World Journal of *Transplantation*

Quarterly Volume 14 Number 1 March 18, 2024

Published by Baishideng Publishing Group Inc

WITT T VVoria journal of Transplantation

Contents

Quarterly Volume 14 Number 1 March 18, 2024

EDITORIAL

Lindner C, Riquelme R, San Martín R, Quezada F, Valenzuela J, Maureira JP, Einersen M. Improving the radiological diagnosis of hepatic artery thrombosis after liver transplantation: Current approaches and future challenges. World J Transplant 2024; 14(1): 88938 [DOI: 10.5500/wjt.v14.i1.88938]

Gonzalez FM, Cohens FG. Predicting outcomes after kidney transplantation: Can Pareto's rules help us to do so? World J Transplant 2024; 14(1): 90149 [DOI: 10.5500/wjt.v14.i1.90149]

REVIEW

Khalil MAM, Sadagah NM, Tan J, Syed FO, Chong VH, Al-Qurashi SH. Pros and cons of live kidney donation in prediabetics: A critical review and way forward. *World J Transplant* 2024; 14(1): 89822 [DOI: 10.5500/wjt.v14.i1. 89822]

MINIREVIEWS

Maqbool S, Baloch MF, Khan MAK, Khalid A, Naimat K. Autologous hematopoietic stem cell transplantation conditioning regimens and chimeric antigen receptor T cell therapy in various diseases. World J Transplant 2024; 14(1): 87532 [DOI: 10.5500/wjt.v14.i1.87532]

Karageorgos FF, Neiros S, Karakasi KE, Vasileiadou S, Katsanos G, Antoniadis N, Tsoulfas G. Artificial kidney: Challenges and opportunities. World J Transplant 2024; 14(1): 89025 [DOI: 10.5500/wjt.v14.i1.89025]

Kosuta I, Kelava T, Ostojic A, Sesa V, Mrzljak A, Lalic H. Immunology demystified: A guide for transplant hepatologists. World [Transplant 2024; 14(1): 89772 [DOI: 10.5500/wjt.v14.i1.89772]

Ranawaka R, Dayasiri K, Sandamali E, Gamage M. Management strategies for common viral infections in pediatric renal transplant recipients. World J Transplant 2024; 14(1): 89978 [DOI: 10.5500/wjt.v14.i1.89978]

Salvadori M, Rosso G. Update on the reciprocal interference between immunosuppressive therapy and gut microbiota after kidney transplantation. World J Transplant 2024; 14(1): 90194 [DOI: 10.5500/wjt.v14.i1.90194]

Mubarak M, Raza A, Rashid R, Sapna F, Shakeel S. Thrombotic microangiopathy after kidney transplantation: Expanding etiologic and pathogenetic spectra. World J Transplant 2024; 14(1): 90277 [DOI: 10.5500/wjt.v14.i1.90277]

ORIGINAL ARTICLE

Retrospective Cohort Study

Isa HM, Alkharsi FA, Khamis JK, Hasan SA, Naser ZA, Mohamed ZN, Mohamed AM, Altamimi SA. Pediatric and adult liver transplantation in Bahrain: The experiences in a country with no available liver transplant facilities. World J Transplant 2024; 14(1): 87752 [DOI: 10.5500/wjt.v14.i1.87752]

Utz Melere M, Sanha V, Farina M, da Silva CS, Nader L, Trein C, Lucchese AM, Ferreira C, Kalil AN, Feier FH. Primary liver transplantation vs transplant after Kasai portoenterostomy in children with biliary atresia: A retrospective Brazilian single-center cohort. World [Transplant 2024; 14(1): 88734 [DOI: 10.5500/wjt.v14.i1.88734]

Quarterly Volume 14 Number 1 March 18, 2024

Retrospective Study

Andacoglu OM, Dennahy IS, Mountz NC, Wilschrey L, Oezcelik A. Impact of sex on the outcomes of deceased donor liver transplantation. World J Transplant 2024; 14(1): 88133 [DOI: 10.5500/wjt.v14.i1.88133]

Custodio G, Massutti AM, Caramori A, Pereira TG, Dalazen A, Scheidt G, Thomazini L, Leitão CB, Rech TH. Association of donor hepatectomy time with liver transplantation outcomes: A multicenter retrospective study. World J Transplant 2024; 14(1): 89702 [DOI: 10.5500/wjt.v14.i1.89702]

Observational Study

Pahari H, Raj A, Sawant A, Ahire DS, Rathod R, Rathi C, Sankalecha T, Palnitkar S, Raut V. Liver transplantation for hepatocellular carcinoma in India: Are we ready for 2040? World J Transplant 2024; 14(1): 88833 [DOI: 10.5500/wjt.v14.i1.88833]

Jesrani AK, Faiq SM, Rashid R, Kalwar TA, Mohsin R, Aziz T, Khan NA, Mubarak M. Comparison of resistive index and shear-wave elastography in the evaluation of chronic kidney allograft dysfunction. World J Transplant 2024; 14(1): 89255 [DOI: 10.5500/wjt.v14.i1.89255]

SYSTEMATIC REVIEWS

Chongo G, Soldera J. Use of machine learning models for the prognostication of liver transplantation: A systematic review. World [Transplant 2024; 14(1): 88891 [DOI: 10.5500/wjt.v14.i1.88891]

Agosti E, Zeppieri M, Pagnoni A, Fontanella MM, Fiorindi A, Ius T, Panciani PP. Current status and future perspectives on stem cell transplantation for spinal cord injury. World J Transplant 2024; 14(1): 89674 [DOI: 10.5500/ wjt.v14.i1.89674]

CASE REPORT

Sánchez Pérez B, Pérez Reyes M, Aranda Narvaez J, Santoyo Villalba J, Perez Daga JA, Sanchez-Gonzalez C, Santoyo-Santoyo J. New therapeutic strategy with extracorporeal membrane oxygenation for refractory hepatopulmonary syndrome after liver transplant: A case report. World J Transplant 2024; 14(1): 89223 [DOI: 10.5500/wjt. v14.i1.89223

Contents

Quarterly Volume 14 Number 1 March 18, 2024

ABOUT COVER

Editor-in-Chief of World Journal of Transplantation, Maurizio Salvadori, MD, Professor, Renal Unit, Department of Transplantation, University of Florence, Florence 50139, Italy. maurizio.salvadori1@gmail.com

AIMS AND SCOPE

The primary aim of World Journal of Transplantation (WJT, World J Transplant) is to provide scholars and readers from various fields of transplantation with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJT mainly publishes articles reporting research results obtained in the field of transplantation and covering a wide range of topics including bone transplantation, brain tissue transplantation, corneal transplantation, descemet stripping endothelial keratoplasty, fetal tissue transplantation, heart transplantation, kidney transplantation, liver transplantation, lung transplantation, pancreas transplantation, skin transplantation, etc.

INDEXING/ABSTRACTING

The WJT is now abstracted and indexed in PubMed, PubMed Central, Scopus, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The WJT's CiteScore for 2022 is 2.8 and Scopus CiteScore rank 2022: Transplantation is 23/51.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Liang Zhang, Production Department Director: Xu Guo; Editorial Office Director: Jia-Ping Yan.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS
World Journal of Transplantation	https://www.wjgnet.com/bpg/gerinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 2220-3230 (online)	https://www.wjgnet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
December 24, 2011	https://www.wjgnet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Quarterly	https://www.wjgnet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT
Maurizio Salvadori, Sami Akbulut, Vassilios Papalois, Atul C Mehta	https://www.wjgnet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/2220-3230/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS
March 18, 2024	https://www.wjgnet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2024 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: office@baishideng.com https://www.wjgnet.com

World Journal of WJT Transplantation

Submit a Manuscript: https://www.f6publishing.com

World J Transplant 2024 March 18; 14(1): 89674

DOI: 10.5500/wjt.v14.i1.89674

ISSN 2220-3230 (online)

SYSTEMATIC REVIEWS

Current status and future perspectives on stem cell transplantation for spinal cord injury

Edoardo Agosti, Marco Zeppieri, Andrea Pagnoni, Marco Maria Fontanella, Alessandro Fiorindi, Tamara Ius, Pier Paolo Panciani

Specialty type: Transplantation

Provenance and peer review:

Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): A Grade B (Very good): B Grade C (Good): 0 Grade D (Fair): 0 Grade E (Poor): 0

P-Reviewer: Wang G, China; Salvadori M, Italy

Received: November 8, 2023 Peer-review started: November 8, 2023 First decision: November 29, 2023 Revised: December 4, 2023 Accepted: December 29, 2023

Article in press: December 29, 2023 Published online: March 18, 2024

Edoardo Agosti, Andrea Pagnoni, Alessandro Fiorindi, Pier Paolo Panciani, Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy

Marco Zeppieri, Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy

Marco Maria Fontanella, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia 25123, BS, Italy

Tamara lus, Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine 33100, Italy

Corresponding author: Marco Zeppieri, BSc, MD, PhD, Doctor, Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, Udine 33100, Italy. markzeppieri@hotmail.com

Abstract

BACKGROUND

Previous assessments of stem cell therapy for spinal cord injuries (SCI) have encountered challenges and constraints. Current research primarily emphasizes safety in early-phase clinical trials, while systematic reviews prioritize effectiveness, often overlooking safety and translational feasibility. This situation prompts inquiries regarding the readiness for clinical adoption.

AIM

To offer an up-to-date systematic literature review of clinical trial results concerning stem cell therapy for SCI.

METHODS

A systematic search was conducted across major medical databases [PubMed, Embase, Reference Citation Analysis (RCA), and Cochrane Library] up to October 14, 2023. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "spinal cord", "injury", "clinical trials", "stem cells", "functional outcomes", and "adverse events". Studies included in this review consisted of randomized controlled trials and non-randomized controlled trials reporting on the use of stem cell therapies for the treatment of SCI.

RESULTS

In a comprehensive review of 66 studies on stem cell therapies for SCI, 496 papers were initially identified, with 237 chosen for full-text analysis. Among them, 236 were deemed eligible after excluding 170 for various reasons. These studies encompassed 1086 patients with varying SCI levels, with cervical injuries being the most common (42.2%). Bone marrow stem cells were the predominant stem cell type used (71.1%), with various administration methods. Follow-up durations averaged around 84.4 months. The 32.7% of patients showed functional improvement from American spinal injury association Impairment Scale (AIS) A to B, 40.8% from AIS A to C, 5.3% from AIS A to D, and 2.1% from AIS B to C. Sensory improvements were observed in 30.9% of patients. A relatively small number of adverse events were recorded, including fever (15.1%), headaches (4.3%), muscle tension (3.1%), and dizziness (2.6%), highlighting the potential for SCI recovery with stem cell therapy.

CONCLUSION

In the realm of SCI treatment, stem cell-based therapies show promise, but clinical trials reveal potential adverse events and limitations, underscoring the need for meticulous optimization of transplantation conditions and parameters, caution against swift clinical implementation, a deeper understanding of SCI pathophysiology, and addressing ethical, tumorigenicity, immunogenicity, and immunotoxicity concerns before gradual and careful adoption in clinical practice.

Key Words: Spinal cord injury; Stem cell therapy; Adverse events; Functional outcomes; Systematic review

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In the context of spinal cord injury (SCI) treatment, stem cell-based therapies exhibit promise, as demonstrated in this systematic review of 66 studies. However, the research reveals potential adverse events and limitations, emphasizing the importance of optimizing transplantation conditions, cautious clinical implementation, a deeper understanding of SCI pathophysiology, and addressing ethical, tumorigenicity, immunogenicity, and immunotoxicity concerns before a gradual and careful adoption of stem cell therapy in clinical practice. This underscores the need for further research to ensure the safety and effectiveness of these therapies for SCI patients, while acknowledging their potential for improving functional outcomes.

