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Abstract
Corneal transplantation is the most common surgical 
procedure amongst solid organ transplants with a high 
survival rate of 86% at 1-year post-grafting. This high 
success rate has been attributed to the immune privilege 
of the eye. However, mechanisms originally thought to 
promote immune privilege, such as the lack of antigen 
presenting cells and vessels in the cornea, are challenged 
by recent studies. Nevertheless, the immunological 
and physiological features of the cornea promoting a 
relatively weak alloimmune response is likely respon
sible for the high survival rate in “low-risk” settings. 
Furthermore, although corneal graft survival in “low-
risk” recipients is favourable, the prognosis in “high-risk” 
recipients for corneal graft is poor. In “high-risk” grafts, 
the process of indirect allorecognition is accelerated by 
the enhanced innate and adaptive immune responses 
due to pre-existing inflammation and neovascularization 
of the host bed. This leads to the irreversible rejection 
of the allograft and ultimately graft failure. Many 
therapeutic measures are being tested in pre-clinical and 
clinical studies to counter the immunological challenge 
of “high-risk” recipients. Despite the prevailing dogma, 
recent data suggest that tissue matching together with 
use of systemic immunosuppression may increase the 
likelihood of graft acceptance in “high-risk” recipients. 
However, immunosuppressive drugs are accompanied 
with intolerance/side effects and toxicity, and therefore, 
novel cell-based therapies are in development which 
target host immune cells and restore immune homeo
stasis without significant side effect of treatment. 
In addition, developments in regenerative medicine 
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may be able to solve both important short comings of 
allotransplantation: (1) graft rejection and ultimate graft 
failure; and (2) the lack of suitable donor corneas. The 
advances in technology and research indicate that wider 
therapeutic choices for patients may be available to 
address the worldwide problem of corneal blindness in 
both “low-risk” and “high-risk” hosts.

Key words: “High-risk” grafts; Graft rejection; Systemic 
immunosuppression; Cell-based immunomodulation; 
Keratoprosthesis; Collagen-based hydrogels
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Core tip: Corneal grafts enjoy a high acceptance rate 
when performed in “low-risk” host graft beds. This is 
associated with a relatively weak alloimmune response. 
However, in “high-risk” hosts where the immunologically 
quiescent homeostatic environment of the cornea is 
compromised prior to graft procedure, heightened 
immune responses significantly increase the risk of graft 
rejection. Clinical approaches such as tissue matching 
and long-term immunosuppression could be beneficial in 
preventing graft rejection especially in “high-risk” settings. 
In addition, promotion of transplant tolerance by cell-
based therapies and use of corneal “substitutes” such as 
collagen-based hydrogels are promising alternatives for 
“high-risk” recipients. 
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INTRODUCTION
Corneal transplantation is the most common and 
successful form of solid organ transplantation[1]. It is 
considered the primary treatment to restore vision to 
patients with corneal blindness - a leading cause of 
blindness worldwide[1]. In the year 2014-2015, 3520 
cases of corneal transplantation were performed in the 
United Kingdom compared to 2069 cases of kidney and 
842 liver transplantations[2]. The corneal graft survival 
rate is 86% at 1-year for penetrating keratoplasty (PK), 
despite the fact that corneal grafts are rarely tissue 
matched for histocompatibility leukocyte antigens 
(HLA) and systemic immunosuppressant medications 
are not routinely used[3]. However, the 15-year graft 
acceptance declines to 55%, which is similar to survival 
rates in other forms of solid organ transplantation[3,4]. 
More importantly, corneal grafts performed in “high-
risk” recipients have a much reduced acceptance rate 
with a 5-year survival of 54.2% compared to 91.3% in 
recipient eyes that have not been overtly inflamed. The 

“high-risk” recipients were defined by the Collaborative 
Corneal Transplantation Studies Research Group as 
two or more quadrants of the cornea vascularized or a 
previous graft had been rejected[5,6]. Unfortunately, any 
previous inflammatory response in the ocular surface 
such as corneal infectious diseases (e.g., herpetic 
simplex keratitis or trachoma), severe trauma, alkali 
burn and previously failed graft place the host cornea 
at risk of corneal neovascularization[7,8]. Furthermore, 
“high-risk” recipients not only experience higher graft 
failure rate but also present with more frequent acute 
rejection episodes compared to “low-risk” grafts[7]. 

It is worth emphasizing here the difference between 
corneal graft failure and corneal graft rejection. In 
brief, clinical corneal graft failure is the irreversible 
loss of graft clarity, and rejection is one of the causes 
of corneal graft failure. However, the loss of graft 
clarity can be due to a number of reasons including 
infection, surgical trauma, glaucoma, aging as well as 
rejection, which is an exclusively immunological event. 
Graft rejection is moreover the most common cause 
of graft failure accounting for over 30% of cases[3,4]. 
The characteristic features of corneal graft rejection 
in which there is an immunological response against 
donor antigens are graft oedema, keratic precipitates 
on the endothelium of the transplanted graft and the 
presence of rejection lines [formed due to accumula
tion of inflammatory cells on corneal epithelium or 
endothelium (Khodadoust line)] together with the 
presence of inflammatory cells in the anterior chamber 
(AC) of the eye[9,10]. This review article focuses on the 
mechanism of corneal graft rejection revealed through 
experimental studies as well as current and potential 
treatments for corneal graft rejection. 

EXPERIMENTAL CORNEAL ALLOGRAFT
The immunological responses mediating corneal 
graft rejection have been studied extensively using 
animal models, and especially in the well-established 
murine model of full-thickness orthotopic corneal 
transplantation. Similar to human corneal grafting, 
murine corneal allografts performed in an uninflamed 
graft bed, despite being mismatched for both major 
and minor histocompatibility complex antigens, half 
of the grafts failed, whereas in the inflamed “high-
risk” graft bed, almost all of the grafts failed and with 
an increased tempo depending on the level of major 
histocompatibility complex (MHC)/non-MHC antigen 
mismatch[11,12].

