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Abstract
Rheumatoid arthritis (RA) is the most common inflam-
matory disease of the musculoskeletal system primar-
ily affecting the joints. It is characterized by massive 
synovial hyperplasia and subsequent destruction of 
articular cartilage and bone. Although various aspects 
in the pathogenesis of RA remain unclear, genetic, en-
vironmental and of course immunological factors have 
been involved. Defects in apoptosis seem to play a role 
in both initiation and perpetuation of RA. Apo2 ligand/ 
tumor necrosis factor (TNF) related apoptosis-inducing 
ligand (Apo2L/TRAIL) is a cytokine that belongs to the 
TNF superfamily capable of inducing apoptosis on tu-
mor cells through activation of the extrinsic pathway. 
Besides this function, like other members of the TNF 
superfamily, Apo2L/TRAIL has been shown to exert 
important functions in the regulation of the immune 
system. Concerning pathological conditions, the Apo2L/
TRAIL signaling pathway plays an important role in the 
response to infections, in immune surveillance against 
tumors and in autoimmune diseases such as RA. Fur-
thermore, its implication in suppression of autoimmu-

nity suggests that Apo2L/TRAIL has potential as thera-
peutic agent not only in cancer but also in autoimmune 
diseases. In fact, Apo2L/TRAIL-based therapies have 
been shown effective in various animal models of RA. 
This review summarizes the current knowledge on the 
biology of Apo2L/TRAIL and its role in RA.
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INTRODUCTION
Multicellular organisms use apoptosis, the major mecha-
nism of  programmed cell death, to eliminate cells that 
are superfluous or that are irreparably damaged[1,2]. Apop-
tosis plays a pivotal role during development and controls 
homeostasis of  tissues throughout adult live[3]. A wide va-
riety of  stimuli can trigger apoptosis such as severe dam-
age caused by heat shock, cytotoxic drugs, radiation infec-
tion, tumor transformation, and cellular stress. Moreover, 
an aberrant regulation of  apoptosis is implicated in the 
pathogenesis of  a variety of  major human diseases. 
Excessive apoptosis is implicated in neurodegenerative 
diseases, such as Alzheimer’s and Huntington’s diseases[4], 
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acquired immune deficiency syndrome[5], ischemic heart 
disease[6], stroke[7], and infertility[8]. In contrast, deficiency 
in apoptosis plays a key role in the pathogenesis of  can-
cer[9] and is also involved in certain autoimmune disor-
ders[10].

There are two major apoptotic pathways: the intrin-
sic or mitochondrial and the extrinsic or death receptor-
mediated. The intrinsic pathway is activated by intracel-
lular events and depends on proteins of  the Bcl-2 family 
that control the release of  apoptogenic factors from the 
mitochondria[11]. In contrast, the extrinsic pathway is trig-
gered by signals received through extracellular protein 
ligands that bind to proapoptotic death receptors (DR) 
thereby initiating an intracellular signaling cascade leading 
to apoptosis[12].

Mitochondrial outer-membrane permeabilization is 
involved in the intrinsic pathway allowing the release of  
proapoptotic factors such as cytochrome c, Second mito-
chondria-derived activator of  caspase/direct inhibitor of  
apoptosis-binding protein with low pI (Smac/DIABLO) 
and apoptosis inducing factor from the mitochondria to 
the cytosol[13-15], a process controlled by the Bcl-2 protein 
family[16]. Once released from mitochondria to the cyto-
sol, cytochrome c induces the formation of  a multimeric 
complex called the apoptosome, containing the adaptor 
protein Apaf-1 and the initiator caspase-9. Caspase-9 is 
activated into the apoptosome and in turn cleaves effec-
tor caspases ultimately leading to apoptosis[17].

The extrinsic pathway transmits apoptotic signals 
from extracellular ligands through DRs to the intracel-
lular apoptotic machinery. Six different DRs are known: 
Fas, tumor necrosis factor (TNF)R1, DR3, TNF-related 
apoptosis-inducing ligand (TRAIL)-R1 or DR4, and 
TRAIL-R2 or DR5, and DR6[18]. These DRs interact with 
their corresponding ligands, which belong to TNF super-
family (FasL, TNF, TL1A and TRAIL, respectively). This 
interaction induces receptor oligomerization and activa-
tion of  caspase cascade, ultimately leading to apoptosis[12].