Citation: Agosti E, Zeppieri M, Pagnoni A, Fontanella MM, Fiorindi A, Ius T, Panciani PP. Current status and future perspectives on stem cell transplantation for spinal cord injury. World J Transplant 2024; 14(1): 89674 URL: https://www.wjgnet.com/2220-3230/full/v14/i1/89674.htm DOI: https://dx.doi.org/10.5500/wjt.v14.i1.89674

INTRODUCTION

Each year, approximately half a million fresh cases of spinal cord injury (SCI) emerge on a global scale. These instances are predominantly triggered by trauma stemming from car accidents, slips, firearm incidents, or medical/surgical complications. Given the nature of these causative factors, SCI primarily affects younger individuals^[1].

The intricate and time-sensitive pathophysiology of SCI renders the exploration of therapeutic targets exceedingly challenging. Following the initial mechanical injury, a cascade of secondary events exacerbates patients' conditions. These events include the inflammatory response, gliosis hyperplasia, the creation of inhibitory environments, and the formation of scars, all of which hinder axonal regeneration and limit the effectiveness of various treatment approaches^[2]. These pathophysiological consequences often lead to enduring neurological impairments, including the loss of motor and sensory functions below the injury level, as well as autonomic dysfunction[3].

Present-day clinical approaches prioritize prompt surgical decompression and mechanical stabilization at the location of SCI, bolstered by pharmaceutical measures encompassing methylprednisolone, nimodipine, naloxone, and various others. Subsequent to this crucial stage, patients engage in rehabilitative initiatives geared towards reinstating functionality and self-sufficiency. Regrettably, these endeavors yield unsatisfactory results concerning the safeguarding of neural structures, the rejuvenation of nervous tissue, and the recuperation of bodily functions. The primary cause of this dearth of achievement can be attributed to the intricate pathophysiological processes inherent to SCI, culminating in irreversible harm within the neural microenvironment at the site of injury [4,5].

In recent decades, stem cell therapy has emerged as a highly promising avenue within the realm of SCI. After a series of encouraging experimental treatments using diverse stem cell types in animals of various species, clinical trials involving human SCI patients became a reality in the early 2000s[3,5].

While prior evaluations of stem cell therapy for SCI have occurred, they have encountered specific challenges and restrictions. Most current investigations consist of single-arm, early-phase clinical trials primarily aimed at gauging the safety of stem cell treatments. In contrast, established systematic appraisals have exclusively featured randomized

WJT https://www.wjgnet.com

controlled trials, concentrating solely on the effectiveness of stem cells. Consequently, they have encompassed a limited range of studies and do not provide a comprehensive scrutiny of available data. Furthermore, they overlook critical facets such as the safety and feasibility of translating stem cell therapy from laboratory research to clinical application. Consequently, the question of whether we have amassed enough substantiation to justify an immediate clinical adoption of stem cell therapy remains open[6,7].

This review, in turn, delves into the pathophysiological intricacies of SCI, exploring the potential mechanisms through which various stem cells contribute to the restoration of the spinal cord, and it presents the fundamental characteristics and results of the pertinent clinical trials published.

MATERIALS AND METHODS

Literature review

The systematic review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines^[8]. Two authors (E.A. and A.P.) performed a systematically comprehensive literature search of the databases PubMed, Web of Science, Cochrane, Embase databases, and Reference Citation Analysis (RCA) (https://www.referencecitationanalysis.com). The first literature search was performed on August 30, 2023, and the search was updated on October 14, 2023. A combination of keyword searches was performed to generate a search strategy. The search keywords, including "spinal cord", "injury", "clinical trials", "stem cells", "functional outcomes", and "adverse events", were used in both AND and OR combinations. Studies were retrieved using the following Medical Subject Heading (MeSH) terms and Boolean operators: ("spinal injury" OR "spinal cord injury") AND ("stem cells" OR "staminal cells") AND ("clinical trials" OR "clinical studies"). Other pertinent articles were identified through reference analysis of selected papers. A search filter was set to show only publications over the designated period, 2010–2023.

Inclusion and exclusion criteria

The studies were chosen according to the below inclusion criteria: (1) The use of English; (2) clinical trials, such as randomized controlled or non-randomized controlled trials, single-arm or double-arm studies; (3) research on the use of stem cells to treat spinal cord injuries; and (4) research with adverse occurrences or functional results. The subsequent criteria for exclusion were utilized: (1) Publications such as editorials, case reports, case series, cohort studies, literature reviews, and meta-analyses; (2) research with vague methodology and/or findings; (3) research that omits information on adverse occurrences or functional results; (4) study that has been published several times; (5) the complete text is not available; and (6) patients with various significant conditions are included. Duplicates were eliminated from the list of recognized studies before importing it into Endnote X9. E.A. and P.P.P., two independent researchers, examined the data in accordance with the inclusion and exclusion criteria. All differences were settled by M.Z., the third reviewer. After that, full-text screening was applied to the qualifying articles.

Collecting data

We extracted the following data for each study: Authors, year, stage of the clinical trial, number of patients, degree of damage, neurological status prior to treatment, type and origin of stem cells, dosage and mode of administration, duration of follow-up, and clinical results.

Outcomes

Our primary outcomes were: (1) Clinical improvement, evaluated by the American Spinal Cord Injury Association Impairment Scale (ASIA) improvement scale (AIS) (Table 1), or, if not available, with other spinal cord injury scales or reported descriptive clinical data; and (2) adverse events (AEs) pertaining to many systems such as the cardiovascular, neurological, digestive, and musculoskeletal systems.

Assessment of bias risk

The quality of the included studies was evaluated using the Newcastle-Ottawa Scale[9]. By evaluating the study's comparability, outcome evaluation, and selection criteria, quality assessment was carried out. Nine was the optimal score. Better study quality was reflected by higher ratings. Research that scored seven or above were deemed to be of excellent quality. Independently, E.A. and P.P.P. conducted the quality evaluation. The third author reexamined publications when inconsistencies emerged (Figure 1).

Analytical statistics

Ranges and percentages were included in the descriptive statistics that were provided. The R statistical software, version 3.4.1, was used for all statistical analyses (http://www.r-project.org).

RESULTS

Literature review

After duplicates were eliminated, 496 papers in total were found. 237 articles were found for full-text analysis after title

Table 1 Ameri	can Spinal Cord Injury Association Impairment Scale improvement scale
A = Complete	No sensory or motor function is preserved in the sacral segments S4-S5
B = Sensory incomplete	Sensory but not motor function is preserved below the neurological level and includes the sacral segments S4-S5 (light touch or pin- prick at S4-S5 or deep anal pressure) AND no motor function is preserved more than three levels below the motor level on either side of the body
C = Motor incomplete	Motor function is preserved below the neurological level AND more than half of the key muscle functions below the neurological level of injury have a muscle grade less than 3 (grades 0-2)
D = Motor incomplete	Motor function is preserved below the neurological level AND at least half (half or more) of the key muscle functions below the neurological level of injury have a muscle grade ≥ 3
E = Normal	If sensation and motor function as tested with the ISNCSCI are graded as normal in all segments AND the patient has prior deficits, then the AIS grade is E. Someone without an initial SCI does not receive an AIS grade

Time from injury: Immediate: 0-2 h after the injury; acute: Early acute phase: 2-48 h; subacute: 2 d - 2 wk; intermediate: 2 wk - 6 mo; chronic phase: > 6 mo. AIS: American spinal injury association Impairment Scale; ISNCSCI: International Standards for Neurological Classification of SCI.

Modified Newcastle-Ottawa Quality Assessment Scale

Selection

(1) Representativeness of the exposed cohort

- (a) Consecutive eligible participants were selected, participants were randomly selected, or all participants were invited
- to participate from the source population,
- (b) Not satisfying requirements in part (a), or not stated.

(2) Selection of the non-exposed cohort

- (a) Selected from the same source population,
- (b) Selected from a different source population,
- (c) No description.

(3) Ascertainment of exposure

- (a) Medical record,
- (b) Structured interview,
- (c) No description.
- (4) Demonstration that outcome of interest was not present at the start of the study

(a) Yes,

(b) No or not explicitly stated.

Comparability

- (1) Were there clearly defined inclusion and exclusion criteria?
 - (a) Yes,
 - (b) No or not explicitly stated.

Outcome

- (1) Assessment of outcome
 - (a) Independent or blind assessment stated, or confirmation of the outcome by reference to secure records,
 - (b) Record linkage (e.g., identified through ICD codes on database records),
 - (c) Self-report with no reference to original structured injury data or imaging,
 - (d) No description.
- (2) Was follow-up long enough for outcomes to occur?
- (a) Yes (≥ 12 months),
- (b) No (< 3 months).
- (3) Adequacy of follow up
 - (a) Complete follow up all participants accounted for,
 - (b) Subjects lost to follow up unlikely to introduce bias (< 20% lost to follow up or description provided of those lost),
 - (c) Follow up rate < 85% and no description of those lost provided,
 - (d) No statement.

Figure 1 Modified Newcastle-Ottawa Scale.

and abstract analysis. It was determined who was eligible for 236 articles. The following criteria led to the exclusion of the remaining 169 articles: (1) Unrelated to the study topic (164 articles); (2) lacking methodological and/or outcome information (2 articles); and (3) a systematic review or meta-analysis of the literature (3 articles). For each of the patient groups under consideration, at least one or more outcome measures were available for all of the studies that were part of the analysis. The PRISMA statement's flow chart is depicted in Figure 2. The PRISMA checklist is offered as additional content.

WJT https://www.wjgnet.com

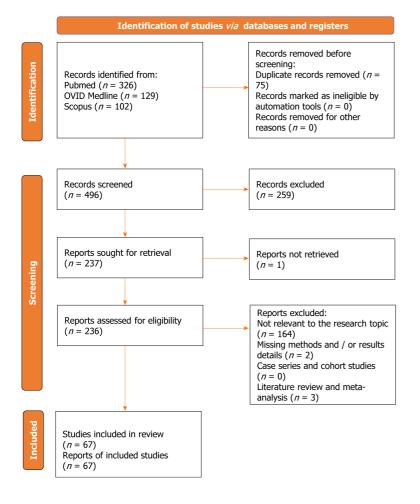


Figure 2 Flow chart according to the PRISMA statement.

Data analysis

This table presents data from a comprehensive collection of 67 studies that explored the use of stem cell therapies for spinal cord injuries. In total, these studies encompassed 1086 patients with varying injury levels. Cervical injuries were the most prevalent (42.2%), followed by thoracic injuries (32.3%), and lumbar injuries (8.6%). The specific stem cell types used varied across the studies, with bone marrow stem cells (BMSC) being the most common (71.1%), followed by umbilical cord tissue stem cells (UCMSC) in 16%, and others. The treatment approaches included intrathecal administration (61.3%), intramedullary (29.3%), and intravenous or intravenous plus intralesional methods (9.7%).

The follow-up periods for these studies ranged from acute to chronic stages, with an average follow-up duration of approximately 84.4 mo. The outcomes of these treatments were generally positive, with 32.7% of patients showing functional improvement from AIS A to B, 40.8% from AIS A to C, 5.3% from AIS A to D, and 2.1% from AIS B to C. A small percentage (1.3%) experienced improvement in AIS B to D, and AIS B to E (1.3%). Furthermore, sensory improvements were observed in 30.9% of patients. In terms of AEs, the studies consistently reported a low occurrence, with only mild and transient issues. Fever was experienced by 15.1% of patients, while 4.3% reported headaches, 3.1% experienced a transient increase in muscle tension, and 2.6% had dizziness. These findings collectively highlight the potential for functional recovery in spinal cord injury patients through stem cell therapies while underscoring their relatively safe profile (Tables 2-6).

DISCUSSION

The number of clinical trials involving stem cells has significantly increased in the last few years. Thousands of registered trials claim to use stem cells in their experimental treatments across the globe[2,4,7,10]. This could imply that stem cell therapy has a strong and established track record in clinical practice. But in actuality, even with some noteworthy breakthroughs, the application of stem cells in medicine is still relatively new.12, 15 Phase I clinical trials, case series, and case reports make up the majority of stem cell clinical research conducted today[2,4,5]. Good randomized controlled trials are hard to come by, and even simple controlled trials are difficult to find. It is therefore difficult to assess the efficacy of stem cells through head-to-head comparisons using meta-analysis. Furthermore, even while differences in patient age, the degree of spinal cord injury, cell kinds, sources, culture conditions, and other variables might make inter-study comparisons more difficult, they are nevertheless essential[5,8,9,11-15].