The rejection mechanism of corneal allograft
Corneal allograft rejection represents a form of 
delayed-type hypersensitivity (DTH) response, pre
dominantly mediated by allospecific CD4+ T cells. 
The response can affect one or more of the three 
cellular layers in the cornea (epithelium, stroma and 
endothelium)[13-15]. However, the endothelial layer is 
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the main target in PK with graft failure occurring when 
> 50% of the corneal endothelium is lost[16,17]. As the 
corneal endothelium possesses limited regenerative 
property and is the essential layer responsible for 
maintaining corneal deturgescence, alloimmune res
ponses directed at the corneal endothelium eventually 
result in stromal and epithelial oedema and with 
irreversible corneal opacification[16]. 

During the surgical procedure, trauma to corneal 
tissues induces local production of cytokines and 
chemokines such as interferon (IFN)-γ, interleukin 
(IL)-1β, IL-6, IL-10 and CXCL2 which initially peaks 
at day 3-5 post graft procedure[18]. Meanwhile, 
infiltration of innate immune cells occurs into the 
cornea including dendritic cells (DC), macrophages, 
natural killer (NK) cells and neutrophils[19]. A unique 
feature of corneal allograft compared to other forms 
of solid organ transplantation is that the rejection 
response is mediated almost exclusively through the 
indirect pathway as the healthy central donor cornea 
possesses low numbers of antigen presenting cell 
(APC). Therefore, the activation of naïve T cells occurs 
predominantly through host APC newly recruited from 
the bone marrow and presenting donor antigenic 
peptides, including HLA antigens to host naïve T cells. 
In contrast, the direct pathway involves the direct 
recognition of alloantigen on donor origin APC which 
have migrated from the graft tissue to the local draining 
lymph nodes (DLN), by host naïve T cells[20,21]. Newly 
recruited bone marrow APC after processing antigens 
from the corneal allograft then migrate via lymphatic 
vessels to the DLN where they activate naïve T cells 
and mediate immune rejection against corneal graft.

Corneal allograft rejection is predominantly me
diated through CD4+ Th1 cells that secrete cytokines 
IFN-γ, tumour necrosis factor (TNF)-α and IL-2[14,22]. In 
the rejected graft, abundant neutrophils, macrophages 
and CD4+ T cells are present[23]. Furthermore, studies 
have suggested that CD4+ T cells may function 
directly as effector cells mediating graft rejection 
as adoptive transfer of allogeneic CD4+ T cells to 
beige nude mice (impaired T cell production, but do 
produce macrophages) resulted in graft rejection 
even when macrophages were depleted[24]. Although 
in vitro experiments showed the ability of allo-
specific CD4+ T cells to induce apoptosis of corneal 
endothelial and epithelial cells, investigations of the 
involvement of perforin or Fas-induced apoptosis by 
CD4+ T cells have eliminated both mechanisms[24]. 
In addition, allografts deficient in Fas-ligand (FasL 
or CD95L) demonstrated 100% rejection, further 
indicating that mechanisms other than Fas-FasL were 
used by CD4+ T cells in mediating graft rejection 
while FasL expressed in the cornea was more likely to 
promote immune privilege[25]. Nevertheless, prolonged 
exposure to proinflammatory Th1 type cytokines 
IFN-γ, TNF-α and IL-1 was shown to induce apoptosis 
of corneal endothelium and upregulation of inducible 

nitric oxide synthase, the latter generating nitric 
oxide which causes direct cytotoxicity to endothelial 
cells[26]. In addition, inhibition of inducible nitric 
oxide synthase showed protection against cytokine-
mediated corneal tissue damage as well as prolonged 
allograft survival when administered systemically[26,27]. 
However, studies investigating the role of Th17 cells 
in mediating corneal allograft rejection have shown 
controversial results. While some studies showed that 
IL-17 demonstrated pathological effect during early 
corneal allograft rejection[28], recent findings have 
suggested that Th17 cells are involved in promoting 
allograft acceptance in the early post graft stages 
followed by a Th1 dominant response mediating graft 
rejection[29,30]. Interestingly, further investigation also 
indicated that enhanced expression of IL-17 at a late 
stage (> 45 d) post corneal allograft impaired graft 
survival. Late stage anti-IL-17 treatment not only 
reversed corneal opacity but also reduced the level of 
neovascularization[30]. Strikingly, IL-17 knockout mice 
that received anti-IFN-γ treatment failed to reveal any 
significant difference in graft survival compared to wild 
type mice. This indicates that mechanisms other than 
Th1 and Th17 cells were involved, which may be due 
to the redundancy of the immune system promoting 
an alternative and exaggerated Th2 response capable 
of mediating graft damage[29,31]. 

