neonates which was interpreted as a slowing of neural 
signal conduction[97,98]. A subsequent study found that 
initially lower auditory brainstem responses dissipated 
by young adulthood[98]. Another study found that 
maternal DHA supplementation during pregnancy 
and lactation impaired auditory startle response in 
neonates[95]. In adult rodents increasing dietary LCn-3 
fatty acid status is protective against inflammation-[99] 

and trauma-induced[100,101] axonal white matter 
injury, as well as histopathological features in the 
experimental autoimmune encephalomyelitis model of 
multiple sclerosis[102]. While these preliminary findings 
suggest that there are optimal DHA levels required for 
normal axonal white matter integrity and resilience, 
additional research is needed to evaluate the role of 
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brain DHA accrual led to the widespread commercial 
availability of DHA-fortified infant formula in the United 
States in 2002. 

During early childhood development DHA levels 
continue to increase in the frontal cortex[1] in association 
with linear increases in frontal cortex gray matter 
expansion and myelination[9-11,115], and the maturation 
of frontal lobe-mediated neurocognitive processes 
including attention and executive function[10,126]. During 
adolescent development cortical DHA levels continue 
to increase to approximately 15% total cortical fatty 
acids in young adulthood[1], and this increase coincides 
with frontal cortex synaptic pruning[127-129], white 
matter expansion and maturation[9-11,130,131]. Human 
neuroimaging studies indicate that the childhood and 
adolescent period is associated with the maturation 
of frontal cortical regions that mediate attention and 
executive function and the maturation of uncinate 
fasciculus and superior longitudinal fasciculus functional 
connectivity between frontal regions and limbic 
structures that mediate mood including the amygdala[9-

11](Figure 2). 
As observed in non-human primates[106], human 

infants born preterm exhibit lower erythrocyte and 
postmortem cortical DHA concentrations compared 
with term infants fed the same ALA-fortified formula 
postpartum[113,114,122,132,133]. Structural imaging studies 
have found that children and adolescents born preterm 
exhibit significant reductions in frontal and temporal 
cortical gray matter volumes, reduced amygdala 
and hippocampal volumes, reduced corpus callosum 
and white matter volumes, and enlarged cerebral 
ventricles[134-142]. Reductions in preterm cortical brain 
gray matter volume are correlated with functional 
connectivity deficits[143], and children, adolescents, 
and adults born preterm exhibit reduced connectivity 

within prefrontal cortical networks and decreased white 
matter integrity in different tracts including the uncinate 
fasciculus and superior fasciculus[144-155]. Importantly, 
deficits in white matter integrity have been observed 
in preterm born children with no neonatal ultrasound 
evidence for intraventricular hemorrhage, periventricular 
leukomalacia, low-pressure ventriculomegaly, or cytic 
white matter injury[145]. While these imaging findings 
suggest that deficits in third trimester DHA accrual may 
be associated with long-standing deficits in cortical 
circuit maturation, additional research is needed to 
determine whether early DHA supplementation can 
prevent or reverse these deficits.

Studies have also found that decreased white matter 
integrity in children and adolescents born preterm are 
associated with cognitive impairment and psychiatric 
symptoms[145,156-160]. Children and adolescents born 
preterm exhibit a significantly higher incidence of 
attention deficits, impulsivity, learning disability, language 
impairments, hyperactivity, anxiety, motor impairments, 
and poor social functioning relative to age- and sex-
matched term children/adolescents[161,162]. Importantly, 
preterm birth and/or low birth weight is associated 
with increased risk for developing attention deficit/
hyperactivity disorder (ADHD) in childhood[161,163-165] 
and mood, anxiety, and psychotic disorders during 
adolescence and young adulthood independent of 
multiple confounding variables including maternal history 
of psychiatric illness[163,166-170]. These findings suggest 
that deficits in cortical circuit maturation resulting from 
preterm birth are relevant to the etiology of ADHD in 
childhood and mood and psychotic disorders during 
adolescence and young adulthood. 