Apo2L/TRAIL, a member of  the TNF protein su-
perfamily, was initially described as a death ligand capable 
of  inducing apoptosis in transformed cells while spar-
ing normal cells[19,20]. Subsequently, a variety of  studies, 
including those with knockout mice for TRAIL and 
TRAIL-R have been conducted to unravel the physiologi-
cal role of  this cytokine[21-23]. These studies revealed that 
Apo2L/TRAIL-TRAIL-R signaling is implicated in the 
regulation of  the homeostasis of  the immune system. 
Thus Apo2L/TRAIL can be considered as an additional 
mechanism necessary to prevent the development of  au-
toimmunity[24,25].

Rheumatoid arthritis (RA) is the most common in-
flammatory disease of  the musculoskeletal system[26,27]. 
Although RA frequently shows systemic involvement, 
it primarily affects the joints, where chronic synovial in-
flammation and subsequent destruction of  the articular 
cartilage and bone are the hallmarks of  the disease. This 
synovial hyperplasia is caused by a massive invasion of  
inflammatory cells and by extensive increase of  resident 

synovial cells also called fibroblast-like synoviocytes 
(FLS), which generates a heterogeneous tissue known as 
pannus. RA-FLS play a pivotal role in both initiation and 
perpetuation of  RA[28,29]. A body of  evidence has demon-
strated that FLS undergo substantial changes referred to 
as tumor-like transformation, being active drivers of  joint 
destruction in RA[30,31]. Among the cellular characteristics 
that distinguish FLS are production of  cytokines, chemo-
kines and growth factors as well as alterations in growth 
and apoptosis. The later is of  particular interest, because 
the resistance of  RA-FLS to apoptotic signals provides 
one explanation to the development of  pannus and joint 
destruction. Concerning inflammatory cells, T lympho-
cytes, mainly CD4+ T cells with a memory phenotype, 
but also CD8+ T cells, macrophages and B cells are 
present in the sublining tissue. It has also been described 
alterations in apoptosis in infiltrating T lymphocytes that 
together with alterations in RA-FLS may lead to the cre-
ation of  a proinflammatory microenvironment into the 
joint that contributes to chronic disease maintenance. 

The major aim of  this review is to provide a sum-
mary of  the current data on the role of  the death ligand 
Apo2L/TRAIL in the pathogenesis as well as its use as 
therapeutic agent in RA.

APO2L/TRAIL SIGNALING
Apo2L/TRAIL was independently identified by two dif-
ferent groups as the third member of  the TNF superfam-
ily that induces apoptosis[19,20]. Apo2L/TRAIL is capable 
of  binding to a complex system of  receptors with dif-
ferent affinities and possibly distinct signaling outcomes. 
Five receptors for Apo2L/TRAIL are known in humans 
called TRAIL-R1/DR4, TRAIL-R2/DR5, TRAIL-R3/
DcR1 and TRAIL-R4/DcR2[12]. Apo2L/TRAIL can bind 
a soluble receptor termed osteoprotegerin (OPG). Only 
DR4 and DR5 possess a death domain (DD) in their 
intracellular portion and are capable of  transmitting the 
proapoptotic signal[32,33] by inducing the formation of  the 
death-inducing signaling complex (DISC)[34,35]. DcR1 and 
DcR2 are two non-apoptotic cell-bound receptors for 
Apo2L/TRAIL[36,37]. Apo2L/TRAIL can also bind, with 
rather low affinity, to a soluble receptor called OPG[38]. 
OPG binds with high affinity and inhibits the action of  
another TNF superfamily member termed receptor acti-
vator of  nuclear factor kappa B (NFκB) ligand (RANKL) 
involved in bone metabolism. Nevertheless, it is rather 
unlikely that Apo2L/TRAIL-OPG interaction may play 
a physiological role, at least in vivo, since Apo2L/TRAIL 
and DR5 knockout mice do not display a phenotype with 
alteration in bone metabolism[39,40].

The initial step of  the Apo2L/TRAIL-induced apop-
tosis is the binding of  the trimeric ligand to DR4 or DR5. 
This interaction induces clustering of  the receptors that 
recruits the adaptor protein Fas-associated DD (FADD) 
which in turn promotes the assembly of  the DISC[34,41]. 
DD of  FADD binds to the homologue domain of  the 
DRs thereby exposing the death-effector domain of  
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procaspase-8 or -10. Recruitment of  procaspase-8 to the 
DISC induces its activation by autocleavage, release into 
the cytosol, where active caspase 8 activates the effector 
caspases-3, -6 and -7, the ultimate executors of  the apop-
totic program of  cell death (Figure 1).