Is the success of unmatched corneal allografts due to 
immune privilege? 
The relatively high acceptance of corneal allografts 
compared to other forms of solid organ transplantation 
has been largely ascribed to the immune privilege of 
the eye[32,33]. Immune privilege was a term coined by 
Sir Peter Medawar in the 1940s where skin allografts 
placed in the AC of the eye evaded immunological 
rejection but only if the graft was not invaded by 
blood vessels[34]. Extensive study of this phenomenon 
ascribed immune privilege especially in the context 
of corneal allograft to: (1) the reduced expression of 
MHC class Ⅰ molecules in corneal tissue and the lack of 
constitutive MHC class Ⅱ expression; (2) the absence 
of both blood and lymphatic vessels in the cornea; 
(3) the lack of “passenger leukocytes” in the cornea; 
(4) presence of immunoregulatory molecules in the 
AC and on corneal cells; and (5) anterior chamber-
associated immune deviation (ACAID) induced post 
corneal allograft[32,33]. However, recent studies have 
shown that the corneal tissue possesses a population 
of MHCⅡ+ leukocytes with increased numbers 
towards the peripheral cornea[20,35-40]. Furthermore, 
corneal neovascularization rapidly develops post 
corneal grafting; within 1 wk, both blood and lymphatic 
vessels are already invading the donor cornea thus 
providing access of immune cells to the cornea as well 
as increasing homing of APC to the DLN. Furthermore, 
vessels persist regardless of the fate of the graft (Figure 
1)[11]. This means that unmatched corneal allografts 
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pathway) and chronic (indirect pathway) rejection[46], 
corneal allograft rejection is predominantly mediated 
through the indirect pathway[47-50]. In the healthy 
cornea, the majority of MHCⅡ+ cells are CD11b+ 
and CD11c+ cells distributed at the peripheral 
cornea whereas the central cornea which is used as 
donor cornea during corneal allograft procedure was 
believed to be devoid of MHCⅡ+ cells but contains a 
population of MHC class Ⅱ negative immature DC and 
Langerhans cells[20,36-39]. Recently, studies using CD11c-
eGFP mice have shown that a reduced number of MHC
Ⅱ+CD11c+ cells are present in the central cornea and 
exclusively located in the corneal epithelial basal layer 
beneath which a layer of MHCⅡ+CD11b+ cells were 
also observed[40]. However, the expression level of MHC 
class Ⅱ molecules on these cells was found to be at a 
relatively low level indicating that these cells together 
with MHC class Ⅱ negative DC and Langerhans cells 
are more likely to promote immune tolerance rather 
than immunity[40]. We reported that in a “low-risk” 
setting, there was no evidence of donor leukocyte 
migration to the DLN[20]. Therefore, corneal allograft 
rejection in “low-risk” setting is exclusively mediated 
by indirect allorecognition. The lack of both blood and 
lymphatic vessels in initial stages post graft may delay 
the infiltration of host innate immune cells including 
APC, thus becoming a limiting factor for initiating a 
sufficient rejection response before the development 
of an established vessel network. Second, while new 
vessels invade the graft, other regulatory mechanisms 
including the induction of Treg come into play. It was 
found that rather than changes in frequency, the 
expression level of Foxp3 was significantly higher 
in the DLN of accepted allografts compare to either 
rejected or syngeneic grafts[44]. Moreover, adoptive 
transfer of Treg has been shown to promote corneal 
graft survival[51], associated with production of IFN-γ 
and IL-17A[45,52]. It was shown that IL-17A is required for 
the effective suppressive function of Treg in promoting 
allograft survival and unusually supports a protective 
role for Th17 cells during corneal allograft rejection[45]. 
Interestingly, IFN-γ was required for generation of Treg 

are accepted in 50% cases indefinitely despite the 
presence of blood and lymphatic vessels and infiltration 
of host immune cells. 

In contrast to immune privilege, which describes 
the local acceptance of grafts within the eye, ACAID 
is a systemic immune response. ACAID is an unusual 
suppression of the systemic immune system whereby 
alloantigen placed in the AC of the eye elicits a 
regulatory response in the spleen, which upon further 
exposure suppresses the immune response to the 
alloantigen (e.g., skin graft), and prevents graft 
rejection[41]. This phenomenon has been shown to 
be mediated through CD8+ T regulatory cells (Treg) 
generated in the spleen[33]. It was believed that ACAID 
is induced not only when alloantigen is inoculated into 
the AC but also post corneal allograft due to shedding 
of alloantigenic materials from graft endothelial cells[42]. 
However, growing evidence suggested that Treg 
induced after corneal allograft show a phenotype of 
CD4+CD25+Foxp3+ whereas effector Treg in ACAID 
is CD8+ Treg[13,43,44]. Furthermore, blockade of CD8+ 
T cells only abrogated ACAID but with no effect on 
corneal allograft survival while blockade of IL-17A which 
reportedly impaired allograft induced Treg suppressive 
function also reduced corneal graft survival, but did not 
alter the induction of ACAID[43,45].  

It is clear therefore that most of the proposed 
mechanisms to explain the phenomenon of immune 
privilege have proven not to be true. Instead, the 
prolonged acceptance in “low-risk” corneal allograft 
compared to other solid organ transplants may 
simply be due to the effect of an overall weak indirect 
alloimmune response as a result of the low levels of 
alloantigen acting together with local and systemic 
regulatory mechanisms. First, the insufficient strength 
of the alloimmune response in the initial stages of 
allosensitization is likely due to the limited number of 
donor derived passenger leukocytes particularly in the 
central cornea, and low expression of histocompatibility 
antigens. In addition, while other forms of solid organ 
transplants are rich in vascular networks and donor 
passenger leukocytes undergo both acute (direct 

Figure 1  Corneal allografts in C57BL/6 mice. (A) Accepted and (B) rejected corneal allografts (Balb/c donor) in C57BL/6 mice demonstrating invasion of blood 
vessels (arrows); the rejected graft shows more blood vessels invading the donor graft. 
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under fully MHC and minor histocompatibility antigen 
mismatched condition, whereas IFN-γ inhibited the 
generation of allospecific Treg when only MHC or minor 
histocompatibility antigen was mismatched[52]. These 
somewhat puzzling findings suggest that possibly the 
balance between Th1, Th17 and Treg responses largely 
dictates the outcome of the graft. Consequently, when 
an effective peripheral tolerance response fails to be 
induced, the default balance favours a Th1 response 
and as such, promotes allograft rejection. 