While the contribution of DHA deficits to neurological 
and cognitive impairments commonly observed in 
preterm infants and children is poorly understood, 
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Figure 2  Diagram illustrating connectivity between frontal lobe regions, including the dorsolateral prefrontal cortex (Brodmann area 9, BA9,) and 
orbitofrontal cortex (BA11) which regulate attention and executive function, and temporal lobe structures including the amygdala and hippocampus which 
regulate mood and memory. Frontal lobe connectivity with limbic structures is mediated in part by the uncinate fasciculus and superior longitudinal fasciculus which 
develop during gestation and undergo significant maturation during childhood and adolescence. Reduced frontal circuit connectivity is exhibited by DHA-deficient non-
human primates, children and adolescents born preterm, and patients with psychiatric disorders including ADHD and bipolar disorder which are associated with DHA 
deficits. DHA: Docosahexaenoic acid; ADHD: Attention deficit/hyperactivity disorder.
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fortifying human milk or formula with higher levels 
of DHA is associated with improvements in visual 
acuity, sustained attention, and recognition memory 
compared with infants receiving DHA-free formula[171-174]. 
However, a systematic review of randomized controlled 
trials studying the effects of DHA-fortified formula for 
preterm infants concluded that there was no consistent 
effect on infant cognition or visual function[175]. It is 
notable, however, the DHA doses used in the majority 
of studies (0.2%-0.3% DHA) may have been too 
low to compensate for intestinal malabsorption, DHA 
oxidation, and early central DHA deficits in preterm 
infants. Indeed, a dose-response study found that 
milk DHA concentrations of 1% were required to 
increase DHA status in preterm infants to levels similar 
to term infants[176]. Moreover, deficits in cortical DHA 
concentrations in preterm baboons were not fully 
restored to control levels following 4 wk feeding formula 
fortified with a moderate dose of DHA (0.61%)[106]. It 
is also relevant that a placebo-controlled structural MRI 
study found that feeding formula containing lower levels 
of DHA (0.34%) did not significantly alter white matter 
volume in premature infants[177], whereas a preliminary 
intervention study observed improvements in brain 
white matter volumes in neonates with peroxisomal 
disorders following supplementation with higher DHA 
doses (100-600 mg/d)[178]. These and other findings 
have led to new recommendations for higher dose 
DHA supplementation for preterm infants to improve 
neurological and cognitive outcomes[179].  

Prospective longitudinal studies have investigated 
the relationship between fetal cord blood DHA levels 
and neurodevelopmental outcomes in older children. 
These studies have found that higher LCn-3 fatty acid 
intake or cord blood DHA levels are associated with 
higher movement scores at 7 years of age[180,181], better 
neurological scores at 5.5 years[182], better visual function 
at 5 years of age[183], and better recognition memory and 
associated event-related potentials at approximately 11 
years of age[184]. Another study found that higher cord 
blood DHA or LCn-3 fatty acid levels were associated 
with lower parent-reported hyperactivity/inattention and 
emotional symptoms among 416 children at 10 years 
of age[185]. A longitudinal study also found that higher 
cord blood DHA status was associated with lower levels 
of internalizing emotional problems including depression 
and externalizing conduct problems among 393 children 
at 7 years of age in subjects fed DHA-free formula 
but not those fed human milk[186]. The latter finding 
suggests that increasing postnatal dietary DHA intake 
can mitigate the emergence of psychiatric problems 
in youth exposed to low DHA levels in utero. Together, 
these data suggest that lower cord blood DHA levels 
are associated with an enduring negative impact on 
neurocognitive development.

Neonates become wholly reliant on maternal breast 
milk (or formula) as the sole source of DHA. Human 
breast milk DHA concentrations are highly correlated 
with maternal dietary DHA intake[6,187,188] and vary 

widely across different countries in accordance with 
habitual dietary fish consumption, e.g., approximately 
0.17% of total milk fatty acids in the United States 
vs approximately 1.1% of total milk fatty acids 
in Japan[189]. Several studies suggest that longer 
breastfeeding duration, a putative surrogate for early 
postnatal DHA intake, is associated with improved white 
matter microstructure and volume[190,191] and better 
neurocognitive outcomes in childhood, adolescence, and 
adulthood[192-194]. Prospective and retrospective studies 
have also found that shorter breastfeeding duration 
is associated with increased risk for developing ADHD 
in childhood[195-198]. However, the latter studies did not 
determine breast milk DHA concentrations to evaluate 
contribution to functional outcomes and additional/
alternative benefits of longer breastfeeding (i.e., better 
mother-child attachment) may also play an important 
role.