Apo2L/TRAIL apoptotic signaling pathway is regu-
lated at different levels to prevent unwanted caspase ac-
tivation. In fact, not all proteins present in the DISC are 
proapoptotic. Cellular FLICE inhibitory protein (cFLIP), 
which shares high sequence homology with caspase-8 
and -10, inhibits caspase activation at the DISC by com-
peting for binding to FADD. There are two splice vari-
ants of  cFLIP, a longer (cFLIPL) and a shorter version 
(cFLIPS)[42]. However, the role of  cFLIPL is controversial. 
Some studies have reported that cFLIPL is an antiapop-
totic protein that works in a similar manner to cFLIPS

[43]. 
In contrast, other studies describe cFLIPL as a proapop-
totic molecule[44].

Other mechanisms of  distinct nature have been 
described that may modulate Apo2L/TRAIL signal-
ing. Post-translational modifications of  DRs by O-gly-
cosylation seem to be important to promote clustering 
of  DR4 and DR5, after ligand binding which mediate 
recruitment and activation of  the apical caspase-8[45]. 
Recently, ubiquitylation of  caspase-8 after death receptor 
ligation by Apo2L/TRAIL has been showed as a crucial 
mechanism which promotes the full activation of  cas-
pase-8[46].

Finally, it has been described that Apo2L/TRAIL has 
more diverse effects than apoptosis. Among the non-
apoptotic effects of  Apo2L/TRAIL, it has been reported 
induction of  proliferation, migration and survival signals, 
in distinct cell types. Receptor interacting protein (RIP), 
which is able to activate the inhibitor of  NFκB kinase-
complex (IKK complex) in TNF signaling, has been 
described to be present in the Apo2L/TRAIL DISC[47]. 
RIP promotes phosphorylation of  IKK, which phos-
phorylates IκB leading to its degradation. Degradation of  
inhibitor of  NFκB (IκB) promotes phosphorylation of  
NFκB thereby activating this transcription factor[48]. Fur-
thermore, Apo2L/TRAIL can activate other proinflam-
matory intracellular signaling pathways such as mitogen-
activated kinase (MAPK), phosphatydilinositol 3-kinase 
(PI3K) and c-Jun N-terminal kinase[49]. This pro-survival 
effects induced by Apo2L/TRAIL are crucial in the resis-
tance of  distinct tumor cells to Apo2L/TRAIL-induced 
apoptosis[50] and also seem to be important in the patho-
genesis of  some autoimmune diseases such as RA[51].

BIOLOGICAL ROLE OF APO2L/TRAIL IN 
THE INMUNE SYSTEM
Both Apo2L/TRAIL and TRAIL-R deficient mice do 
not display any overt developmental defects[39,52,53] reveal-
ing that, Apo2L/TRAIL signaling is not essential for 
normal embryonic development.

The major roles of  Apo2L/TRAIL have been found 
in the immune system playing a role in shaping and regu-

lating the immune response. This is not surprising as it 
was already suggested by the inducible expression of  
Apo2L/TRAIL in immune cells such as monocytes, den-
dritic cells (DCs) and natural killer (NK) cells[54-56]. 

In case of  T cells, Apo2L/TRAIL expression is 
absent in naive T cells, whereas expression of  Apo2L/
TRAIL protein was increased on both CD4+ and CD8+ 
after T-cell receptor or phytohaemagglutinin stimula-
tion[57,58]. Surface Apo2L/TRAIL in activated T cells 
seems to be stabilized by type I interferons[57].

In human T cell blasts Apo2L/TRAIL and FasL are 
stored into intracytoplasmic pre-lysosomal compartments 
with the structure of  multivesicular bodies[59]. Apo2L/
TRAIL, and FasL, are rapidly released to the supernatant 
of  activated human T cells associated with microvesicles/
exosomes of  100 nm of  diameter with the death ligands 
on their surface[25,60].

Although non-activated CD4+ and CD8+ T cells 
express DR4 and DR5, they are resistant to Apo2L/
TRAIL-mediated apoptosis[61,62]. However, activation of  
T cells with interleukin (IL)-2 resulted in Apo2L/TRAIL 
susceptibility. In fact, Apo2L/TRAIL is implicated in the 
homeostasis of  the immune response by induction of  
activation-induced cell death (AICD) of  human T cells[63]. 
This process is dependent on the action of  death ligands, 
especially on FasL[64,65], but Apo2L/TRAIL also plays a 
role in AICD[66]. The effect of  Apo2L/TRAIL was more 
pronounced on the CD8+ T cell population[67]. Inhibi-
tion of  IL-2-dependent T cell blast growth, mainly in the 
CD8+ T cell population, by Apo2L/TRAIL does not 
require re-stimulation and would suggest an additional 
immune-regulatory role of  this death ligand[25,66,67].