Table 2 Summary of the studies included in the systematic literature review focusing on bone marrow derived stem cells (i.e., BMSC)

	Phase			Pre-treatment	Stem cells		Treatment				Outcomes	
Ref.	of clinical trial	Patients (<i>n</i>)	Localization of injury	AIS classification or level of injury	Origin	Туре	Dose	Administration route	Time from Injury	Follow up (months)	Functional improvement	Adverse effects
Park <i>et al</i> [<mark>37</mark>], 2005	N/A	6	Cervical	AIS A	Autologous (iliac bone marrow)	BMSC	1.98×10^{10}	Intralesional	N/A	6-18	AIS $A \rightarrow C 4$, AIS $A \rightarrow B$: 1, AIS $A=A$: 1	No serious adverse effects
Sykova <i>et al</i> [<mark>11</mark>], 2006	N/A	20	Cervical and thoracic	AIS A: 15; AIS B: 4; AIS C: 1	Autologous (iliac bone marrow)	BMSC	$104.0 \pm 55.3 \times 10^{8}$	Intravenous + Intraarterial	Subacute or chronic	24	AIS $A \rightarrow B$: 1, AIS $B \rightarrow D$: 1, AIS=: 15	No serious adverse effects
Chernykh <i>et al</i> [12], 2007	N/A	18	Cervical, Thoracic, Lumbar	N/A	Autologous (iliac bone marrow)	BMSC	N/A	Intralesional+ Intravenous	Chronic	9.4 ± 4.6	ASIA scale: significant increase in total sensitivity and motor activity score	No serious adverse effects
Yoon <i>et al</i> [13], 2007	I/II	35	Cervical (4) and thoracic (4)	N/A	Autologous iliac bone marrow	BMSC	1×10^8	Intralesional	Intermediate	10.4	AIS grade increased in 30.4% of the acute and subacute treated patients (AIS $A \rightarrow B$ or $A \rightarrow C$)	No serious adverse effects
Geffner <i>et al</i> [<mark>14</mark>], 2008	N/A	8	Thoracic	AIS A: 5, AIS B: 1, AIS C: 2	Autologous iliac bone marrow	BMSC	1.2 × 10 ⁶ /kg	Intrathecal	4 acute and 4 chronic (average 114 months)	24	AIS $A \rightarrow C$: 4, AIS $B \rightarrow C$: 1, AIS $C \rightarrow D$: 1 AIS =: 2	No serious adverse effects
Adel <i>et al</i> [<mark>38</mark>], 2009	N/A	43	Cervical and thoracic	AIS A: 40, AIS C: 3	Autologous iliac bone marrow	BMSC	5-10 × 10 ⁶	Intrathecal	Chronic (average 43.2 months)	6	AIS $A \rightarrow B$: 11; AIS $A \rightarrow C$: 1; AIS $B \rightarrow C$: 3; AIS =: 28	ADEM: 1/43; Marked increased spasticity: 4/43; Neuropathic pain: 24/43
Kumar <i>et al</i> [39], 2009	I/II	297	N/A	AIS A: 249, AIS B: 12, AIS C: 34, AIS D: 2	Autologous iliac bone marrow	BMSC	N/A	Intrathecal	N/A	18.4-20.5	32.7% of the ASIA- classified patients showed improvement, in sensory and motor scale	No serious adverse effects. Mild-to-moderate neuropathic pain in few patients
Pal <i>et al</i> [40], 2009	N/A	30	Cervical and thoracic	AIS A: 24, AIS C: 6	Autologous iliac bone marrow	BMSC	$1 \times 10^{6}/kg$	Intrathecal	< 6 months: 20, > 6 months: 30	12-36	No changes in the ASIA scale, SSEP, MEP and NCV	No serious adverse effects. Neuropathic pain in two patients
Abdelaziz <i>et al</i> [41], 2010	N/A	20	Thoracic	AIS A: 10, AIS B: 5, AIS C: 5	Autologous iliac bone marrow	BMSC	$5 \times 10^6/kg$	Intrathecal + Intralesional	Chronic (> 6 months)	12	AIS $A \rightarrow B$: 1, AIS $A \rightarrow C$: 2, AIS $B \rightarrow C$: 3; AIS=: 14	No serious adverse effects.Headache (12) and fever (3)
Bhanot <i>et al</i> [30], 2011	N/A	13	Cervical and thoracic	AIS A	Autologous	BMSC	3-6-8 × 10 ⁶ /kg	Intrathecal	Intermediate and chronic (3-132 months, average 28)	6-38	AIS A→B: 1, Patchy improvement in sensations below the injured level: 2, Patient subjectively felt	No serious adverse effects. Transient increase in spasticity in the lower limbs (50%)

											improved sense of bladder filling: 1	
Park <i>et al</i> [<mark>35</mark>], 2012	N/A	10	Cervical	AIS A: 4, AIS B: 6	Autologous iliac bone marrow	BMSC	8 × 10 ⁶ (intrale- sional) + 4 × 10 ⁷ (subdural)	Intralesional + Subdural	> 1 months	6-62	Improvements in ADL, SSEP, MEP (3/10, all AIS B)	No serious adverse effects
Karamouzian et al[18], 2012	I/II	11	Thoracic	AIS A	Autologous iliac bone marrow	BMSC	$0.7-1.2 \times 10^{6}$	Intrathecal	Acute and intermediate/chronic (max 1.5 months)	12-33	AIS $A \rightarrow C$: 5, AIS=: 0	No serious adverse effects
Dai <i>et al</i> [<mark>28</mark>], 2013	N/A	20	Cervical	AIS A, ASIA score: 31.6 ± 9.82	Autologous iliac bone marrow	BMSC	2 × 10 ⁷	Intralesional	Chronic (51.9 ± 18.3)	6	AIS A→B: 9, ASIA score: 43.1 ± 19.32	No serious adverse effects. Fever (2), Headache and dizziness (1), pain and numbness in spinal cord dominant area (2)
Jiang et al [19] , 2013	N/A	20	Cervical (4), thoracic (11) and lumbar (5)	AIS A: 8, AIS B: 4, AIS C: 8	Autologous iliac bone marrow	BMSC	1×10^8	Intrathecal	Intermediate and chronic (3-120 months)	1	AIS $A \rightarrow B$: 3, AIS $A \rightarrow C$: 1, $\rightarrow AIS C \rightarrow D$: 8	No serious adverse effects. Fever and headache
Yazdani <i>et al</i> [42], 2013	Ι	8	Cervical (1) and thoracic (7)	AIS A	Autologous iliac bone marrow	BMSC	1×10^{6}	Intralesional	Chronic (13-63 months)	26-43	Although some improvement in light touch and pinprick sensation was observed, no improvement in ASIA classification was seen	No serious adverse effects
Amr et al[43], 2014	N/A	14	Thoracic	AIS A	Autologous iliac bone marrow	BMSC	N/A	Scaffold	Intermediate and chronic (5-84 months, average 23 months)	24	AIS $A \rightarrow B$: 2, AIS $A \rightarrow C$: 12	Haematoma formation (2), Seroma formation (2)
Suzuki <i>et al</i> [44], 2014	N/A	10	Cervical and thoracic	AIS A: 5, AIS B:5	Autologous iliac bone marrow	BMSC	2.03-8.44 × 10 ⁸	Intrathecal	Intermediate and chronic (3 wk-12 months)	6	AIS $A \rightarrow B$: 1, AIS $B \rightarrow C$: 2, AIS $B \rightarrow D$: 1; AIS=: 6	No serious adverse effects. Transient anemia after aspiration of bone- marrow cells (2)
Goni <i>et al</i> [<mark>45</mark>], 2014	N/A	9	Thoracic	AIS A	Autologous iliac bone marrow	BMSC	N/A	Intrathecal	Chronic	24	No significant difference in the ASIA score. Statistically significant differences in the Functional Independence Measure and Modified Ashworth Scale	No serious adverse effects. Postoperative temporary neuropathic pain (2)
El-kheir <i>et al</i> [<mark>10</mark>], 2014	I/II	50	Cervical (10) and thoracic (40)	AIS A: 15, AIS B: 35	Autologous iliac bone marrow	BMSC	2 × 10 ⁶ /kg	Intrathecal	Chronic (12-36 months, average 18.3 ± 5)	18	AIS $A \rightarrow B$: 12, AIS $A \rightarrow C$: 4, AIS $B \rightarrow C$: 18; AIS=: 16	
Mendonca et	Ι	14	Thoracic and	AIS A	Autologous	BMSC	5×10^{6}	Intralesional	Chronic (18-180	6	AIS $A \rightarrow B$: 6, AIS $A \rightarrow C$:	One subject developed a

al[<mark>4</mark> 6], 2014	lumbar	iliac bone marrow			months)		1; AIS=: 5; Improvements in urologic function (9) and changes in SSEP (1)	postoperatory complication, evolving a cerebrospinal fluid leak that was treated by an additional surgical procedure
Shin et al [47] , I/IIa 19 2015	Cervical AIS A: 17, AIS B: 2	Human fetal NSC brain	1×10^8	Intralesional	Acute and intermediate	12	AIS $A \rightarrow C$: 2, AIS $A \rightarrow B$: 1, AIS $B \rightarrow D$: 2; AIS=: 14. Positive response in SSEP (35.3%) and MEP (58.8%) activities of AIS- A patients below the level of injury	No serious adverse effects
Chhabra <i>et al</i> I/II 7 [48], 2016	Thoracic AIS A, ISCIS total score: 162.6 ± 3.1	Autologous BMSC iliac bone marrow	3.6×10^8	Intrathecal	Acute	12	ISCIS total score: 134.9 ± 2.5	Liver abscess (1)
Oraee- I 6 Yazdani <i>et al</i> [49], 2016	Cervical (1) AIS A and thoracic (5)	Autologous BMSC iliac bone marrow	2 × 10 ⁶	Intrathecal	Chronic (38.1 ± 15.3 months average)	25-36	AIS A→B: 1. Improvement in sensory level (2), improvement in UDS, especially bladder compliance (1)	No serious adverse effects
Oh <i>et al</i> [32], III 16 2016	Cervical AIS B	Autologous BMSC iliac bone marrow	4.8×10^{7}	Subdural	Chronic (24-181 months)	6	SEP improvement (4), MEP improvement (6), improvement in motor grade (2)	No serious adverse effects. 8 patients developed mild adverse effects (muscle rigidity, worsened symptoms of tingling sense)
Thakkar et al N/A 10 [33], 2016	Thoracic and AIS A lumbar	Autologous BMSC bone marrow + abdominal adipose tissue	1.82×10^{8}	Intrathecal	Chronic (30-64.8 months)	34	AIS $A \rightarrow B$: 6, AIS $A \rightarrow C$: 3, AIS $A \rightarrow D$: 1	No serious adverse effects
Vaquero <i>et al</i> I/II 12 [27], 2016	Thoracic AIS A, ASIA score: 165.92 ± 22.83	Autologous BMSC bone marrow	100 × 10 ⁶ - 230 × 10 ⁶	Intralesional	Chronic (38.0-321 months, average 166.3)	12	AIS→B: 3, AIS A→C: 1, ASIA score: 213.25 ± 37.19	22 adverse events of minor (79.1%) or moderate (20.9%) intensity.
Kakabadze et I 18 al[25], 2016	Cervical and AIS A: 10, AIS B: thoracic 5, AIS C: 3	Autologous BMSC iliac bone marrow	405-964 × 10 ⁶	Intrathecal	Intermediate and chronic (max 20 months)	12	ASIA scale improvement by one grade: 7/9 (78%) Improvement by two grades: 2/9 (22%)	No serious adverse effects. Transient fever and headache
Xiao et al <mark>[50]</mark> , N/A 5 2016	Cervical (1) AIS A and thoracic (4)	Autologous BMSC iliac bone marrow	1×10^{9}	Scaffold	Intermediate and chronic (max 32 months)	12	AIS A No improvement also in MEP and SSEP	No serious adverse effects.
Chhabra <i>et al</i> I/II 7 [51], 2017	Thoracic AIS A, ISCIS total score: 172.2 ± 2.3	Autologous BMSC iliac bone marrow	2 × 10 ⁸	Intralesional	Acute	12	ISCIS total score: 141.7 ± 2.5	Liver abscess (1)