Lastly, the physiological milieu of the cornea 
and the anterior segment of the eye possess many 
immunoregulatory molecules that protect the cornea 
from immune mediated attack. For instance, FasL 
is expressed extensively in ocular compartments 
including all three cellular layers of the cornea[53,54]. 
Several studies have reported that FasL expressed 
in the eye is responsible for inducing apoptosis of 
infiltrating Fas-bearing leukocytes, especially lym
phocytes. Furthermore, its expression in particular 
on corneal endothelial cells plays an important role in 
corneal allograft survival, since donor corneas lacking 
FasL in the endothelium and stroma but not epithelium 
were rejected vigorously compared to normal FasL 
expressing donor corneas[25,53,55,56]. Moreover, the 
interaction of Fas-FasL induced apoptotic cell death 
was shown to be an important mechanism in the 
induction of immunological tolerance to antigens 
injected into the AC, as in the absence of apoptotic 
cell death, immune tolerance failed to be elicited[55]. 
Tumour necrosis factor-related apoptosis-inducing 
ligand (TRAIL) is also capable of inducing apoptosis 
of various tumour cells and its functional expression 
was demonstrated in corneal tissue[57]. Overexpression 
of TRAIL in donor corneal tissue has been shown to 
significantly delay graft rejection, accompanied by an 
increased number of apoptotic cells in the graft[58]. 
However, other groups in attempts to establish a 
correlation between TRAIL expression and allograft 
survival have not found an effect[13]. 

Programmed death ligand-1 (PD-L1 or B7-H1) 
is another molecule with similar functions to FasL 
and TRAIL by promoting apoptosis of infiltrating 
PD-1 positive CD4 and CD8 T lymphocytes[59]. PD-L1 
belongs to the B7 superfamily providing costimulatory 
signals to T cells and is constitutively expressed in both 
murine and human corneal tissues[59-61]. Its blockade 
or deficiency is associated with increased corneal graft 
rejection whereas strong ligation between PD-L1 and 
PD-1 revealed prolonged allograft survival[59-62]. 

Complement regulatory proteins were found to 
be expressed by corneal tissues and in the AC, which 
protects the cornea from being the target of comple
ment-fixing antibodies[63,64]. One such molecule strongly 
expressed in the corneal epithelium is decay-accelerating 
factor (DAF) which function is to inhibit complement 
deposition on the cell surface, thus preventing 
autologous complement activation[63,65]. Further studies 

have suggested that DAF shows regulatory properties 
towards the T cell response[66]. DAF deficiency on donor 
or recipient cornea accelerated graft rejection together 
with increased numbers of IFN-γ producing T cells, 
reduced levels of transforming growth factor (TGF)-β 
and IL-10[66]. Furthermore, NK cells attack cells that 
lack the expression of MHC class Ⅰ molecules and the 
poor expression of MHC class Ⅰ by corneal endothelial 
cells makes them prone to NK cells mediated tissue 
damage[13,67]. However, studies have shown that the AC 
contains NK cell inhibitory factors such as macrophage 
migration inhibitory factor and TGF-β, which prevent 
corneal endothelial cells becoming targets for NK 
cells[13,68,69]. Galectin-9 was demonstrated as another 
immunosuppressive molecule constitutively expressed 
on corneal tissues, which significantly promoted corneal 
allograft survival by inducing apoptosis of alloreactive T 
cells[70]. 

Many other immunoregulatory molecules present 
in the anterior segment of the eye have also been 
demonstrated to have potential in prolonging cor
neal allograft survival including alpha-melanocyte 
stimulating hormone, calcitonin gene-related peptide, 
vasointestinal peptide, somatostatin or indoleamine 
dioxygenase[71-73].

Elevated innate and adaptive immune responses in 
“high-risk” corneal allograft promote graft rejection
Although clinically and experimentally, there are 
many causes of a “high-risk” graft bed, a common 
denominator is an already activated immune system 
both systemically and locally (cornea and eye-DLN) 
providing a proinflammatory milieu unlike the situation 
in “low-risk” dormant recipients. In general, murine 
corneal allografts performed in “high-risk” recipients 
not only experience over 95% graft rejection rates 
compared to 50% in “low-risk” recipients, but in 
addition grafts are usually rejected rapidly, 2 wk post-
surgery compared to 3-4 wk in uninflamed corneas[12]. 
As early as 24 h post corneal allograft, increased 
levels of chemokine mRNA expression including CCL2 
and CXCL2 were observed in “high-risk” recipients 
compared to “low-risk” recipients[74]. No difference in 
the number of infiltrating leukocytes was observed 
between “high-risk” and “low-risk” recipients at day 1 
suggesting the source of the early increased chemokine 
levels was from resident corneal cells[74]. Increased 
numbers of infiltrating macrophages and neutrophils in 
“high-risk” recipients were found at day 3 recruited by 
CCL2 and CXCL2 which leads to a dramatic increase in 
chemokine levels in the “high-risk” group at day 6 post 
graft with a broader spectrum of chemokines including 
CCL2-CCL5, CCL11, CXCL2 and to a lesser extent 
CXCL10[74]. Furthermore, the local proinflammatory 
environment in “high-risk” recipients post-surgery 
contains high levels of vascular adhesion molecules 
further increasing the recruitment of both innate 
immune cells and memory T cells to the cornea[75]. 

Yu T et al . High-risk corneal allograft rejection
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Accordingly, the increased levels of innate leukocytes 
especially macrophages and DC which serve as APC 
together with pre-existing vascularization significantly 
increases the number of APC reaching the DLN within 
a shorter period compared to “low-risk” recipients. In 
addition, although the presence of donor APC in the 
DLN as well as their ability to upregulate expression of 
MHC class Ⅱ post “high-risk” allograft were reported 
in several studies, it remains controversial whether 
direct pathway-activated allospecific T cells play a role 
in mediating corneal allograft rejection[76] or rather 
promotes tolerance to the allograft[77]. Depletion of 
leukocytes from donor corneas prior to “high-risk” 
corneal allograft as well as using CCR7-/- donor corneas 
failed to demonstrate a significant difference in allograft 
survival[77,78]. Thus, these studies indicate that the 
frequency of donor APC is unlikely to be sufficient to 
mediate significant acute graft rejection through direct 
antigen presentation during corneal allograft rejection. 
Therefore, it remains likely that the heightened innate 
immune responses leading to increased infiltration 
of host APC presenting alloantigen to host T cells 
is (indirect pathway) responsible for the increased 
rejection of “high-risk” grafts, as well as “low-risk” 
grafts as described in previous sections. 