To investigate the relationship between breast-
feeding duration and indices of neuronal integrity and 
function, we conducted a pilot study using proton 
magnetic resonance spectroscopy (1H MRS) in healthy 
boys (age 8-10 years, mean 9.1 ± 0.9 years, n = 38). 
Regions of interest included right and left dorsolateral 
prefrontal cortex (DLPFC) and anterior cingulate cortex 
(ACC). Subjects were breastfed for an average of 9.83 
± 1.7 mo (range: 0-42 mo). Following a median split of 
breastfeeding duration, we compared children who had 
received ≥ 12 mo (n = 16, mean duration: 20 ± 8.9 mo) 
of breastfeeding with those who had received < 12 mo 
(n = 22, mean duration: 2.9 ± 3.2 mo). There were no 
significant differences in demographic variables between 
groups. Children receiving ≥ 12 mo of breastfeeding 
exhibited higher concentrations of N-acetyl aspartate 
(NAA), a putative marker of neuronal integrity, in the 
right DLPFC and ACC compared with subjects receiving 
< 12 mo breastfeeding (Figure 3). Children receiving 
≥ 12 mo breastfeeding also exhibited higher levels of 
glutamate+glutamine (Glx) in the right DLPFC and ACC. 
These preliminary data suggest that longer durations 
of breastfeeding may be an important determinant of 
cortical functional integrity in brain regions mediating 
attention and executive function in healthy developing 
children.

In summary, evidence from animal studies suggests 
that normal brain development requires optimal levels 
of DHA which has neurotrophic and neuroprotective 
properties. A potential ultrastructural mechanism 
mediating the beneficial effects of DHA on synaptic 
maturation and axo-dendritic connectivity is increased 
F-actin cytoskeletal stability in pre- and post-synaptic 
terminals mediated through reductions in PKC activity.  
Additional evidence from non-human primate and 
clinical imaging studies suggest that low DHA levels 
during perinatal development may lead to long-
standing impairments in functional connectivity in 
cortical networks as well as the emergence of cognitive 
impairment, hyperactivity/inattention and emotional 
symptoms in children. Taken collectively, these 
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associations support the assertion that cortical DHA 
accrual during perinatal brain development may play 
a role in the maturation of human cortical networks 
mediating cognitive and emotional processes.

IMPLICATIONS FOR 
PSYCHOPATHOLOGY
Major depressive disorder (MDD), bipolar disorder, 
schizophrenia, and ADHD are chronic and recurrent 
neuropsychiatric disorders that are a prominent 
cause of premature disability. The initial onset of 
ADHD typically occurs prior to seven years of age, 
and the initial onset of major mood and psychotic 
disorders frequently occur during adolescence or early 
adulthood[199-201]. Functional neuroimaging studies 
suggest that deficits in the functional maturation of 
frontal connectivity with limbic structures including 
the amygdala and/or the striatum are associated 
with psychopathology[202-206]. For example, event-
related fMRI studies have repeatedly observed 
greater amygdala activation, and associated deficits 
in orbitofrontal activation, in response to emotional 
stimuli in youth and adults with bipolar disorder[207-209]. 

Although the initial onset of major psychiatric disorders 
commonly coincides with active and dynamic changes 
in frontal circuit connectivity, and psychopathology is 
associated with deficits in frontal circuit connectivity, a 
causal relationship has not been established. Moreover, 
the etiological mechanisms contributing to frontal 
circuit connectivity deficits in psychiatric disorders 
remain poorly understood.