There is a CD8+ T cell population which is primed 
in the absence of  CD4 T cells, the so-called “helpless” 
CD8+ T cells. These cells are unable to undergo the sec-
ond round of  clonal expansion[68]. The memory CD8+ 
T cells generated in this manner die by Apo2L/TRAIL-
mediated AICD upon re-stimulation[69].

Apo2L/TRAIL also seems to be involved in the 
regulation of  T helper 1 and T helper 2 responses[70] and 
has been recently implicated in the induction of  cell pro-
liferation of  the CD4+ CD25+ regulatory T cell popula-
tion[71,72].

Apo2L/TRAIL signaling has been implicated in intra-
thyimic negative selection[23,73]. However, it is still a con-
troversial subject. These studies suggested that negative 
selection was at least partially impaired in TRAIL knock-
out mice or in the presence of  soluble blocking DR5. 
In contrast other studies using TRAIL knockout mice 
and a neutralizing anti-mouse TRAIL mAb showed that 
Apo2L/TRAIL signaling does not play a role in this pro-
cess[74]. Supporting this finding normal negative selection 
has been described in DR5 knockout mice suggesting 
that Apo2L/TRAIL receptor signaling in not required 
for negative selection[53].

Immune effector cells involved in the fight against 
infections, such as NK cells and cytotoxic T cells, express 
Apo2L/TRAIL when they are activated and exert their 
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cytotoxic function, at least in part, via Apo2L/TRAIL 
signaling[62,75-79]. 

Finally, Apo2L/TRAIL has been implicated in immu-
nosurveillance against cancer[35,52,80]. Although Apo2L/
TRAIL has a suppression role in the growth of  grafted 
tumor and experimental metastasis, the importance of  
endogenous ligand in the immunosurveillance against 
primary tumors is still a matter of  debate. Mice deficient 
in Apo2L/TRAIL and TRAIL-R do not spontaneously 
develop tumors in early age[39,53]. However, TRAIL-defi-
cient mice develop more lymphomas than wild-type mice 
when they are aged[81]. Neutralization of  Apo2L/TRAIL 
signaling enhanced fibrosarcoma development in meth-
ylcholanthrene-induced tumors in mice[39]. In the absence 
of  Apo2L/TRAIL or TRAIL-R, mice develop more 
lymphomas, carcinogen–induced tumors, skin carcinoma 

and lymphoma metastasis[21,22,81]. In any case, a definitive 
role of  endogenous Apo2L/TRAIL in tumor suppres-
sion of  primary tumors has not been yet well established 
and further studies in autochthonous tumor development 
models will be needed[82].

APOPTOSIS IN RA-FLS
The resistance of  RA-FLS to apoptotic signals has been 
associated with the phenotype of  these cells and it may 
provide an explanation to the development of  pannus 
and consequently the joint destruction[83]. Resistance 
of  FLS to apoptosis occurs at different levels. For ex-
ample, Bcl-2 expression is induced by TNFα and IL-1β 
in cultured FLS. Moreover, there is a direct correlation 
between Bcl-2-expression and the extent of  the synovial 
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Figure 1  Schematic representation of the Apo2 ligand/ tumor necrosis factor related apoptosis-inducing ligand apoptotic signaling pathway. When 
Apo2 ligand/ tumor necrosis factor related apoptosis-inducing ligand (Apo2L/TRAIL) binds to their respective receptors induced their trimerisation and 
formation of the death-inducing signaling complex (DISC). The adaptor protein fas-associated protein with death domain (FADD) is recruited to the DISC 
through its death domain (DD) which interacts with DD of the receptors. Subsequently, procaspases-8 and -10 are recruited to the protein complex where 
they interact with FADD via the death effector domains. Cellular FLICE inhibitory protein (cFLIP) can compete with caspase-8 for the binding to FADD 
and high levels of cFLIP can inhibit caspase-8 activation at the DISC. DISC-activated caspases-8 and -10 trigger a caspase cascade by cleavage of caspase-3 
therby activating effector caspases. In type I cells, activation of the extrinsic pathway is sufficient to induce Apo2L/TRAIL-induced apoptosis whereas in 
type II cells, Bid cleavage is required for apoptosis induction by Apo2L/TRAIL. Caspase-8 cleaves Bid into tBid which initiates the mitochondrial pathway 
leading to release of cytochrome c and second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI (Smac/
DIABLO) from the mitochondria. After release from mitochondria, cytochorme c, together with Apaf-1 forms the apoptosome, which leads to activation 
of caspase-9. Smac/DIABLO counteracts the inhibitory function of X-linked inhibitor of apoptosis thereby allowing for full activation of caspases-3 and -9, 
ultimately leading to cell death.
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lining thickening and inflammation[84]. IL-15, a cytokine 
with pleiotropic effects, increases Bcl-2 and Bcl-xL levels 
in FLS[85]. Mcl-1 is also induced after cytokine stimulation 
and is found in RA synovium correlating with synovial 
inflammation[86]. The apoptotic protein Bcl-2/adenovirus 
E1B 19-kd protein-interacting protein 3 is induced in RA 
synovium in response to hypoxia but is pro-apoptotic ac-
tion is inhibited by TNFα and IL-1β providing a link be-
tween inflammation and resistance to apoptosis in RA[87].