Neovascularization is the common feature that 
distinguishes “high-risk” and “low-risk” host graft beds. 
In “high-risk” corneal allografts, despite vascularization 
of the cornea prior to the graft procedure, further 
vascularization is also induced after grafting[79]. Lym
phatic vessels in the cornea act as conduits for efferent 
migration of APC to DLN while blood vessels provide 
afferent access of inflammatory leukocytes to the 
cornea; infiltrating leukocytes then act as a further 
source of pro-angiogenic factors. Studies have shown 
that inhibition of either blood or lymphatic vessels was 
able to significantly prolong graft survival comparable 
to “low-risk” recipients suggesting that either dis
ruption of efferent or afferent access of leukocytes can 
suppress alloimmune responses[80-82]. Furthermore, 
although the definition of “high-risk” recipients in
cluded corneas with two or more quadrants with 
evidence of vascularization, clinically the incidence 
of graft rejection has been shown to increase with 
increased levels of vascularization present prior to the 
corneal graft procedure[83], further suggesting that 
increased corneal vascularization shifted the balance 
towards immune rejection. 

The adaptive immune response was also shown 
to be elevated in various ways among “high-risk” 
recipients. One of the consequences of an increased 
innate immune response is the increased number of 
APC with the ability to activate naïve T cells. Indeed, 
the DTH response in “high-risk” recipients was 
found significantly accelerated compared to “low-
risk” recipients[12,47]. Furthermore, the allograft was 
rejected promptly if the recipient had been previously 
sensitized with a previous corneal graft or skin graft[84]. 
It was clearly shown that in “high-risk” recipients 

which previously experienced graft rejection, the 
effector/memory T cell response promoted accelerated 
rejection of regraft of the same donor origin[85]. It is 
also possible that memory T cells due to a previous 
infectious disease of the cornea such as herpes keratitis 
becomes activated by bystander mechanisms, when 
a subsequent corneal graft procedure is performed 
(Kuffova et al, in press). Thus, two types of increased 
adaptive immune responses are present in “high-risk” 
recipients to promote graft rejection, namely, enhanced 
activation of allospecific T cells as well as reactivation 
of memory T cells due to previous immune mediated 
conditions of the cornea such as infection or previous 
graft.

PREVENTION OF ALLOGRAFT 
REJECTION
Tissue matching - controversies and justifications
Tissue matching is not routinely performed clinically for 
patients undergoing corneal transplantation due to its 
remarkable success rate in “low-risk” recipients[3,86,87]. 
However, the markedly poorer prognosis of “high-risk” 
grafts suggests this should be reconsidered, although, 
the controversy has not been resolved[6,7,88]. Some of 
the studies addressing this issue are reviewed below: 
In clinical practice, matching for HLA class Ⅰ antigens 
under ”low-risk” and HLA class Ⅱ antigens under 
“high-risk” conditions have both been shown to sig
nificantly reduce the risk of rejection[89,90]. In a pre-
clinical model, minor H antigen incompatibility has 
been shown to have higher rates of rejection even 
in “low-risk” grafts than MHC mismatches, and 
similarly, improvement in prognosis of “high-risk” 
grafts were demonstrated in a clinical study as well, 
when matched for minor H antigens[91,92]. Differences 
in donor-recipient blood groups may also contribute 
to graft rejection in “high-risk” recipients as ABO 
antigens are expressed in the corneal epithelium 
and endothelium[93]. ABO and Rh ± incompatibility 
were shown to have a significant influence on corneal 
allograft rejection in earlier clinical studies[6,94], but 
recently, no influence in allograft failure due to immune 
rejection was shown in a 5-year follow up clinical study 
in “low-risk” corneal transplants. However, conflicting 
results were reported in “high-risk” cases[93,95]. The 
major reasons for differences in success rates of al
lografts in humans are thought to be due to surgical 
techniques, competency of surgeons and properly 
distinguished risk factors associated with graft bed[96]. 
Furthermore, a recent review identified the lack of 
specificity and low sensitivity in tissue typing methods 
compromise the quality of HLA matching in different 
centres performing clinical studies[97]. 

A possible reason behind the high success rates 
of acceptance of corneal allograft in “low-risk” 
recipients without tissue matching is, regardless of 
the technical factors discussed above, the relative 
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weakness of the alloimmune response (as discussed 
above), which is relatively easily controlled with daily 
application of topical steroidal drops. This concept 
is supported by the observation that more frequent 
graft rejection “episodes” and eventual graft failure 
develop after topical steroids are discontinued in “low-
risk” graft recipients (e.g., after first year post corneal 
transplantation)[98-100].

The shortage of donor corneas worldwide, the high 
demand and the long wait time for the “right” donor 
match restricts the wider application of corneal grafts, 
while on some occasions, it has to be performed as an 
emergency procedure with high risk of failure[101,102]. As 
the immunological events behind the “high-risk” grafts 
lead inevitably to irreversible graft failure, a treatment 
protocol is currently being developed which will assess 
and compare the HLA matching along with longer wait 
time for the surgery, but may be associated with more 
favourable graft survival outcome especially in “high-
risk” graft recipients[101]. 