Image: Single													
[21], 2017HardbareHinchwe marrowHinchwe marrowmonths)One patient improved $AS A = B$ the trees at $AS A = B$ the trees a		п	10	thoracic and	5, ASIA total	Autologous	BMSC		Intratechal	months, mean 170.5 ±	12	49.35. Motor and sensory scores, bladder, bowel and sexual functions improved. Spasms (2) and neuropathic pain (2)	effects. Transient headache and pain in the area of the lumbar
[20]2018thoracic (4)4, AIS C: 3, AISdoes177.5 months) 27% of patients AIS A-BC L: AIS A-BC L: AIS A-BC L: AIS AIS C-D: 1effects. Transitory science and pain in the area of lumbar puncture $adalajara et alal[31], 2018Case1ThoracicAIS AAutologousiliac bonemarrowBMSCalces300 \times 10^6 \times 3doesIntrathecaldoesChronic6Improvement infunctionality andespectally in Krogh's;Neurogenic fowelDysfunction scaleNo serious adverseeffectsSrivastava et al[35], 2019170Thoracic andlumbarAIS AAutologousiliac bonemarrowBMSCmarrow2.41 \pm 1.198 \times10^6IntrathecalmarrowAcute and intermediate12AIS AB: 21, AIS ACserious adverseeffectsNo serious adverseeffectsPhedy et al[55], 2019Casereport1ThoracicreportAIS AAutologousmarrowBMSCmarrow10 - 17 \times 10^6 (xtrathecal x1 +Intrathecal x1 +Intrathecal x1 +Intrathecal x1 +Intrathecal x1 +Chronic60AIS AC. Increase inAIS AC. Increase inAIS AC. Increase inAIS co-crease in AIS corefor L1 and L2 innervatedmarrowNo serious adverseeffects[56], 2020I7ThoracicAIS AAutologousaliac bonemarrowBMSC1 \times 10^6Acute or intermediate36All patients showedsignificantimprovement in theproteiner (I) Andmore science (I) (J) sparsi (A),parapleigt corefor L1 and ADL score. Noobvious improvement in theprotem$		I/II	5	Thoracic	AIS A	iliac bone	BMSC	2×10^7	Subcutaneous	`	6	One patient improved AIS $A \rightarrow B$ but reversed at 6 months. Improvements in SCIM	
$al[53], 2018$ reportiliac bone marrowdoses $(1/months)$ doses $(1/months)$ functionality and especially in Krogh's; No serious acleeffectsSrivastav et $al[54], 2019$ I70Thoracic and lumbarAIS A marrowAutologous marrowBMSC 	-	Π	11	thoracic (4)	4, AIS C: 3, AIS	Autologous	BMSC		Intrathecal		10	27% of patients. AIS $A \rightarrow B$: 1, AIS $B \rightarrow C$: 1;	effects. Transitory sciatic pain (37.5%), headaches and pain in the area of
$al[54], 2019$ lumbariliac bone marrow 10^6 $29, AIS A \rightarrow D: 5; AIS =:$ effectsPhedy et al [55], 2019Case report1ThoracicAIS AAutologous iliac bone marrowBMSC $10 - 17 \times 10^6$ (× 7 times)Intrathecal ×1 + 	,		1	Thoracic	AIS A	iliac bone	BMSC	doses	Intrathecal	Chronic	6	functionality and especially in Krogh's; Neurogenic Bowel	
[55], 2019reportiliac bone marrow7 times)Intravenous ×6AIS score: 10→30. Increase in MRC score for L1 and L2 innervated muscles: $0/5 \rightarrow 3/5$ effectsChen et al [56], 2020I7ThoracicAIS AAutologous iliac bone 		Ι	70		AIS A	iliac bone	BMSC	· · · ·	Intrathecal	Acute and intermediate	12	29, AIS A→D: 5; AIS=:	
[56], 2020 iliac bone significant infection (1), transient improvements in the marrow perthermia (1), shal FIM and ADL score. No obvious improvement in the ASIA grade, ASIA pressure ulcers (1), and motor score, motor in lower limb amyotroph			1	Thoracic	AIS A	iliac bone	BMSC			Chronic	60	AIS score: $10\rightarrow 30$. Increase in MRC score for L1 and L2 innervated	
MEPs was observed		Ι	7	Thoracic	AIS A	iliac bone	BMSC	> 1 × 10 ⁹	Scaffold	Acute or intermediate	36	significant improvements in the FIM and ADL score. No obvious improvement in the ASIA grade, ASIA motor score, motor function, SSEPs, or	infection (1), transient hyperthermia (1), shallow wound (1), spasm (4), paraplegic neuralgia (3), pressure ulcers (1), and lower limb amyotrophy
Sharma <i>et al</i> N/A 180 Cervical (63), AIS A: 138, AIS Autologous BMSC 1.06 × 10 ⁸ Intrathecal Intermediate or chronic 2-16 FIM and WISCI showed No serious adverse statistically significant effects improvement		N/A	180	thoracic and	B: 28, AIS C: 10,	iliac bone	BMSC	1.06×10^{8}	Intrathecal	Intermediate or chronic	2-16	statistically significant	
Song et al[58], N/A18Cervical, thoracic and lumbarASIA score: 59.75AutologousBMSC 1×10^7 IntrathecalN/A12ASIA score: 81.1 ± 3.8, SCIM-III ± 3.8,No serious adverse2020thoracic and lumbar± 5.22, SCIM-III score: 40.83 ±iliac bone marrow1 × 10^7IntrathecalN/A12ASIA score: 81.1 ± 3.8, SCIM-III ± 3.8,No serious adverse score: 40.83 ±		N/A	18	thoracic and	± 5.22, SCIM-III	iliac bone	BMSC	1×10^{7}	Intrathecal	N/A	12	,	

				6.58								
Oraee- Yazdani <i>et al</i> [<mark>36</mark>], 2021	I/II	6	Cervical (1) and thoracic (5)	AIS A, SCIM III score: 28.9 ± 13	Autologous iliac bone marrow	BMSC	1×10^{6}	Intrathecal	Chronic (max 12 months)	30	SCIM III score: 43.1 ± 25.8. Sensory and/or motor improvement was evident in 9 patients according to the AIS assessment	Mild adverse effects: Increase in spasticity, numbness, or tingling sensation, and neuropathic pain
Honmou <i>et a</i> [59], 2021	d II	13	Cervical	AIS A: 6, AIS B: 2, AIS C: 5	Autologous	BMSC (auto- serum expanded)	$84-150 \times 10^{6}$	Intravenous	Subacute	6	AIS $A \rightarrow B$ (3/6 patients), $A \rightarrow C$ (2/6), $B \rightarrow C$ (1/2), $B \rightarrow D$ (1/2), $C \rightarrow D$ (5/5)	

Time from injury: Immediate: 0 - 2 h after the injury; acute: Early acute phase: 2 - 48 h; subacute: 2 d - 2 wk; intermediate: 2 wk - 6 months; chronic phase: > 6 months. AIS: American spinal injury association Impairment Scale; ASIA: American Spinal Injury Association; BMSC: Bone Marrow Mesenchymal Stromal Cells; N/A: Not available; NSC: Neural stem cells.

Our review reveals a general enhancement in patient functionality, encompassing both motor and sensory perspectives. Notably, 32.7% of patients exhibited functional improvement, transitioning from AIS A to B, and 40.8% from AIS A to C. Sensory improvements were observed in 30.9% of patients. However, these improvements represent only modest progress in sensory and motor function, falling short of the anticipated levels required for walking and daily activities. It's important to highlight that the assessment of sensory and motor function, based on the ASIA score, depends on subjective evaluations by both the assessor and the patient, which introduces a degree of result variability[16,17]. Although the high effectiveness rates seem encouraging, the lack of control groups in the majority of trials allows for the possibility that the therapeutic improvements after stem cell transplantation might be influenced by spinal cord decompression or spontaneous healing. Consequently, stem cells cannot be fully blamed for the therapeutic benefits. Therefore, thorough investigation into the true therapeutic effects of stem cells is necessary using standardized controlled trials that follow pertinent regulations[17-21].

The potential benefits of stem cell therapy for patients remain uncertain, compounded by suboptimal design and execution of clinical trials[12,22]. Rigorously conducted randomized controlled trials, featuring double-blind methodologies and placebo groups, offer the most precise and dependable data, surpassing observational studies or case reports in reliability. Nonetheless, the majority of ongoing investigations consist of observational studies, case series, and similar approaches[15,21]. Clinical trials often suffer from issues such as limited sample sizes and subpar quality[22,23]. Furthermore, a considerable portion of the studies reviewed were phase I clinical trials, typically focused on evaluating stem cell safety. Intriguingly, all of these studies primarily explored and reported on the effectiveness of stem cells while neglecting to document AEs. Consequently, the safety profile of stem cells could potentially be inaccurately elevated[17].

The utmost priority should always be the safety of patients. The safety of stem cell therapy and the occurrence of AEs primarily hinge on the inherent traits of the transplanted stem cells and the transplantation procedure[16,17]. Our review of the studies did not reveal any severe AEs, such as the formation of tumors, further reinforcing the claims of these studies regarding the safety of stem cell therapy. Nevertheless, it's crucial to recognize that the absence of serious AEs doesn't definitively establish the therapy's safety. Many AEs were documented in the 66 research that we looked at. These included effects on the neurological, musculoskeletal, digestive, and cardiovascular systems. Following the proper medical measures, the majority of these AEs were moderate, and the patients recovered well. It would be premature, nevertheless, to declare stem cell treatment safe in all cases. By doing thus, it might unintentionally encourage unjustified trust in the therapy and jeopardize the scientific assessment of its safety and efficacy. Furthermore, Aspinall *et al*'s

				Pre-treatment	Stem cells		Treatment				Outcomes	
Ref.	Phase of clinical trial	Patients (<i>n</i>)	Localization of injury	AIS classification or level of injury	Origin	Туре	Dose	Administratio n route	Time from Injury	Follow up (months)	Functional improvement	Adverse effects
Deda <i>et al</i> [<mark>60</mark>], 2008	N/A	9	Cervical (6) and thoracic (3)	AIS A: 9	Autologous peripheral blood	HSC	5×10^{6}	Intrathecal	Chronic (6-51 months)	12	AIS $A \rightarrow B: 2$, AIS $A \rightarrow C: 7$	No serious adverse effects
Hammadi <i>et al</i> [61], 2012	N/A	277	Cervical (69) and thoracic (208)	N/A	Autologous peripheral blood	HSC	1-8 × 10 ⁸	Intrathecal	Chronic (6-104 months, average 34.5)	24	AIS A \rightarrow B: 88, AIS A \rightarrow C: 32, AIS = 157. A subgroup (12 patients) with lesion < 12 months had the best outcome: the percentage improvement reached 50%	No serious adverse effects. Backache and meningism (90%)
Al-Zoubi <i>et al</i> [62], 2014	N/A	19	Thoracic	AIS A	Autologous peripheral blood	HSC	7.6×10^{7}	Intrathecal	Chronic (12-48 months)	60	AIS $A \rightarrow B: 7$. AIS $A \rightarrow C: 2$, AIS =: 10	No serious adverse effects
Bryukhovetskiy <i>et al</i> [63], 2015	I/II	202	Cervical (98), thoracic (93) and lumbar (11)	N/A	Autologous peripheral blood	HSC	5.8 × 10 ⁶	Intrathecal	Chronic (> 12 months)	144	Restoration of neurologic deficit (54.7%); Repair of the urinary system (47.7%). ASIA score improvement in 23 cases	No serious adverse effects

Time from injury: Immediate: 0 - 2 h after the injury; acute: Early acute phase: 2 - 48 h; subacute: 2 d - 2 wk; intermediate: 2 wk - 6 months; chronic phase: > 6 months. AIS: American spinal injury association Impairment Scale; HSC: Hematopoietic stem cells.

analysis revealed that only thirty percent of clinical trials sufficiently recorded different AEs during the clinical trial[24]. Consequently, it's plausible that a sizable percentage of studies may have failed to disclose or ignored AEs in an effort to make stem cell treatment appear safer than it actually is.