Although FLS express a variety of  death receptors 
such as Fas/CD95, TRAILR1 and TRAILR2 and also 
TNFR1[88-90], various data indicate that FLS are relatively 
resistant to receptor-mediated apoptosis. TNFα is able 
to induce soluble Fas thus decreasing the susceptibil-
ity of  FLS to Fas/CD95-induced apoptosis[89]. DcR3 is 
expressed in FLS in a TNFα-dependent manner and is 
able to prevent Fas/CD95-induced apoptosis[91]. LIGHT, 
another member of  the TNF superfamily, is found in RA 
and also prevents FLS from Fas/CD95-induced apopto-
sis[92]. The expression of  FLIP is high in RA mainly at sites 
of  cartilage destruction[93]. It has been suggested that the 
expression of  FLIP depends on the stage of  disease[94]. 
While in RA patients with short duration of  the disease 
showed decreased levels of  apoptosis accompanied by 
high expression of  FLIP, in patients with a long-term RA, 
increased levels of  apoptosis were associated with low 
levels of  FLIP. Again a connection between inflammation 
and resistance to apoptosis is achieved because TNFα 
can induce the expression of  FLIP[95]. Post-translational 
modifications also play a role in FLS apopotosis. Small 
ubiquitin-like modifier 1 (SUMO-1) is highly expressed in 
FLS and SUMO-1-mediated modification protects cells 
from Fas- and TNFR1-induced apoptosis[96].

On the other hand, FLS also contribute to the accu-
mulation of  infiltrating cells by regulating their response 
to apoptosis through cellular interaction and soluble 
factors. FLS produce large amounts of  stromal cell-
derived factor 1α which is able to inhibit T cell apoptosis 
through activation of  PI3-kinase and MAPK pathways[97]. 
B cells co-cultured with FLS are protected from apopto-
sis through a Vascular cell adhesion protein 1 and α4β1 
integrin-dependent mechanism[98]. Reduced apoptosis has 
been associated with increased expression of  Bcl-xL[99]. 
The B cell-activating factor of  the TNF family, that is 
involved in prosurvival B cell signaling, is also produced 
by FLS after engagement of  α5β1 integrins of  the cell 
surface[100].

In summary, FLS resistance to apoptosis contributes 
significantly to the pathogenesis of  RA. The tumor-
like transformation of  FLS not only leads to profound 
changes in the responsiveness of  these cells to apoptotic 
stimuli. In addition, it increases the persistence of  inflam-
matory cells by modulating its resistance to cell death.

ROLE OF APO2L/TRAIL IN RA
Autoimmune diseases result from the inappropriate rec-
ognition of  self-antigens due to defects in the regulation 

of  the immune system. Apo2L/TRAIL signaling seems 
to be able to modulate the autoimmune disease and to 
be implicated in a variety of  autoimmune diseases. An 
increased number of  studies have consistently shown 
that Apo2L/TRAIL is capable of  inhibiting autoimmune 
diseases in a variety of  animal models. In these studies, 
Apo2L/TRAIL seems to play distinct roles ranging from 
inhibiting inflammation, to inhibiting cell cycle progres-
sion, proliferation of  auto-reactive T cells as well as cyto-
kine and antibody production.