Evidence from cross-national and cross-sectional 
studies suggests that LCn-3 fatty acid deficiency is 
relevant to pathophysiology and potentially etiology 
of different psychiatric disorders. Cross-national 
epidemiological studies have found that higher per 
capita intake of fish/seafood, a surrogate for LCn-3 
fatty acid intake and status[210-212], is associated with 
lower lifetime prevalence rates of unipolar and bipolar 
depression[213-215]. Several population studies have 
similarly found that lower LCn-3 fatty acid intake is 
associated with increased risk for developing depressive 
symptoms[216-221]. It is also relevant that a large 
percentage of adolescents residing in western countries 
consume low quantities of LCn-3 fatty acids in their 
habitual diet[222-225], and lower LCn-3 fatty acid intake 
by adolescents is associated with a higher prevalence 
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of depressive symptoms[226-228]. Together, these data 
suggest that higher habitual dietary LCn-3 fatty acid 
intake may be protective against the development of 
mood dysregulation.  

Habitual dietary LCn-3 fatty acid intake is highly 
correlated with erythrocyte membrane LCn-3 fatty 
acid levels[212], and multiple case-control studies have 
observed significant erythrocyte membrane LCn-3 
fatty acid deficits in patients with psychopathology. 
A meta-analysis of 14 case-control studies found 
significantly lower erythrocyte EPA and DHA levels in 
MDD patients[229]. In bipolar patients, three independent 
studies have observed significant erythrocyte DHA 
deficits compared with healthy controls[230-232]. Importantly, 
erythrocyte DHA deficits have also been observed in 
pediatric and adolescent patients with MDD or bipolar 
disorder proximal to illness onset[233-235]. Medication-
naïve first-episode psychotic patients exhibit erythrocyte 
DHA deficits compared with healthy controls[236,237], 
and a recent meta-analysis of 18 case-control studies 
observed significant DHA deficits in schizophrenic 
patients[238]. A recent meta-analysis of nine cross-
sectional studies observed significantly lower blood 
DHA levels in ADHD children compared with healthy 
controls[239]. Together, these case-control studies 
provide evidence that different psychiatric disorders are 
characterized by low DHA status which coincide with, 
and may precede, the initial onset of psychopathology. 

Dietary LCn-3 fatty acid supplementation has been 
found to significantly increase patient erythrocyte 
LCn-3 fatty acid levels[240-242]. This observation indicates 
that LCn-3 fatty acid deficits in psychiatric patients 
are modifiable by increasing dietary LCn-3 fatty acid 
intake. Importantly, meta-analyses of controlled 
trials have observed a significant advantage of LCn-3 
fatty acid supplementation over placebo for reducing 
depressive symptoms in patients with MDD[243] or 
bipolar disorder[244]. Preliminary trials have found that 
LCn-3 fatty acid supplementation significantly reduces 
depression and manic symptom severity in pediatric 
and adolescent patients[235,241,242,245]. Accumulating 
evidence also suggests that LCn-3 fatty acid supple-
mentation may be efficacious for the treatment of 
positive and negative symptoms in patients with or at 
ultra-high risk for developing schizophrenia[240,246,247], 
and for reducing attention deficits in pediatric and 
adolescent ADHD patients[239,248]. These data suggest 
that LCn-3 fatty acid deficits observed in patients with 
psychiatric disorders are correctable and associated 
with psychiatric symptom severity. 

In general human erythrocyte and frontal cortex 
DHA levels are positively correlated[1], though non-
human primate studies indicate that DHA recuperation 
occurs more rapidly in erythrocytes than cortical 
gray matter[2]. A growing number of case-control 
studies have investigated the fatty acid composition 
of postmortem frontal gray matter from patients with 
mood and psychotic disorders. Some studies have 
observed lower LCn-3 fatty acid levels[249-253] while 

others have not[254-256]. Our group reported that young 
adult patients with MDD[249], bipolar disorder[250], 
and schizophrenia[251] exhibit significant frontal 
cortex DHA deficits compared with controls. In a 
preliminary postmortem study, we also found that DHA 
composition increases sharply in the frontal cortex 
during normal human adolescent development, and 
that this increase is significantly blunted in young adult 
suicide victims[257]. It is also relevant that postmortem 
brain studies have observed reduced dendritic spine 
density and synaptic markers in the frontal cortex of 
patients with mood or psychotic disorders[258-260]. While 
these findings suggest that psychopathology may be 
associated with deficits in cortical DHA accrual and 
reduced synaptic density, limitations associated with 
the postmortem approach constrain interpretation[261].