Among the myriad safety concerns associated with stem cell transplantation, the specter of tumorigenesis looms larger and more ominous than the comparatively milder fever and neuropathic pain stemming from immune or allergic reactions[17,22,23,25]. Stem cell products bear the highest potential for tumorigenesis due to the presence of lingering undifferentiated stem cells, cells carrying malignant transformations or mutations, and genetic instability[26]. Moreover, the expression of foreign genes, such as different growth factors, might result in oncogenic activation, and the danger of

				Pre-treatment	Stem cells		Treatment			_	Outcomes	
Ref.	Phase of clinical trial	Patients (<i>n</i>)	Localization of injury	AIS classification or level of injury	Origin	Туре	Dose	Administratio n route	Time from injury	Follow up (months)	Functional improvement	Adverse effects
Hur et al[26], 2016	Ι	14	Cervical (6), thoracic (7) and lumbar (1)	AIS A: 12, AIS B: 1, AIS D: 1	Autologous subcutaneous fat	ADMSC	9 × 10 ⁷	Intrathecal	Intermediate and chronic (max 28 months)	8	Improvements in ASIA motor scores (5), voluntary anal contraction (2), ASIA sensory score (10), although degeneration was seen in 1. SSEP median nerve improvement (1)	No serious adverse effects. Transient headache, nausea and vomiting
Tien <i>et al</i> [64] , 2019	N/A	31	Thoracic	AIS A, Barthel ADL: 3.35 ± 1.35	Autologous adipose tissue	ADMSC	> 1 × 10 ⁸	Intrathecal	Acute	12	AIS $A \rightarrow B$: 10, AIS $A \rightarrow C$: 1, AIS $A \rightarrow D$: 2; AIS =: 16 Barthel ADL: 6.48 ± 2.14	No serious adverse effects

Time from injury: Immediate: 0 - 2 h after the injury; acute: Early acute phase: 2 - 48 h; subacute: 2 d - 2 wk; intermediate: 2 wk - 6 months; chronic phase: > 6 months. ADL: Activities of Daily Living; ADMSC: Adipose-derived mesenchymal stem cells; AIS: American spinal injury association Impairment Scale.

insertional mutagenesis in stem cells is introduced by genetically modified viral vectors, such as lentiviruses and retroviruses. It's worth noting that there exists no consensus on a global scale regarding risk assessment strategies for evaluating the tumorigenicity and oncogenicity of stem cells. Curiously, there have been no reports of severe adverse events, including tumorigenesis, in clinical trials thus far. However, this absence of reports might be attributed to the relatively brief follow-up period[16,17,24].

While preclinical studies have indeed established a solid groundwork for stem cell therapy, its translation to clinical practice has encountered significant challenges. The number of newly initiated phase I and II clinical trials experienced steady growth between 2006 and 2012 but has since shown signs of stagnation and decline as of 2018[1-4,17,27]. This trend can be attributed primarily to the underwhelming efficacy of stem cell therapy. The stark contrast between animal studies and patient outcomes is a key contributor to this disparity[28,29]. The goal of animal research is to reduce the number of experimental variables as much as possible, such as the animals' initial features and the precise location and severity of their injuries. But spinal cord injury patients are highly heterogeneous; they include differences in rehabilitation regimens, age, gender, comorbid problems, and the location and degree of the damage[10,12,17,30,31]. Consequently, the observed treatment efficacy in patients often falls markedly below that observed in animal models.

				Pre-treatment	Stem cells		Treatment				Outcomes	
Ref.	Phase of clinical trial	Patients (<i>n</i>)	Localization of injury	AIS classification or level of injury	Origin	Туре	Dose	Administratio n route	Time from injury	Follow up (months)	Functional improvement	Adverse effects
Shin <i>et a</i> l[<mark>47]</mark> , 2015	I/IIa	19	Cervical	AIS A: 17, AIS B: 2	Human fetal brain	NSC	1 × 10 ⁸	Intralesional	Acute and intermediate	12	AIS $A \rightarrow C: 2$, AIS $A \rightarrow B: 1$, AIS $B \rightarrow D: 2$; AIS=: 14. Positive response in SEEP (35.3%) and MEP (58.8%) activities of AIS-A patients below the level of injury	No serious adverse effects
Ghobrial <i>et al</i> [65], 2017	Ш	5	Cervical	AIS A: 1, AIS B: 4	Allogeneic fetus	huCNSSC [®]	15-40 × 10 ⁶	Intrathecal	Chronic	12	AIS $A \rightarrow B$: 1, AIS $B \rightarrow A$: 1, AIS=: 3, GRASSP score mean improvement: 14.8 ± 7.8, ISNCSCI score mean improvement: 17.3 ± 16.8	No serious adverse effects
Anderson <i>et al</i> [<mark>66]</mark> , 2017	Ι	6	Thoracic	N/A	Autologous (sural nerve)	SC	5, 10 or 15 × 10 ⁶	Intramedullary	Subacute	12	AIS A→B: 1. Improvement in FIM and SCIM III scores	No serious adverse effects
Levi <i>et al</i> [<mark>67</mark>], 2018	I/II	29	Cervical: 17 (Cohort I: 6, Cohort II: 11) Thoracic: 12	AIS A: 11, AIS B: 18	Allogeneic (Stemcells Inc.)	huCNSSC [®]	$15 - 40 \times 10^6$	Intramedullary	Subacute	Up to 56	Improvement in AIS motor scores	15 serious adverse effects in cervical group and 4 in thoracic
Curtis <i>et al</i> [<mark>68</mark>], 2018	I	4	Thoracic	AIS A	Allogeneic (human-spinal- cord-derived neural stem cell)	NSI-566®	6 injections (Mean number)	Intramedullary	Chronic	60	Improved AIS scores, neurological levels and EMG findings. No improvement in QoL	No serious adverse effects
Levi et al[<mark>69</mark>],	I/II	17 Cohort I: 6,	Cervical	AIS A, B	Allogeneic	huCNSSC®	$15 + 30 + 40 \times$	Intramedullary	Intermediate or	12	Improvement	No serious

2019		Cohort II: 11 6/11 monitored			(Stemcells Inc.)		10 ⁶ (Coh.I) 40 × 10 ⁶ (Coh.II)		Chronic (max 24 months)		in UEMS score	adverse effects
Curt <i>et al</i> [70] , 2020	I/IIa	12	Thoracic	AIS A: 7, AIS B: 5	Allogeneic (Stemcells Inc.)	huCNSSC [®]	20 × 10 ⁶	Intramedullary	Intermediate or chronic (max 24 months)	72	Sensory improvements in 5 out of 12 patients. No motor improvements were observed	N No serious adverse effects
Zamani <i>et al</i> [71], 2021	Ι	3	Thoracic	AIS A	Autologous	OEC+ BMSC	15 × 10 ⁶ , OEC/BMSC = 1/1	Intrathecal	Chronic	24	AIS A→B: 1 and 6 points improvement in SCIM	Mild adverse effects
Gant <i>et al</i> [72], 2022	Ι	8	Cervical: 4; Thoracic: 4	N/A	Autologous (sural nerve)	SC	50 – 200 × 10 ⁶	Intramedullary	Chronic	60	The neurological level improved by 1 level in 1 patient. Improvement in Sensory score in all patients with thoracic and in 2 patients with cervical lesion	No serious adverse effects

Time from injury: Immediate: 0 - 2 h after the injury; acute: Early acute phase: 2 - 48 h; subacute: 2 d - 2 wk; intermediate: 2 wk - 6 months; chronic phase: > 6 months. AIS: American spinal injury association Impairment Scale; BMSC: Bone Marrow Mesenchymal Stromal Cells; EMG: Electromyography; MSC; Mesenchimal stem cell; NSC: Neural stem cells; OEC: Olfactory ensheathing cell; SC: Stem cell; SCIM: Spinal cord independence measure.

Moreover, clinically recruited patients feature significant variations in their inclusion and exclusion criteria, coupled with disparities in injury location, severity, and timing. This diversity complicates the formation of a homogeneous patient cohort, even in well-designed randomized controlled trials, consequently clouding the interpretation of treatment efficacy and rendering it less precise and reliable[27,30,32-34].

The advancements made in stem cell clinical trials have been nothing short of captivating. However, it's essential to note that the majority of these studies are still situated in the early phase I/II stages, with ongoing data collection[17]. At this juncture, confirming the substantial therapeutic impact of stem cells remains premature. Across various clinical trials, a multitude of disparities and uncertainties surface, spanning the selection of patients, types of cells utilized, timing of intervention, and the dosages and routes employed for stem cell transplantation[35,36]. This necessitates a closer synergy between the preclinical and clinical dimensions of research. Improving trial safety, effectiveness, and repeatability; determining ideal transplant parameters; carefully weighing the advantages and disadvantages of stem cell treatment; and strengthening oversight practices in this area are among the urgent goals[16,17].

Table 6 Summ	ary of the studie	es included in th	e systematic liter	ature review for	cusing on nervo	us tissue derive	d stem cells (<i>i.e.,</i>	UCMSC, HUCB	C, HESC, WJ-MS	6C)		
				Pre-treatment	Stem cells		Treatment				Outcomes	
Ref.	Phase of clinical trial	Patients (<i>n</i>)	Localization of injury	AIS classification or level of injury	Origin	Туре	Dose	Administratio n route	Time from injury	Follow up (months)	Functional improvement	Adverse effects
Dai <i>et al</i> [<mark>29</mark>], 2013	N/A	18	Cervical and thoracic	AIS A: 12, AIS B: 4, AIS C: 2	Allogeneic neonatal umbilical cord tissue	UCMSC	4 × 10 ⁷	Intralesional	Chronic (18.67 ± 7.6 months)	6	AIS $A \rightarrow B$: 7, AIS $B \rightarrow C$: 3, AIS=: 8; MEP improvements	No serious adverse effects
Liu et al <mark>[73]</mark> , 2013	N/A	22	Cervical (4), cervical + thoracic (2), thoracic + lumbar (2) and lumbar (7)	Motor function: 58.1 ± 22.2. Algesia: 73.2 ± 25.1. Sensory function: 74.2 ± 26.7. ADL: 29.5 ± 12.5	Allogeneic neonatal umbilical cord tissue	UCMSC	$4 \times 10^6/\mathrm{kg}$	Intrathecal	Intermediate and chronic (2- 204 months)	> 12	Motor function: 61.5 ± 23.9. Algesia: 77.2 ± 26.1. Sensory function: 77.3 ± 26.1. ADL: 32.7 ± 12.4	Fever, lumbago, headache, dizziness and other adverse reactions were observed
Cheng <i>et al</i> [74] , 2014	N/A	10	Thoracic and lumbar	AIS A, Barthel Index: 33.50 ± 6.69	Allogeneic neonatal umbilical cord tissue	UCMSC	4×10^{7}	Intralesional	Chronic (12-72 months)	6	Barthel Index: 41.40 ± 6.42; Muscle strength increased. Muscle tension decreased. Increase in maximum bladder capacity and decrease in maximum detrusor pressure	No serious adverse effects
Shroff <i>et al</i> [34], 2016	N/A	226	Cervical and thoracic	AIS A: 153, AIS B: 32, AIS C: 36, AIS D: 5	Pre- implantation stage fertilized ovum	HESC	$1.6 \times 10^7 + 1.5 \times 1.6 \times 10^7$	Intravenous + intralesional	Intermediate and chronic	6-18	AIS A: 98, AIS B: 67, AIS C: 126, AIS D: 9, AIS E: 3	No serious adverse effects. Transient fever and headache
Shroff <i>et al</i> [75], 2017	N/A	15	Cervical and thoracic	AIS A: 13, AIS B: 2	Pre- implantation stage fertilized ovum taken during natural IVF process	HESC	$1.6 \times 10^7 + 1.5 \times 1.6 \times 10^7$	Intravenous + intralesional	Acute, intermediate and chronic (6- 15 months)	9	AIS A: 10, AIS B: 2, AIS C: 3	No serious adverse effects
Zhao et al[<mark>76]</mark> , 2017	N/A	8	Cervical (4) and thoracic (4)	AIS A	Allogeneic neonatal umbilical cord tissue	UCMSC	4×10^7	Scaffold	Intermediate and chronic (max 36 months)	12	Expansion of sensation level (62.5%) and expansion of the MEP- responsive area	No serious adverse effects