Support for tissue matching comes from experimen
tal studies using a “high-risk” regraft model, with single 
antigen disparity, in which antigen-specific memory T 
cell activation was directly correlated with accelerated 
graft rejection. Thus matching is advised to prevent risk 
of rejection by ensuring that a donor regraft has no or 
minimal concordance with the original graft[85]. 

Use of immunosuppressive agents 
Generally, for “low-risk” patients, treatment with topical 
steroids will prevent rejection as indicated above. Daily 
application of steroid drops plays a major role in local 
control of the host immune system by preventing the 
invasion of IL-1 and IL-6 producing macrophages and 
subsequent initiation of adaptive T cell responses[103]. 
However, topical steroids alone are not sufficient 
in preventing rejection in “high-risk” recipients due 
to much stronger immune response generated by 
unfavourable microenvironment of the graft bed[103]. 
Though clinical studies have shown improvement of 
graft outcome by administering systemic (oral) steroids, 
steroid treatment alone is not advised in the long-
term due to side effects[104-106]. Further studies have 
shown that use of systemic immunosuppressive therapy 
with either cyclosporine A (CsA) or mycophenolate 
mofetil (MMF) is successful in preventing corneal 
allograft rejection, but MMF has shown greater 
success than CsA[104,107-109]. Intraocular delivery of 
immunosuppressants has been shown to prevent “high-
risk” graft rejection in rabbits while topical treatment did 
not show any significant effect[110,111].

Biologics, the novel immunosuppressive agents, 
comprised mainly of recombinant antibodies and 
fusion proteins, bind to receptors and block immune 
cells; similarly inhibitors of mediators of corneal 
inflammation and vascularization like IL-2 receptor (IL-
2R), TNF-α, vascular endothelial growth factor (VEGF) 

and CCL2, all of which are involved in allograft rejection 
may be effective[112]. Local anti-VEGF treatment is a 
proficient strategy to reduce corneal angiogenesis and 
lymphangiogenesis and this may reduce the incidence 
of rejection especially in “high-risk” recipients[113-116]. 
Some biologics like anti-VEGF, anti-TNF-α or anti-IL-2R 
are already in use to inhibit “high-risk” graft rejection 
while potent blockers of TNF receptors are currently 
being evaluated in clinical trials[112]. 

Corneal allograft survival would be greatly improved 
if, in addition to tissue matching and topical steroids, 
an appropriate low dose immunosuppressant was also 
used[98]. However, alternative therapies should also be 
considered as discussed below.

PROMOTION OF IMMUNOLOGICAL 
TOLERANCE - CELL-BASED THERAPIES
Currently, cell-based therapies such as stem cells, 
tolerogenic DC or Treg are proposed as alternative 
treatments especially for “high-risk” corneal grafts and 
they function by promoting immune tolerance.

Stem cells
Stem cells are undifferentiated cells which give rise to 
two daughter cells comprising one self-renewing and 
one differentiating progenitor generated by asymmetric 
cell division[117]. Stem cells include embryonic stem 
cells (ESC), induced pluripotent stem cells (iPSC) 
and mesenchymal stem cells (MSC) and they have 
been investigated as a therapeutic strategy in promo
ting transplant tolerance[118] and in ocular surface 
reconstruction[119]. 

ESC and iPSC: The most fascinating breakthrough of 
the last decade is the generation of iPSC from adult 
somatic cells. This is a novel method of generating 
stem cell which ensures a continuous supply of self-
renewing PSC. The process of reprogramming somatic 
cells ex vivo by transmitting the signalling cues 
through four well-defined transcription factors such 
as Oct3/4, Sox2, c-Myc, and Klf4 has opened the way 
for a wide range of clinical applications[120,121]. Like 
ESC, iPSC are also capable of trans-differentiating 
into cells of different lineages. Several in vitro, in vivo 
studies and even phase Ⅰ clinical trials were initiated 
using ESC and iPSC to treat sequelae of sight threate
ning intraocular inflammation or retinal degenerative 
diseases[122-126].

In the context of corneal reconstruction and repair, in 
vitro studies have shown the feasibility of differentiating 
ESC and iPSC into corneal epithelial, keratocytes and 
endothelial cells individually as an option to treat corneal 
scarring, stromal opacity and malfunctioned endothelial 
cells[127-130]. Furthermore, ex vivo transplantation of ESC 
derived cells onto partially de-epithelialized cornea led 
to regeneration of normal stratified layers of the corneal 
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epithelium[131]. iPSC are able to differentiate into limbal 
stem cells (LSC) in vitro, confirmed by expression of 
LSC markers ABCG-2 and p63α at both cellular and 
molecular levels[119]. The successful engraftment of 
a differentiated LSC-seeded scaffold demonstrated 
significant reconstruction of the ocular surface with 
functional re-epithelization, minimal corneal scars 
and corneal vascularization in an experimental model 
of alkali burn in rabbits[132]. Hence, PSC could poten
tially be used to replace damaged LSC which is a 
characteristic feature found in many “high-risk” ocular 
pathologies[119,132].

Though there is much to be explored, the therapeutic 
impact of PSC is remarkable. The advantages of PSC 
are they do not induce allogenecity and related immune 
rejection[126]. However, problems with insufficient supply 
of cells as well as the possibility of differentiating into 
the malignant cells still remain[133,134]. 

LSC: LSC play a vital role in maintaining corneal 
integrity and renewal of epithelial cells. The limbus, 
reservoir of LSC, is responsible for homeostasis of 
the corneal epithelium[135,136]. Damage to LSC occurs 
during severe burns, injury or infection to the ocular 
surface and results in a “high-risk” cornea with 
limbal stem cell deficiency (LSCD) features such as 
chronic inflammation, severe corneal vascularization, 
persistent epithelial defects, conjunctivalization of the 
cornea and increased risk of corneal perforation[137]. 