Although TRAIL- and TRAIL-deficient mice do no 
display spontaneous autoimmune diseases, many stud-
ies have identified profound effects when autoimmunity 
is induced in these mice or in the presence of  Apo2L/
TRAIL signaling-blocking agents. In these studies, it has 
been shown that mice were more susceptible to induced-
autoimmune diabetes[23,101-103]. It is noteworthy that 
double FasL mutant (gld) and TRAIL knockout mice de-
veloped an extreme and fatal lymphoproliferative disease 
which was more severe than that due to mutation in FasL 
alone[104]. Apo2L/TRAIL is also implicated in experimen-
tal autoimmune thyroiditis[71,105,106]. The most widely used 
mouse model which mimics multiple sclerosis is experi-
mental autoimmune encephalomyelitis (EAE). Blockade 
of  Apo2L/TRAIL signaling led to a high degree of  in-
flammation in the central nervous system[107,108]. However, 
a reduction of  the clinical severity of  EAE is observed 
when TRAIL-R2-Fc, an Apo2L/TRAIL signaling block-
ing agent, was injected into central nervous system in 
mice in which EAE was previously induced[109].

A variety of  studies have implicated Apo2L/TRAIL 
the pathogenesis of  RA. In a mice model of  RA [col-
lagen-induced arthritis (CIA)], the chronic blockade of  
Apo2L/TRAIL exacerbated autoimmune arthritis, lead-
ing to profound hyperproliferation of  synovial cells and 
arthritogenic lymphocytes and increasing the production 
of  autoantibodies and proinflammatory cytokines[110]. In 
this study, Apo2L/TRAIL inhibited autoimmune inflam-
mation by blocking cell cycle progression rather than 
by inducing apoptosis of  inflammatory cells. TRAIL-
deficient mice were also more susceptible to CIA. In line 
with this, TRAIL-deficient C57BL/6 mice developed 
the typical symptoms when immunized with collagen 
whereas C56BL/6 wild-type mice were not susceptible to 
CIA[23].

Although numerous studies have examined the 
role of  Apo2L/TRAIL in autoimmune diseases in ex-
perimental animal models, less is known of  the role of  
Apo2L/TRAIL in human autoimmune diseases. Most of  
the studies have shown expression of  DR4 and/or DR5 
in FLS from RA patients[51,90,111,112]. However, in one study 
neither Apo2L/TRAIL nor its receptors were detectable 
on lymphocytes or synovial fibroblasts obtained from 
synovial fluid (SF) from RA patients[113]. Nevertheless, 
RA SF macrophages expressed the decoy receptor DcR1. 
On the other hand, it has been demonstrated that T lym-
phocytes from RA synovial fluids were activated and ex-
pressed a similar pattern of  Apo2L/TRAIL than human 

Martinez-Lostao L et al . Applications of Apo2L/TRAIL in RA



� August 3, 2012|Volume 2|Issue 1|WJR|www.wjgnet.com

T cell blasts or T cells in the SF of  traumatic patients[114]. 
RA T cells were insensitive to Fas-mediated regulation, 
as previously reported[115] but remarkably, they were more 
sensitive than in vitro activated T cells to regulation by 
Apo2L/TRAIL. Nevertheless, it was detected very low 
amounts of  bioactive FasL and Apo2L/TRAIL associ-
ated with exosomes in SF from RA patients as compared 
with SF from traumatic arthritis patients[114].

Conversely, a dual role of  Apo2L/TRAIL has been 
suggested in RA which is characterized by expansion 
of  FLS. It has been reported that Apo2L/TRAIL in-
duced RA FLS proliferation in a dose-dependent manner 
through a mechanism involving MAPK and PI3K/Akt 
signaling[51]. Previous studies have demonstrated a rela-
tive in vitro sensitivity of  RA FLS to Apo2L/TRAIL[90] 
which is increased upon treatment with actinomycin 
D[116]. However, more recent studies indicated that only a 
fraction of  FLS are sensitive to Apo2L/TRAIL-induced 
apoptosis[117], depending on their proliferative state[118], 
while proliferation is induced in another fraction after 
rApo2L/TRAIL treatment[51,117]. More recently, it has 
been reported that Apo2L/TRAIL-induced apopto-
sis varied in FLS from different RA patients and that 
susceptibility of  FLS to apoptosis induced by Apo2L/
TRAIL inversely correlated with disease severity of  RA 
patients[119].