Emerging evidence from structural neuroimaging 
studies provide additional support a beneficial effect 
of LCn-3 fatty acids on cortical integrity over the 
lifespan[262-266]. For example, one study found that 
greater habitual dietary LCn-3 fatty acid intake, 
which is positively correlated with erythrocyte DHA 
composition, was associated with larger cortical 
gray matter volumes in several corticolimbic regions 
including the anterior cingulate cortex, hippocampus, 
and amygdala[262]. It is relevant, therefore, that 
patients with psychiatric disorders commonly exhibit 
gray matter volume deficits in the anterior cingulate 
cortex, hippocampus, and amygdala[267-269]. Similar to 
children and adolescents born preterm, patients with 
ADHD[270-275], mood disorders[276-283], and psychotic 
disorders[284-287] also exhibit decreased frontal 
white matter tract integrity and reduced functional 
connectivity within cortical networks. Together these 
findings support the hypothesis that perinatal deficits 
in DHA accrual may contribute to diminished cortical 
circuit development observed in major psychiatric 
disorders. 

The pathogenic mechanisms underlying major 
psychiatric disorders are viewed as polygenic and 
multifactorial, and there is strong evidence for familial 
transmission and subtotal heritability estimates 
indicating the important contribution of shared to-be-
defined environmental factors[288-293]. Reviewed evidence 
supports a hypothetical link between dietary LCn-3 
fatty acid deficiency and the familial transmission of 
psychopathology (Figure 4). Specifically, observational 
and controlled studies suggest that maternal DHA 
status during pregnancy is an important determinant of 
gestational length and risk of preterm birth[294-299]. For 
example, in Japan where maternal DHA status based 
on breast milk DHA levels (1.1%) is approximately 
6-fold higher than breast milk DHA levels in the United 
Sates (0.17%)[189], the prevalence rate of preterm 
birth is approximately one-third that observed in 
United Sates (Japan: 4.3%-5.0% vs United Sates: 
11.7%)[300,301]. Importantly, adolescent and young adult 
females of childbearing potential with mood disorders 
residing in the United Sates exhibit significant blood 
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DHA deficits compared with healthy women[231,235], 
and are at increased risk for preterm delivery[302-304]. 
Risk of preterm delivery is associated with maternal or 
intrauterine elevations in pro-inflammatory cytokines 
including interleukin-6 (IL-6)[305-307], and  lower LCn-3 
fatty acid intake and status is associated with higher 
serum IL-6 levels[308]. The very low DHA status exhibited 
by mothers with mood disorders would be anticipated 
to reduce fetal cortical DHA accrual in utero, increase 
maternal risk for preterm birth and associated deficits 
in third trimester fetal cortical DHA accrual, and 
reduce postnatal fetal DHA accrual secondary to low 
breast milk DHA levels. Based the reviewed evidence, 
such perinatal deficits in cortical DHA accrual would 
be predicted to impair cortical circuit maturation and 
increase the risk of developing psychopathology during 
childhood and adolescent development.

CONCLUSION
Over the past 30 years a body of evidence from animal 
and clinical studies supports the general assertion 
that normal brain development requires optimal DHA 
levels. Rodent studies suggest that cortical DHA has 
neurotrophic as well as neuroprotective properties 
in the developing and adult brain, and that dietary-
induced reductions in perinatal rat brain DHA accrual 
are associated with deficits in synaptic maturation and 
functional plasticity. Deficits in perinatal rat brain DHA 
accrual also lead to impairments on neurocognitive 
tasks requiring activity-dependent synaptic plasticity. 
Decreases in F-actin cytoskeletal stability in pre- and 
post-synaptic terminals, as well as reduced resilience 
against neurotoxic, synaptotoxic, and myelinotoxic 
insults, represent plausible mediating mechanisms. 
Non-human primate studies further suggest a link 

between n-3 fatty acid deficiency during perinatal 
development and long-standing deficits in functional 
connectivity in cortical networks, hyperactivity, and 
impairments in visual attention. Evidence from animal 
studies therefore provide strong evidence for a role 
of perinatal DHA accrual for the normal maturation 
of cortical circuits and provide important clues into 
candidate molecular and ultrastructural mechanisms.