											(87.5%) but AIS=	
Xiao et al [77] , 2018	Ι	2	Cervical and thoracic	AIS A	Allogeneic	UCMSC+ Scaffold	40×10^6	Intramedullary	Acute	12	AIS $A \rightarrow C$ in both patients	No serious adverse effects
Deng et al[72], 2020	Ι	20	Cervical	AIS A	Allogeneic	UCMSC+ Scaffold	40 × 10 ⁶ (Collagen scaffold)	Intramedullary	Acute	12	AIS $A \rightarrow B$ (9 patients), AIS $A \rightarrow C$ (2 patients). Improvement in ADL scores. Improvement in bowel and bladder function	No serious adverse effects
Albu et al[31], 2021	I/IIa	10	Thoracic	AIS A	Allogeneic	WJ-MSC	10 × 10 ⁶	Intrathecal	Chronic	6	Significant improvement in pinprick sensation in compared with placebo group. No changes in motor function, independence, QoL, SEPs, MEPs, spasticity or bowel function	No serious adverse effects
Yang et al[23], 2021	Ι/Π	102	Cervical, thoracic and lumbar	ASIA score: 158.15 ± 70.93, IANR-SCIFRS total score: 24.54 ± 9.82	Allogeneic neonatal umbilical cord tissue	UCMSC	1 × 10 ⁶ /kg	Intrathecal	Intermediate and chronic (max 240 months)	12	ASIA score: 183.88 ± 69.76, IANR-SCIFRS total score: 29.49 ± 10.47	No serious adverse effects. Fever (14.1%), headache (4.2%), transient increase in muscle tension (1.6%) and dizziness (1.3%)
Zhao et al [78] , 2021	N/A	7	Cervical (3) and thoracic (4)	ASIA pin prick: 55.00 ± 28.46, ASIA light touch: 55.00 ± 28.46, ASIA motor score: 42.00 ± 28.19	Allogeneic neonatal umbilical cord tissue	UCMSC	5×10^4	Intrathecal	Intermediate and chronic (max 60 months)	6	ASIA pin prick: 57.06 ± 30.01, ASIA light touch: 58.20 ± 29.36, ASIA motor score: 44.13±27.23	No serious adverse effects
Smirnov <i>et al</i> [16], 2022	I/IIa	10	Cervical, thoracic and lumbar	AIS A: 6, AIS B: 4	Allogeneic	HUCBC	14.8 × 10 ⁶ /kg (Total cell number for 4 infusions)	Intravenous	Acute	12	AIS $A\rightarrow$ C: 3, AIS $B\rightarrow$ D: 2, AIS $B\rightarrow$ E: 2, AIS $A\rightarrow$ D: 1	No serious adverse effects related to therapy

Time from injury: Immediate: 0 - 2 h after the injury; acute: Early acute phase: 2 - 48 h; subacute: 2 d - 2 wk; intermediate: 2 wk - 6 months; chronic phase: > 6 months. AIS: American spinal injury association Impairment Scale; HESC: Human embryonic stem cells; HUCBC: human umbilical cord blood mononuclear cells; UCMSC: Umbilical cord derived mesenchymal stem cells; WJ-MSC: Wharton's jelly-Mesenchymal stem cells.

CONCLUSION

Within the realm of SCI treatment, stem cell-based therapies exhibit substantial promise. While rodent models indisputably illustrate the efficacy of stem cells, our exhaustive analysis of clinical trials uncovers a paradox: Despite the considerable potential of stem cells in improving neurological function among SCI patients, their transplantation carries the potential for numerous AEs. Ongoing clinical trials grapple with limitations, encompassing small sample sizes, subpar quality, and the absence of control groups, which collectively hinder the conclusive establishment of stem cell therapy's safety. It is, therefore, imperative to meticulously identify the optimal conditions and parameters for stem cell transplantation to optimize therapeutic outcomes.

Our findings highlight the lack of evidence currently available to justify the broad use of stem cell treatment for spinal cord injury and strongly advise against its immediate introduction into clinical practice. A deeper understanding of the pathophysiological mechanisms at play in SCI is imperative for the creation of treatments that surpass those presently in the investigative stage. Additionally, a range of concerns, encompassing ethical considerations and the assessment of tumorigenicity, immunogenicity, and immunotoxicity associated with diverse stem cell types, demand attention and resolution. The introduction of stem cell therapy into clinical practice should advance gradually and cautiously until well-structured animal experiments and high-caliber clinical studies are executed.

ARTICLE HIGHLIGHTS

Research background

Previous assessments of stem cell therapy for spinal cord injuries (SCI) have encountered challenges and constraints. Current research primarily emphasizes safety in early-phase clinical trials, while systematic reviews prioritize effectiveness, often overlooking safety and translational feasibility.

Research motivation

Current research primarily emphasizes safety in early-phase clinical trials, while systematic reviews prioritize effectiveness, often overlooking safety and translational feasibility.

Research objectives

This study seeks to offer an up-to-date systematic literature review of clinical trial results concerning stem cell therapy for SCI.

Research methods

A systematic search was conducted across major medical databases.

Research results

In a comprehensive review of 66 studies on stem cell therapies for SCI, 496 papers were initially identified, with 237 chosen for full-text analysis. Among them, 236 were deemed eligible after excluding 170 for various reasons.

Research conclusions

In the realm of SCI treatment, stem cell-based therapies show promise, but clinical trials reveal potential adverse events and limitations, underscoring the need for meticulous optimization of transplantation conditions and parameters, caution against swift clinical implementation, a deeper understanding of SCI pathophysiology, and addressing ethical, tumorigenicity, immunogenicity, and immunotoxicity concerns before gradual and careful adoption in clinical practice.

Research perspectives

There is a need for further research to ensure the safety and effectiveness of these therapies for SCI patients, while acknowledging their potential for improving functional outcomes.

FOOTNOTES

Author contributions: Agosti E wrote the outline, did the research, wrote the paper, and provided the final approval of the version of the article; Zeppieri M assisted in the conception and design of the study, writing, outline, final approval of the version of the article to be published and completed the English and scientific editing; Maria M Fontanella assisted in the editing and making critical revisions of the manuscript; Alessandro F assisted in the writing, editing and making critical revisions of the manuscript; Tamara Ius assisted in the writing, editing and making critical revisions of the manuscript; Panciani PP assisted in the writing, editing and making critical revisions of the manuscript.

Conflict-of-interest statement: All the author declare no conflict of interests for this article.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Italy

ORCID number: Edoardo Agosti 0000-0002-6463-5000; Marco Zeppieri 0000-0003-0999-5545; Marco Maria Fontanella 0000-0002-4023-1909; Tamara Ius 0000-0003-3741-0639; Pier Paolo Panciani 0000-0002-9891-936X.

S-Editor: Liu JH L-Editor: A P-Editor: Zhang YL

REFERENCES

- Xia Y, Zhu J, Yang R, Wang H, Li Y, Fu C. Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and 1 future challenges. Front Immunol 2023; 14: 1141601 [PMID: 36911700 DOI: 10.3389/fimmu.2023.1141601]
- Huang L, Fu C, Xiong F, He C, Wei Q. Stem Cell Therapy for Spinal Cord Injury. Cell Transplant 2021; 30: 963689721989266 [PMID: 2 33559479 DOI: 10.1177/0963689721989266]
- Sun X, Huang LY, Pan HX, Li LJ, Wang L, Pei GQ, Wang Y, Zhang Q, Cheng HX, He CQ, Wei Q. Bone marrow mesenchymal stem cells 3 and exercise restore motor function following spinal cord injury by activating PI3K/AKT/mTOR pathway. Neural Regen Res 2023; 18: 1067-1075 [PMID: 36254995 DOI: 10.4103/1673-5374.355762]
- Muthu S, Jeyaraman M, Gulati A, Arora A. Current evidence on mesenchymal stem cell therapy for traumatic spinal cord injury: systematic 4 review and meta-analysis. Cytotherapy 2021; 23: 186-197 [PMID: 33183980 DOI: 10.1016/j.jcyt.2020.09.007]
- 5 Montoto-Meijide R, Meijide-Faílde R, Díaz-Prado SM, Montoto-Marqués A. Mesenchymal Stem Cell Therapy in Traumatic Spinal Cord Injury: A Systematic Review. Int J Mol Sci 2023; 24 [PMID: 37511478 DOI: 10.3390/ijms241411719]
- 6 Xu P, Yang X. The Efficacy and Safety of Mesenchymal Stem Cell Transplantation for Spinal Cord Injury Patients: A Meta-Analysis and Systematic Review. Cell Transplant 2019; 28: 36-46 [PMID: 30362373 DOI: 10.1177/0963689718808471]
- Fan X, Wang JZ, Lin XM, Zhang L. Stem cell transplantation for spinal cord injury: a meta-analysis of treatment effectiveness and safety. 7 Neural Regen Res 2017; 12: 815-825 [PMID: 28616040 DOI: 10.4103/1673-5374.206653]
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, 8 Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; **372**: n71 [PMID: 33782057 DOI: 10.1136/bmj.n71]
- 9 Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J

WJT https://www.wjgnet.com

Epidemiol 2010; **25**: 603-605 [PMID: 20652370 DOI: 10.1007/s10654-010-9491-z]