APO2/TRAIL AS TREATMENT OF RA
Although Apo2L/TRAIL-based therapies have been 
mostly used in cancer, its therapeutic value in autoim-
mune diseases has been also proposed. In this line, a 
number of  therapeutic strategies involving Apo2L/
TRAIL have been currently used to treat various experi-
mental autoimmune diseases such as experimental auto-
immune thyroiditis[71,105] and experimental autoimmune 
encephalomyelitis[10,72,120,121].

Concerning RA, distinct Apo2L/TRAIL-based thera-
peutic approaches have been used for treatment of  ar-
thritic joints. CIA was induced in DBA/1 mice and then 
animals received an intra-articular injection of  an adeno-
virus carrying the mouse TRAIL gene[110]. This local treat-
ment reduced disease score. Interestingly, in this study 
TRAIL had no effect on apoptosis of  inflammatory cells 
either in vivo or in vitro but inhibited DNA synthesis and 
prevented cell cycle progression of  lymphocytes in vitro. 
A similar therapeutic strategy had been used in a rabbit 
model of  RA. In IL-1β-induced arthritis in rabbits, intra-
articular gene transfer using an adenoviral vector carrying 
human Apo2L/TRAIL gene ameliorated disease in treat-
ed arthritic joints. Apo2L/TRAIL gene transfer was able 
to induce apoptosis in cells within the synovial cell lining, 
to reduce leukocyte infiltration and to stimulate matrix 
synthesis[122]. Gene transfer-based therapeutic strategy 
which modulates Apo2L/TRAIL receptor expression 
may sensitize RA synoviocytes to Apo2L/TRAIL. Pri-
mary cultures established from RA synovial cells showed 
an increase of  DcR2 correlating with Apo2L/TRAIL 

resistance of  these cells. A combined treatment with a 
DcR2 silencing RNA approach and gene transfer using 
an adenoviral vector carrying human Apo2L/TRAIL 
eliminated apoptosis-resistant RA synovial fibroblasts[123].

Other therapy strategy for treatment of  RA has been 
the use of  rApo2L/TRAIL. Using the previously de-
scribed rabbit model of  IL-1β-induced arthritis, intra-
articular injection of  human rApo2L/TRAIL into ar-
thritic joints induced apoptosis of  the synovial cells and 
reduced leukocyte infiltration. Furthermore, treatment 
with rApo2L/TRAIL had not adverse effects neither 
locally on cartilage metabolism nor systemic on hepatic 
function[124]. Treatment with human rApo2L/TRAIL was 
also reported in a CIA mouse model. Soluble rApo2L/
TRAIL was capable of  significantly reducing the sever-
ity and incidence of  CIA, joint swelling, erythema, and 
edema. Inflammatory cell infiltration, cartilage destruc-
tion, and bone erosion were also significantly reduced in 
joints of  TRAIL-treated mice in a dose-dependent man-
ner. Treatment with rApo2L/TRAIL was also effective 
systemically decreasing the levels of  proinflammatory 
cytokines and anti-collagen-specific antibodies in the sera 
of  CIA mice[125].

Other Apo2L/TRAIL-based therapeutic strategy 
has been the use of  genetically modified DCs in mouse 
models. In a CIA model on DBA/1j mice, in vivo admin-
istration of  genetically modified DC infected with an 
adenovirus expressing inducible TRAIL and pulsed with 
collagen II significantly decreased the incidence of  ar-
thritis and infiltration of  T cells in joints[126]. Interestingly, 
adenoviral vector carrying Apo2L/TRAIL was not toxic 
to DCs or mice but could induce activated T cells to 
undergo apoptosis in the spleen. Anti-human DR5 mAb 
(TRA-8) has been also uses as treatment in adjuvant ar-
thritis in rats, a rat model of  RA[127]. Hind paw inflamma-
tion was ameliorated after treatment with TRA-8 decreas-
ing synovial hyperplasia due to induction of  apoptosis in 
synovial cells and infiltration of  inflammatory cells.