Additional evidence for a role of DHA in normal brain 
development comes from human studies finding that 
preterm birth, which results in deficits in third trimester 
fetal cortical DHA accrual, is associated with enduring 
prefrontal cortical network connectivity deficits, and a 
spectrum of neurocognitive impairments which may be 
mitigated by postnatal high-dose DHA supplementation. 
Preterm birth is also associated with increased risk for 
psychiatric disorders including ADHD, psychosis, and 
mood disorders which are associated with deficits in 
functional connectivity within cortical networks. More 
direct evidence is provided by prospective longitudinal 
studies finding that lower cord blood DHA levels are 
associated with the emergence of cognitive impairment, 
hyperactivity/inattention and emotional symptoms 
in children. Moreover, longer breastfeeding duration 
(a putative surrogate for early postnatal DHA intake) 
is associated with improvements in white matter 
microstructure and volume and better neurocognitive 
outcomes in childhood, adolescence, and adulthood. 
Taken in conjunction with non-human primate imaging 
data, these associations suggest that cortical DHA 
accrual during perinatal brain development may play 
a role in the maturation of human cortical networks 
mediating cognitive and emotional processes that are 
dysregulated in psychiatric disorders. 

It is not currently known whether LCn-3 fatty acid 
supplementation alone is sufficient to reverse deficits 
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Figure 4  Diagram illustrating a hypothetical role of LCn-3 fatty acid deficiency in the familial transmission of psychopathology. Adolescent and young adult 
females with mood disorders exhibit significant blood DHA deficits leading to reduced fetal (cord blood) DHA accrual during pregnancy. Low maternal DHA status 
during pregnancy also increases risk for preterm delivery due in part to elevated pro-inflammatory cytokine levels, as well as low breast milk DHA levels postpartum. 
Uncorrected deficits in fetal brain DHA accrual lead to long-standing deficits in white matter resilience and integrity and reduced functional connectivity in fronto-striatal 
circuits and increase risk of developing ADHD symptoms in childhood. Deficits in white matter integrity and reduced functional connectivity in fronto-limbic circuits 
during adolescent development is associated with the emergence of emotional and/or thought dysregulation and the onset of mood and/or psychotic symptoms. DHA: 
Docosahexaenoic acid; ADHD: Attention deficit/hyperactivity disorder.
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in functional connectivity within cortical networks once 
established. Indeed, it is possible that cortical circuit 
maturation deficits secondary to LCn-3 fatty acid deficits 
may represent a permanent neurodevelopmental 
“scar” that is potentially irreversible once established. 
However, LCn-3 fatty acid supplementation has been 
found to reduce symptom severity in patients with 
psychiatric disorders and neurological and cognitive 
symptoms in preterm infants. Moreover, a controlled 
functional neuroimaging trial found that DHA supple-
mentation increased cortical activity in prefrontal 
regions, and decreased activity in the temporal cortex 
and cerebellum, during performance of sustained 
attention task in healthy developing children[309]. While 
these findings suggest that increasing DHA status 
may augment functional connectivity within fronto-
limbic networks, additional neuroimaging studies 
will be required to evaluate this potential therapeutic 
mechanism.

Although the role of perinatal brain DHA accrual 
on the maturation and long-term stability of cortical 
circuitry is only beginning to be fully understood, 
extant translational evidence suggests that DHA plays 
a role in the initial development and early maturation 
of cortical circuits. Emerging evidence from human 
neuroimaging studies further suggests that psychiatric 
disorders that initially emerge in childhood and adole-
scence and associated with low blood DHA levels are 
characterized by frontal circuit deficits compared with 
healthy developing youth. Moreover, maternal LCn-3 
fatty acid deficiency is associated with increased risk 
of preterm birth, deficits in functional connectivity with 
cortical circuits, and ensuing cognitive impairments 
and mood dysregulation. These associations provide a 
neurobiological foundation and impetus for additional 
research to develop a more comprehensive under-
standing of the requirement for LCn-3 fatty acids 
during critical periods of neurodevelopment. Based on 
existing evidence, this research could have significant 
implications for informing novel early intervention 
strategies aimed at reducing the transmission of 
psychopathology.
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