- El-Kheir WA, Gabr H, Awad MR, Ghannam O, Barakat Y, Farghali HA, El Maadawi ZM, Ewes I, Sabaawy HE. Autologous bone marrow-10 derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients. Cell Transplant 2014; 23: 729-745 [PMID: 23452836 DOI: 10.3727/096368913X664540]
- Syková E, Homola A, Mazanec R, Lachmann H, Konrádová SL, Kobylka P, Pádr R, Neuwirth J, Komrska V, Vávra V, Stulík J, Bojar M. 11 Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 2006; 15: 675-687 [PMID: 17269439 DOI: 10.3727/00000006783464381]
- Chernykh ER, Stupak VV, Muradov GM, Sizikov MY, Shevela EY, Leplina OY, Tikhonova MA, Kulagin AD, Lisukov IA, Ostanin AA, 12 Kozlov VA. Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull Exp Biol Med 2007; 143: 543-547 [PMID: 18214319 DOI: 10.1007/s10517-007-0175-y]
- Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, Park HC, Park SR, Min BH, Kim EY, Choi BH, Park H, Ha Y. Complete spinal 13 cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 2007; 25: 2066-2073 [PMID: 17464087 DOI: 10.1634/stemcells.2006-0807]
- 14 Geffner LF, Santacruz P, Izurieta M, Flor L, Maldonado B, Auad AH, Montenegro X, Gonzalez R, Silva F. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant 2008; 17: 1277-1293 [PMID: 19364066 DOI: 10.3727/096368908787648074]
- 15 Deng WS, Ma K, Liang B, Liu XY, Xu HY, Zhang J, Shi HY, Sun HT, Chen XY, Zhang S. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res 2020; 15: 1686-1700 [PMID: 32209773 DOI: 10.4103/1673-5374.276340]
- 16 Smirnov VA, Radaev SM, Morozova YV, Ryabov SI, Yadgarov MY, Bazanovich SA, Lvov IS, Talypov AE, Grin' AA. Systemic Administration of Allogeneic Cord Blood Mononuclear Cells in Adults with Severe Acute Contusion Spinal Cord Injury: Phase 1/2a Pilot Clinical Study-Safety and Primary Efficacy Evaluation. World Neurosurg 2022; 161: e319-e338 [PMID: 35134580 DOI: 10.1016/j.wneu.2022.02.004]
- Shang Z, Wang M, Zhang B, Wang X, Wanyan P. Clinical translation of stem cell therapy for spinal cord injury still premature: results from a 17 single-arm meta-analysis based on 62 clinical trials. BMC Med 2022; 20: 284 [PMID: 36058903 DOI: 10.1186/s12916-022-02482-2]
- Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H. Clinical safety and primary efficacy of bone marrow mesenchymal cell 18 transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg 2012; 114: 935-939 [PMID: 22464434 DOI: 10.1016/j.clineuro.2012.02.003
- Jiang PC, Xiong WP, Wang G, Ma C, Yao WQ, Kendell SF, Mehling BM, Yuan XH, Wu DC. A clinical trial report of autologous bone 19 marrow-derived mesenchymal stem cell transplantation in patients with spinal cord injury. Exp Ther Med 2013; 6: 140-146 [PMID: 23935735 DOI: 10.3892/etm.2013.1083]
- Vaquero J, Zurita M, Rico MA, Aguayo C, Bonilla C, Marin E, Tapiador N, Sevilla M, Vazquez D, Carballido J, Fernandez C, Rodriguez-20 Boto G, Ovejero M; Neurological Cell Therapy Group from Puerta de Hierro-Majadahonda Hospital. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 100/3 guideline. Cytotherapy 2018; 20: 806-819 [PMID: 29853256 DOI: 10.1016/j.jcyt.2018.03.032]
- Larocca TF, Macêdo CT, Souza BSF, Andrade-Souza YM, Villarreal CF, Matos AC, Silva DN, da Silva KN, de Souza CLEM, Paixão DDS, 21 Bezerra MDR, Alves RL, Soares MBP, Dos Santos RR. Image-guided percutaneous intralesional administration of mesenchymal stromal cells in subjects with chronic complete spinal cord injury: a pilot study. Cytotherapy 2017; 19: 1189-1196 [PMID: 28760352 DOI: 10.1016/j.jcyt.2017.06.006]
- Yang Y, Pang M, Du C, Liu ZY, Chen ZH, Wang NX, Zhang LM, Chen YY, Mo J, Dong JW, Xie PG, Wang QY, Liu B, Rong LM. Repeated 22 subarachnoid administrations of allogeneic human umbilical cord mesenchymal stem cells for spinal cord injury: a phase 1/2 pilot study. *Cytotherapy* 2021; 23: 57-64 [PMID: 33218835 DOI: 10.1016/j.jcyt.2020.09.012]
- Damianakis EI, Benetos IS, Evangelopoulos DS, Kotroni A, Vlamis J, Pneumaticos SG. Stem Cell Therapy for Spinal Cord Injury: A Review 23 of Recent Clinical Trials. Cureus 2022; 14: e24575 [PMID: 35664388 DOI: 10.7759/cureus.24575]
- Aspinall P, Harrison L, Scheuren P, Cragg JJ, Ferguson AR, Guest JD, Hsieh J, Jones L, Kirshblum S, Lammertse D, Kwon BK, Kramer JLK. 24 A Systematic Review of Safety Reporting in Acute Spinal Cord Injury Clinical Trials: Challenges and Recommendations. J Neurotrauma 2021; **38**: 2047-2054 [PMID: 33899507 DOI: 10.1089/neu.2020.7540]
- Kakabadze Z, Kipshidze N, Mardaleishvili K, Chutkerashvili G, Chelishvili I, Harders A, Loladze G, Shatirishvili G, Chakhunashvili D, 25 Chutkerashvili K. Phase 1 Trial of Autologous Bone Marrow Stem Cell Transplantation in Patients with Spinal Cord Injury. Stem Cells Int 2016; 2016: 6768274 [PMID: 27433165 DOI: 10.1155/2016/6768274]
- Hur JW, Cho TH, Park DH, Lee JB, Park JY, Chung YG. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells 26 for treating spinal cord injury: A human trial. J Spinal Cord Med 2016; 39: 655-664 [PMID: 26208177 DOI: 10.1179/2045772315Y.000000048]
- Vaquero J, Zurita M, Rico MA, Bonilla C, Aguayo C, Montilla J, Bustamante S, Carballido J, Marin E, Martinez F, Parajon A, Fernandez C, 27 Reina L; Neurological Cell Therapy Group. An approach to personalized cell therapy in chronic complete paraplegia: The Puerta de Hierro phase I/II clinical trial. Cytotherapy 2016; 18: 1025-1036 [PMID: 27311799 DOI: 10.1016/j.jcyt.2016.05.003]
- Dai G, Liu X, Zhang Z, Yang Z, Dai Y, Xu R. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of 28 complete and chronic cervical spinal cord injury. Brain Res 2013; 1533: 73-79 [PMID: 23948102 DOI: 10.1016/j.brainres.2013.08.016]
- Dai G, Liu X, Zhang Z, Wang X, Li M, Cheng H, Hua R, Shi J, Wang R, Qin C, Gao J, An Y. Comparative analysis of curative effect of CT-29 guided stem cell transplantation and open surgical transplantation for sequelae of spinal cord injury. J Transl Med 2013; 11: 315 [PMID: 24355001 DOI: 10.1186/1479-5876-11-315]
- 30 Bhanot Y, Rao S, Ghosh D, Balaraju S, Radhika CR, Satish Kumar KV. Autologous mesenchymal stem cells in chronic spinal cord injury. Br J Neurosurg 2011; 25: 516-522 [PMID: 21749185 DOI: 10.3109/02688697.2010.550658]
- Albu S, Kumru H, Coll R, Vives J, Vallés M, Benito-Penalva J, Rodríguez L, Codinach M, Hernández J, Navarro X, Vidal J. Clinical effects of 31 intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: a randomized controlled study. Cytotherapy 2021; 23: 146-156 [PMID: 32981857 DOI: 10.1016/j.jcyt.2020.08.008]
- Oh SK, Choi KH, Yoo JY, Kim DY, Kim SJ, Jeon SR. A Phase III Clinical Trial Showing Limited Efficacy of Autologous Mesenchymal Stem 32 Cell Therapy for Spinal Cord Injury. Neurosurgery 2016; 78: 436-47; discussion 447 [PMID: 26891377 DOI: 10.1227/NEU.000000000001056]

- Thakkar UG, Vanikar AV, Trivedi HL, Shah VR, Dave SD, Dixit SB, Tiwari BB, Shah HH. Infusion of autologous adipose tissue derived 33 neuronal differentiated mesenchymal stem cells and hematopoietic stem cells in post-traumatic paraplegia offers a viable therapeutic approach. Adv Biomed Res 2016; 5: 51 [PMID: 27110548 DOI: 10.4103/2277-9175.178792]
- Shroff G. Human Embryonic Stem Cell Therapy in Chronic Spinal Cord Injury: A Retrospective Study. Clin Transl Sci 2016; 9: 168-175 34 [PMID: 27144379 DOI: 10.1111/cts.12394]
- Park JH, Kim DY, Sung IY, Choi GH, Jeon MH, Kim KK, Jeon SR. Long-term results of spinal cord injury therapy using mesenchymal stem 35 cells derived from bone marrow in humans. Neurosurgery 2012; 70: 1238-47; discussion 1247 [PMID: 22127044 DOI: 10.1227/NEU.0b013e31824387f9
- Orace-Yazdani S, Akhlaghpasand M, Golmohammadi M, Hafizi M, Zomorrod MS, Kabir NM, Orace-Yazdani M, Ashrafi F, Zali A, 36 Soleimani M. Combining cell therapy with human autologous Schwann cell and bone marrow-derived mesenchymal stem cell in patients with subacute complete spinal cord injury: safety considerations and possible outcomes. Stem Cell Res Ther 2021; 12: 445 [PMID: 34372939 DOI: 10.1186/s13287-021-02515-2
- Park HC, Shim YS, Ha Y, Yoon SH, Park SR, Choi BH, Park HS. Treatment of complete spinal cord injury patients by autologous bone 37 marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 2005; 11: 913-922 [PMID: 15998231 DOI: 10.1089/ten.2005.11.913]
- Adel N, Gabr H, Hamdy S, Afifi L, Mahmoud H. Stem Cell Therapy in Chronic Spinal Cord Injuries. 2009; 46 38
- Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, Thomson S, O'Callaghan J, Eisenberg E, Milbouw G, Buchser E, Fortini G, 39 Richardson J, North RB. The effects of spinal cord stimulation in neuropathic pain are sustained: a 24-month follow-up of the prospective randomized controlled multicenter trial of the effectiveness of spinal cord stimulation. Neurosurgery 2008; 63: 762-70; discussion 770 [PMID: 18981888 DOI: 10.1227/01.NEU.0000325731.46702.D9]
- Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M, Chandra R, Dixit A, Rauthan A, Murgod U, Totey S. Ex vivo-expanded autologous 40 bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 2009; 11: 897-911 [PMID: 19903102 DOI: 10.3109/14653240903253857]
- Abdelaziz OS, Marie A, Abbas M, Ibrahim M, Gabr H. Feasibility, Safety, and Efficacy of Directly Transplanting Autologous Adult Bone 41 Marrow Stem Cells in Patients With Chronic Traumatic Dorsal Cord Injury: A Pilot Clinical Study. Neurosurgery Quarterly 2010; 20: 216 [DOI: 10.1097/WNO.0b013e3181dce9f2]
- 42 Yazdani SO, Hafizi M, Zali AR, Atashi A, Ashrafi F, Seddighi AS, Soleimani M. Safety and possible outcome assessment of autologous Schwann cell and bone marrow mesenchymal stromal cell co-transplantation for treatment of patients with chronic spinal cord injury. Cytotherapy 2013; 15: 782-791 [PMID: 23731761 DOI: 10.1016/j.jcyt.2013.03.012]
- 43 Amr SM, Gouda A, Koptan WT, Galal AA, Abdel-Fattah DS, Rashed LA, Atta HM, Abdel-Aziz MT. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: case series of 14 patients. J Spinal Cord Med 2014; 37: 54-71 [PMID: 24090088 DOI: 10.1179/2045772312Y.000000069
- Suzuki Y, Ishikawa N, Omae K, Hirai T, Ohnishi K, Nakano N, Nishida H, Nakatani T, Fukushima M, Ide C. Bone marrow-derived 44 mononuclear cell transplantation in spinal cord injury patients by lumbar puncture. Restor Neurol Neurosci 2014; 32: 473-482 [PMID: 24670611 DOI: 10.3233/RNN-1303631
- Goni VG, Chhabra R, Gupta A, Marwaha N, Dhillon MS, Pebam S, Gopinathan NR, Bangalore Kantharajanna S. Safety profile, feasibility and 45 early clinical outcome of cotransplantation of olfactory mucosa and bone marrow stem cells in chronic spinal cord injury patients. Asian Spine J 2014; 8: 484-490 [PMID: 25187866 DOI: 10.4184/asj.2014.8.4.484]
- Mendonça MV, Larocca TF, de Freitas Souza BS, Villarreal CF, Silva LF, Matos AC, Novaes MA, Bahia CM, de Oliveira Melo Martinez AC, 46 Kaneto CM, Furtado SB, Sampaio GP, Soares MB, dos Santos RR. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res Ther 2014; 5: 126 [PMID: 25406723 DOI: 10.1186/scrt516
- Shin JC, Kim KN, Yoo J, Kim IS, Yun S, Lee H, Jung K, Hwang K, Kim M, Lee IS, Shin JE, Park KI. Clinical Trial of Human Fetal Brain-47 Derived Neural Stem/Progenitor Cell Transplantation in Patients with Traumatic Cervical Spinal Cord Injury. Neural Plast 2015; 2015: 630932 [PMID: 26568892 DOI: 10.1155/2015/630932]
- Chhabra HS, Sarda K, Arora M, Sharawat R, Singh V, Nanda A, Sangodimath GM, Tandon V. Autologous bone marrow cell transplantation 48 in acute spinal cord injury--an Indian pilot study. Spinal Cord 2016; 54: 57-64 [PMID: 26282492 DOI: 10.1038/sc.2015.134]
- Orace-Yazdani S, Hafizi M, Atashi A, Ashrafi F, Seddighi AS, Hashemi SM, Seddighi A, Soleimani M, Zali A. Co-transplantation of 49 autologous bone marrow mesenchymal stem cells and Schwann cells through cerebral spinal fluid for the treatment of patients with chronic spinal cord injury: safety and possible outcome. Spinal Cord 2016; 54: 102-109 [PMID: 26526896 DOI: 10.1038/sc.2015.142]
- Xiao Z, Tang F, Tang J, Yang H, Zhao Y, Chen B, Han S, Wang N, Li X, Cheng S, Han G, Zhao C, Yang X, Chen Y, Shi Q, Hou S, Zhang S, 50 Dai J. One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Sci China Life Sci 2016; 59: 647-655 [PMID: 27333785 DOI: 10.1007/s11427-016-5080-z]
- 51 Chhabra HS, Sarda K. Clinical translation of stem cell based interventions for spinal cord injury - Are we there yet? Adv Drug Deliv Rev 2017; 120: 41-49 [PMID: 28964881 DOI: 10.1016/j.addr.2017.09.021]
- Vaquero J, Zurita M, Rico MA, Bonilla C, Aguayo C, Fernández C, Tapiador N, Sevilla M, Morejón C, Montilla J, Martínez F, Marín E, 52 Bustamante S, Vázquez D, Carballido J, Rodríguez A, Martínez P, García C, Ovejero M, Fernández MV; Neurological Cell Therapy Group. Repeated subarachnoid administrations of autologous mesenchymal stromal cells supported in autologous plasma improve quality of life in patients suffering incomplete spinal cord injury. Cytotherapy 2017; 19: 349-359 [PMID: 28089079 DOI: 10.1016/j.jcyt.2016.12.002]
- Guadalajara Labajo H, León Arellano M, Vaquero Crespo J, Valverde Núñez I, García-Olmo D. Objective demonstration of improvement of 53 neurogenic bowel dysfunction in a case of spinal cord injury following stem cell therapy. J Surg Case Rep 2018; 2018: rjy300 [PMID: 30443317 DOI: 10.1093/jscr/rjy300]
- 54 Srivastava RN, Agrahari AK, Singh A, Chandra T, Raj S. Effectiveness of bone marrow-derived mononuclear stem cells for neurological recovery in participants with spinal cord injury: A randomized controlled trial. Asian J Transfus Sci 2019; 13: 120-128 [PMID: 31896919 DOI: 10.4103/ajts.AJTS_44_18]
- 55 Phedy P, Djaja YP, Gatam L, Kusnadi Y, Wirawan RP, Tobing IMS, Subakir N, Mappalilu A, Prawira MA, Yauwenas R, Gatam AR. Motoric Recovery After Transplantation of Bone Marrow Derived Mesenchymal Stem Cells in Chronic Spinal Cord Injury: A Case Report. Am J Case Rep 2019; 20: 1299-1304 [PMID: 31474745 DOI: 10.12659/AJCR.917624]