Novel Apo2L/TRAIL formulations have been devel-
oped to improve its biological half-life, stability and/or 
bioactivity and have been used as treatment for RA in 
distinct animal models. Nano-sized complexes (nano-
complexes) based on hyaluronic acid and polyethylene 
glycol (PEG)-derivatized human TRAIL (PEG-TRAIL) 
formed by N-terminal specific PEGylation has been used 
in a CIA mouse model[128]. The therapeutic effect of  this 
formulation injected intra-peritoneally was higher than 
soluble TRAIL, concerning clinical scores and histology. 
Additionally, sustained delivery of  PEG-TRAIL resulted 
in significant reduction of  serum inflammatory cytokines 
and collagen-specific antibodies that are responsible for 
the pathogenesis of  RA. As previously discussed, infil-
trating T lymphocytes in synovial fluid (SF) from RA 
patients, although resistant to Fas, were unexpectedly 
more susceptible to human rApo2L/TRAIL than were in 
vitro activated T cells. However, the amount of  bioactive 
Apo2L/TRAIL associated with exosomes in SF from 
RA patients was extremely low compared with SF from 
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control patients with traumatic arthritis[114]. Consequently, 
administration of  Apo2L/TRAIL associated to the sur-
face of  liposomes resembling the natural exosomes may 
be a reasonable therapeutic strategy in RA. Treatment 
of  the arthritic knee joints by intra-articular injection 
with human rApo2L/TRAIL associated with liposomes 
(LUV-Apo2L/TRAIL) in an antigen-induced arthritis 
rabbit model showed a higher effectiveness than soluble 
rApo2L/TRAIL reducing joint swelling. Histological 
parameters such as synovial hyperplasia, inflammatory 
infiltrate vascularity and formation of  villi were also sig-
nificantly reduced when arthritic joint were treated with 
LUV-Apo2L/TRAIL[129]. In consequence, the association 
of  Apo2L/TRAIL to liposome surface improves its bio-
activity. Interestingly, treatment with this Apo2L/TRAIL 
novel formulation did not have adverse effects previously 
described for soluble form of  Apo2L/TRAIL such as 
hepatotoxicity.

CONCLUSION
Since the first description of  Apo2L/TRAIL, more than 
ten years ago, and the identification of  its two cognate 
pro-apoptotic receptors, Apo2L/TRAIL signaling has 
provided a unique novel model system for studying the 
extrinsic apoptotic pathway. During the last decade, 
a body of  evidence has accumulated illustrating that 
Apo2L/TRAIL is clearly implicated not only in cancer 
but also in immunity. Immunosuppressive and immuno-
regulatory functions important for immune homeostasis, 
immunosurveillance and autoimmunity have been dem-
onstrated for Apo2L/TRAIL.

Biological therapies such as anti-TNF and anti-IL1 
agents have been successfully used in RA. However, these 
therapies targeting immune system do not have a re-
sponse over 60%. Therefore, other therapeutic approach-
es have been set up. In line with this, apart from the use 
of  Apo2L/TRAIL as anti-tumor therapy, an increasing 
number of  studies have shown that this molecule is a 
promising therapeutic agent to treat autoimmune diseases 
including RA. Distinct studies using in vivo animal models 
of  RA have provided evidences that Apo2L/TRAIL is 
capable of  diminishing the incidence and the severity of  
the autoimmune disease. A variety of  experimental ap-
proaches, including gene transfer, soluble molecule, pro-
apoptotic agonistic receptor antibodies and lately, novel 
Apo2L/TRAIL formulations based on association of  
the death ligand with different kind of  nanoparticles 
have been used as treatment for arthritis in several animal 
models. In summary, Apo2L/TRAIL signaling is a prom-
ising molecular target for autoimmune disease immuno-
therapeutics.

In spite of  these promising data obtained in RA, 
further studies are required to optimally exploit the 
Apo2L/TRAIL-TRAIL pathway in this disease. In this 
line, Apo2L/TRAIL-based nanoparticles have been 
shown to improve its biological half-life, stability and 
bioactivity compared with the soluble form and could 

open new perspectives in the use of  Apo2L/TRAIL as 
therapeutic agent in RA. With regard to the route of  pos-
sible administration of  Apo2L/TRAIL-based therapy, 
in most of  studies carried out in animal models of  RA, 
administration of  Apo2L/TRAIL has been performed 
intra-articularly. Further studies should be performed in 
order to establish the viability of  a systemic administra-
tion, more feasible in humans given the large number of  
involved joints.

Pending the outcomes of  clinical trials targeting the 
Apo2L/TRAIL pathway in patients with cancer, clinical 
trials could be considered to determine the therapeutic 
efficacy of  targeting the Apo2L/TRAIL in patients with 
RA. Regardless, Apo2L/TRAIL has appeared as a signifi-
cant molecule in immune system regulation, with a prom-
ising future as treatment in RA.
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