Autologous transplantation of limbal epithelial 
sheets is considered a long-term effective clinical 
solution for unilateral corneal stem cell deficiency; 
and for bilateral deficiency, LSC from deceased 
donors is a possible option but raises the problems 
of matching and increased chance of rejection[138-140]. 
In addition, autologous limbal transplantation was 
shown to be performed in a 2 step approach, with PK 
performed at a later date. However, the outcome of 
these procedures were not satisfactory in bilaterally 

deficient patients with severe ocular damage[139,140]. 
Nevertheless, a large clinical study reported that 
autologous LSC transplantation was effective even in 
“high-risk” patients post alkali burn or with previously 
failed corneal graft where the outcome was restoration 
of a stable ocular surface and vision[141]. 

Currently, LSC therapy is a promising strategy 
clinically to improve the chance of normalization of 
ocular surface and later acceptance of “high-risk” 
corneal grafts[142,143]. However, there are still considerable 
obstacles to overcome such as methods to isolate/
prepare cells, expand the cells in culture and avoiding 
damaging cells due to the surgical procedure and 
immune reaction. As such, the procedure is limited 
to clinics that have a specialized laboratory for cell 
expansion, operating at a level conforming to guidelines 
for good manufacturing practice. A new simpler method 
that has been recently developed, termed simple limbal 
epithelial transplantation combines existing know-
how but allows for the entire grafting procedure to be 
performed in the operating room[144].

MSC: MSC are multipotent stem cells mainly isolated 
from bone marrow amongst other sources[145-151] 
(Figure 2). These cells are being tested currently in 
repairing tissue defects by attenuating scar formation 
and in immunomodulation[152]. MSC have the capability 
of differentiating into cells of mesenchymal and non-
mesenchymal origin induced by paracrine and autocrine 
signals according to the local microenvironment[153]. 
Several in vitro studies have shown MSC capable of 
reducing T cell immune responses by promoting the 
activation of Treg and production of IL-10, TGF-β, 
prostaglandin E2 and thrombospondin-1[154,155]. Likewise, 
in vivo studies of different solid organ transplantation 
models also suggested significant reduction of adaptive 
immune response and promotion of immune tolerance 
in the presence of MSC[156-159]. 

Initial studies demonstrated that MSC are promising 
candidates to treat corneal blindness by restoring corneal 
transparency in a congenital keratocyte dysfunction 
model[160] and differentiating into keratocytes in corneal 
stroma, thereby facilitating tissue repair[161]. Based 
on these studies, MSC therapy has been promoted 
in many acquired corneal disease and injury models. 
Recent studies have shown that systemic injection of 
MSC prolonged corneal allograft survival by homing into 
the inflamed graft site and DLN and suppressing APC 
function thus inhibiting allosensitization[162-165]. Local 
administration of MSC was also able to induce anti-
inflammatory and anti-angiogenic effects and prevent 
LSCD in models of acute alkali burn[166,167]. 

Despite relative scarcity and difficulties with 
isolation and expansion, MSC are safer than PSC for 
treatment in pre-clinical studies as no adverse effects 
such as a tumour formation (teratoma), have so far 
been observed[168].

Figure 2  Spindle shaped morphology characteristic of multipotent mesen­
chymal stem cells. Figure shows passage 4 mesenchymal stem cells derived 
from the non-haematopoietic sub-population of bone marrow harvested from 6-8 
wk old Balb/c mice.

1000 µm
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Immune cell therapy: Dendritic cells and T regulatory 
cells
DC possess both immunogenic and tolerogenic 
functions[169]. Activated mature immunogenic DC have 
been used in cancer immunotherapy for more than 
a decade and found to be efficacious. In this setting, 
DC are used as natural adjuvants carrying tumour 
specific peptides and induce antigen specific T cells in 
the DLN with subsequent tumour lysis[170,171]. DC based 
immunotherapy can also be used as vaccination to 
protect against tumours by promoting tumour antigen 
specific immunity and prevent cancer recurrence[172,173].

However, in contrast to their immunogenicity when 
activated, DC mainly maintain immune homeostasis by 
immune regulatory action against self-antigen specific 
T effector cells and so prevent autoimmunity[174]. This 
tolerogenic feature of DC presents them as a possible 
candidate for treatment in autoimmune disease and 
allograft rejection[175]. Phenotypically immature DC 
remain tolerogenic as they fail to deliver an adequ
ate costimulatory signal required for specific T cell 
activation. These non-activated or partially activated 
T cells undergo optimally low proliferation, cell death, 
anergy or develop the phenotype of Treg[176,177]. In vitro 
manipulation of DC by exposing them to an antigen 
at a sub-optimal level or treating them with anti-
inflammatory cytokines such as IL-10 and TGF-β leads 
to alternatively activated DC which are poor stimulators 
of the alloimmune response but promote immune 
tolerance[174,176]. The in vitro manipulated immature 
DC have been shown to impair CD4+ effector T 
cell induction and enrich CD4+CD25+Foxp3+ Treg 
by inducing hyporesponsiveness of the DC to the 
antigenic stimuli through toll-like receptors[178]. 

This phenomenon of inducing or restoring tolerance 
by DC therapy has been applied in transplantation 
models in an attempt to enhance allograft survival[179]. A 
number of pre-clinical studies on rodents and non-human 
primate transplantation models have shown long-term 
survival and function of allograft by administering ex vivo 
manipulated DC[175,177,180]. The efficacy of donor derived 
DC based therapy was tested in a pre-clinical “high-
risk” corneal transplantation model and was reportedly 
effective by significant reduction in IFN-γ and increased 
production of Foxp3+ Treg[181,182]. 