- 56 Chen W, Zhang Y, Yang S, Sun J, Qiu H, Hu X, Niu X, Xiao Z, Zhao Y, Zhou Y, Dai J, Chu T. NeuroRegen Scaffolds Combined with Autologous Bone Marrow Mononuclear Cells for the Repair of Acute Complete Spinal Cord Injury: A 3-Year Clinical Study. *Cell Transplant* 2020; 29: 963689720950637 [PMID: 32862715 DOI: 10.1177/0963689720950637]
- 57 Sharma A, Sane H, Gokulchandran N, Kulkarni P, Jose A, Nair V, Das R, Lakhanpal V, Badhe P. Intrathecal transplantation of autologous bone marrow mononuclear cells in patients with sub-acute and chronic spinal cord injury: An open-label study. *Int J Health Sci (Qassim)* 2020; 14: 24-32 [PMID: 32206057]
- 58 Song H, Suo S, Ning C, Zhang Y, Mu W, Chen S. Bone Marrow Mesenchymal Stem Cells Transplantation on Acute Spinal Cord Injury. J Hard Tissue Biol 2020; 29: 91-98 [DOI: 10.2485/jhtb.29.91]
- 59 Honmou O, Yamashita T, Morita T, Oshigiri T, Hirota R, Iyama S, Kato J, Sasaki Y, Ishiai S, Ito YM, Namioka A, Namioka T, Nakazaki M, Kataoka-Sasaki Y, Onodera R, Oka S, Sasaki M, Waxman SG, Kocsis JD. Intravenous infusion of auto serum-expanded autologous mesenchymal stem cells in spinal cord injury patients: 13 case series. *Clin Neurol Neurosurg* 2021; 203: 106565 [PMID: 33667953 DOI: 10.1016/j.clineuro.2021.106565]
- 60 Deda H, Inci MC, Kürekçi AE, Kayihan K, Ozgün E, Ustünsoy GE, Kocabay S. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. *Cytotherapy* 2008; **10**: 565-574 [PMID: 18615345 DOI: 10.1080/14653240802241797]
- 61 Hammadi AA, Marino A, Farhan S. Clinical response of 277 patients with spinal cord injury to stem cell therapy in iraq. *Int J Stem Cells* 2012; **5**: 76-78 [PMID: 24298358 DOI: 10.15283/ijsc.2012.5.1.76]
- 62 Al-Zoubi A, Jafar E, Jamous M, Al-Twal F, Al-Bakheet S, Zalloum M, Khalifeh F, Radi SA, El-Khateeb M, Al-Zoubi Z. Transplantation of purified autologous leukapheresis-derived CD34+ and CD133+ stem cells for patients with chronic spinal cord injuries: long-term evaluation of safety and efficacy. *Cell Transplant* 2014; 23 Suppl 1: S25-S34 [PMID: 25372344 DOI: 10.3727/096368914X684899]
- 63 Bryukhovetskiy AS, Bryukhovetskiy IS. Effectiveness of repeated transplantations of hematopoietic stem cells in spinal cord injury. *World J Transplant* 2015; **5**: 110-128 [PMID: 26421264 DOI: 10.5500/wjt.v5.i3.110]
- 64 Tien NLB, Hoa ND, Thanh VV, Thach NV, Ngoc VTN, Dinh TC, Phuong TNT, Toi PL, Chu DT. Autologous Transplantation of Adipose-Derived Stem Cells to Treat Acute Spinal Cord Injury: Evaluation of Clinical Signs, Mental Signs, and Quality of Life. Open Access Maced J Med Sci 2019; 7: 4399-4405 [PMID: 32215102 DOI: 10.3889/oamjms.2019.843]
- 65 Ghobrial GM, Anderson KD, Dididze M, Martinez-Barrizonte J, Sunn GH, Gant KL, Levi AD. Human Neural Stem Cell Transplantation in Chronic Cervical Spinal Cord Injury: Functional Outcomes at 12 Months in a Phase II Clinical Trial. *Neurosurgery* 2017; 64: 87-91 [PMID: 28899046 DOI: 10.1093/neuros/nyx242]
- 66 Anderson KD, Guest JD, Dietrich WD, Bartlett Bunge M, Curiel R, Dididze M, Green BA, Khan A, Pearse DD, Saraf-Lavi E, Widerström-Noga E, Wood P, Levi AD. Safety of Autologous Human Schwann Cell Transplantation in Subacute Thoracic Spinal Cord Injury. J Neurotrauma 2017; 34: 2950-2963 [PMID: 28225648 DOI: 10.1089/neu.2016.4895]
- 67 Levi AD, Okonkwo DO, Park P, Jenkins AL 3rd, Kurpad SN, Parr AM, Ganju A, Aarabi B, Kim D, Casha S, Fehlings MG, Harrop JS, Anderson KD, Gage A, Hsieh J, Huhn S, Curt A, Guzman R. Emerging Safety of Intramedullary Transplantation of Human Neural Stem Cells in Chronic Cervical and Thoracic Spinal Cord Injury. *Neurosurgery* 2018; 82: 562-575 [PMID: 28541431 DOI: 10.1093/neuros/nyx250]
- 68 Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, Van Gorp S, Leerink M, Tadokoro T, Marsala S, Jamieson C, Marsala M, Ciacci JD. A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury. *Cell Stem Cell* 2018; 22: 941-950.e6 [PMID: 29859175 DOI: 10.1016/j.stem.2018.05.014]
- 69 Levi AD, Anderson KD, Okonkwo DO, Park P, Bryce TN, Kurpad SN, Aarabi B, Hsieh J, Gant K. Clinical Outcomes from a Multi-Center Study of Human Neural Stem Cell Transplantation in Chronic Cervical Spinal Cord Injury. J Neurotrauma 2019; 36: 891-902 [PMID: 30180779 DOI: 10.1089/neu.2018.5843]
- 70 Curt A, Hsieh J, Schubert M, Hupp M, Friedl S, Freund P, Huber E, Pfyffer D, Sutter R, Jutzeler C, Wüthrich RP, Min K, Casha S, Fehlings MG, Guzman R. The Damaged Spinal Cord Is a Suitable Target for Stem Cell Transplantation. *Neurorehabil Neural Repair* 2020; 34: 758-768 [PMID: 32698674 DOI: 10.1177/1545968320935815]
- 71 Zamani H, Soufizomorrod M, Oraee-Yazdani S, Naviafar D, Akhlaghpasand M, Seddighi A, Soleimani M. Safety and feasibility of autologous olfactory ensheathing cell and bone marrow mesenchymal stem cell co-transplantation in chronic human spinal cord injury: a clinical trial. *Spinal Cord* 2022; 60: 63-70 [PMID: 34504283 DOI: 10.1038/s41393-021-00687-5]
- 72 Gant KL, Guest JD, Palermo AE, Vedantam A, Jimsheleishvili G, Bunge MB, Brooks AE, Anderson KD, Thomas CK, Santamaria AJ, Perez MA, Curiel R, Nash MS, Saraf-Lavi E, Pearse DD, Widerström-Noga E, Khan A, Dietrich WD, Levi AD. Phase 1 Safety Trial of Autologous Human Schwann Cell Transplantation in Chronic Spinal Cord Injury. *J Neurotrauma* 2022; **39**: 285-299 [PMID: 33757304 DOI: 10.1089/neu.2020.7590]
- 73 Liu J, Han D, Wang Z, Xue M, Zhu L, Yan H, Zheng X, Guo Z, Wang H. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. *Cytotherapy* 2013; 15: 185-191 [PMID: 23321330 DOI: 10.1016/j.jcyt.2012.09.005]
- 74 Cheng H, Liu X, Hua R, Dai G, Wang X, Gao J, An Y. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. *J Transl Med* 2014; 12: 253 [PMID: 25209445 DOI: 10.1186/s12967-014-0253-7]
- 75 Shroff G. Magnetic resonance imaging tractography as a diagnostic tool in patients with spinal cord injury treated with human embryonic stem cells. *Neuroradiol J* 2017; 30: 71-79 [PMID: 28058985 DOI: 10.1177/1971400916678221]
- 76 Zhao Y, Tang F, Xiao Z, Han G, Wang N, Yin N, Chen B, Jiang X, Yun C, Han W, Zhao C, Cheng S, Zhang S, Dai J. Clinical Study of NeuroRegen Scaffold Combined With Human Mesenchymal Stem Cells for the Repair of Chronic Complete Spinal Cord Injury. *Cell Transplant* 2017; 26: 891-900 [PMID: 28185615 DOI: 10.3727/096368917X695038]
- 77 Xiao Z, Tang F, Zhao Y, Han G, Yin N, Li X, Chen B, Han S, Jiang X, Yun C, Zhao C, Cheng S, Zhang S, Dai J. Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells. *Cell Transplant* 2018; 27: 907-915 [PMID: 29871514 DOI: 10.1177/0963689718766279]
- 78 Zhao Y, Yao L, Ao L, Ou J, He Y, Shang Y. Study of the Diffusion Tensor Imaging for Preclinical Therapeutic Efficacy of Umbilical Cord Mesenchymal Stem Cell Transplantation in the Treatment of Spinal Cord Injury. *Int J Gen Med* 2021; 14: 9721-9732 [PMID: 34938101 DOI: 10.2147/IJGM.S326023]

Raisbideng® WJT | https://www.wjgnet.com

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: office@baishideng.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