Treg are crucial in maintaining self-tolerance and 
their absence leads to autoimmune diseases[183,184]. The 
in vitro generation, phenotype and immunosuppres
sive function of Treg have been reviewed in detail 
previously[185]. In vitro manipulated donor-derived 
CD8+Foxp3+ Treg were infused and found to induce 
CD4+CD25+Foxp3+ to provide donor specific 
tolerance to allografts and protect from aggressive 
host immune rejection in a fully mismatched skin 
graft murine model[186]. Similarly, production of Treg 
is critical for the survival of corneal allografts[44] (as 
discussed above) and interestingly, even the local 
administration of naïve Treg prolongs corneal allograft 

survival in infant rats[187]. 
DC and Treg are recognised as promising candidates 

for the clinical application of immunosuppressive 
therapy to promote corneal graft survival. It has been 
demonstrated that autologous DC are safe with no toxic 
or immunogenic effects[188,189] while graft versus host 
disease (GVHD) was not observed when allogeneic cells 
were used[173,190]. Instead, they were shown to inhibit 
GVHD after bone marrow transplantation in pre-clinical 
and clinical studies of leukemia[173,190]. Though already in 
clinical trials, efficient isolation without manipulation of 
their phenotype and function is still under development 
for potential application, especially in “high-risk” grafts.

ALTERNATIVES TO NORMAL CORNEAL 
TISSUE - ARTIFICIAL CORNEAS
The use of artificial corneas is an exciting option, which 
would overcome the problems with shortage of donors 
and frequent graft rejection in “high-risk” hosts[191,192]. 
Two approaches have been used to replace the 
damaged corneal tissue so far: (1) keratoprosthesis; 
and (2) bioengineered scaffolds that serve as templates 
for promoting corneal regeneration[193].

Keratoprosthesis
Keratoprostheses are synthetically generated corneas 
made of artificial materials which are not fully 
biocompatible and “only” provide central vision, yet 
are a viable option for patients who are at the end 
stage of severe corneal disease where grafting a donor 
cornea is almost certain to fail[194-196]. The Boston 
Keratoprosthesis (BKPro) is the most commonly used 
artificial cornea in clinical practice. Though the device 
is made of synthetic material, a donor cornea still 
has to be used as the carrier of the central optical 
device[197,198]. Patients with “high-risk” herpetic ke
ratitis transplanted with BKPro were shown to have 
better outcomes than transplanted allografts only[199]. 
Nevertheless, several postoperative complications 
including keratolysis (corneal melt), tissue necrosis 
which may result in corneal perforation in both host 
and donor cornea, and retro-prosthetic membrane 
formation have been reported[197,200,201]. In addition, 
lack of bio-integration of the prosthesis seems to be 
the major reason for BKPro extrusion, instability and 
ultimate failure[195,197]. The other type of prosthesis 
known as the osteo-odonto-keratoprosthesis (OOKP) 
was designed with an autologous tooth that forms 
the frame for central transparent optical cylinder[196]. 
This is a complicated procedure, and an end stage 
choice for patients with severe dry eye disease. 
Retro-prosthetic membrane is not a significant 
complication in OOKP unlike BKPro[202] but, the osteo-
dental lamina resorption is a specific problem of 
OOKP as it compromises integrity of the eye[202] while 
glaucoma and retinal detachment are the secondary 
complications of both types[203]. 
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The persisting problem of stable integration of 
corneal implants with host and implant extrusion may 
be better addressed by developing tissue engineered 
biomimetic collagen-based corneal equivalents as 
discussed below. 

Bioengineered corneal equivalents 
Bioengineered equivalents of the corneal stromal 
extracellular matrix have also been tested clinically. 
These biosynthetic implants are based on chemi
cally crosslinked collagen designed as regeneration 
templates[204-206]. 

Pre-clinical studies were performed in a murine full-
thickness orthotopic corneal transplantation model using 
porcine collagen and recombinant human collagen (RHC) 
(Figure 3), the latter of which, by using fully biologically 
synthetic material, reduces the risk of transmission of 
disease across species as well as reducing the chance 
of inducing adaptive immune responses[207,208]. Studies 
show a strong local innate immune response associated 
with excessive fibrin production and deposition in 
the AC. This may represent an exaggerated tissue 
repair/wound healing response[207]. Interestingly, only 
minimal or no activation of APC or CD4+ and CD8+ 
T lymphocytes in eye-DLN as well as a minimal 
systemic humoral response was detected[204,207]. Thus, 
the main problem seems to be the generation of a 
retro-hydrogel membrane (Figure 3, arrows), which 
ultimately reduces the clarity of the graft. Surprisingly, 
neither an immune response to the hydrogel nor retro-
hydrogel membrane formation was detected in a 
guinea pig model of PK[209]. Additionally, regeneration 
of endogenous corneal layers and functional cor
neal nerves were also determined in the collagen 
matrix[209]. Similar findings were demonstrated when 
the structurally reinforced collagen-based hydrogels 
were transplanted in a “high-risk” graft model of ocular 
alkali burn in rabbits[210]. Furthermore, additional 
advancements were made in the fabrication of bio
mimetic, acellular, corneal implants by incorporating 
biocompatible silica (Sio2) nanoparticle (NP) carriers 

for sustained release of anti-viral drugs such as 
acyclovir and LL-37 for use in “high-risk” grafts due to 
herpetic keratitis to prevent re-activation/re-infection 
of virus and this was supported by low viral copy 
numbers in in vitro experiments[211,212].

Hydrogel implants have also had their premiere 
in clinical medicine. A phase Ⅰ human clinical study 
using the biosynthetically designed corneal hydrogel 
substitutes made of RHC which were shown to mirror 
the natural cornea structurally, mechanistically and 
functionally by promoting active regeneration of 
endogenous corneal epithelial and stromal cells has 
been reported[213]. In addition, recent outcomes of the 
4-year follow-up clinical study show high acceptance/
adaptation of the hydrogel to the ocular surface with 
improved visual acuity and sensory nerve ingrowth[214]. 
A most recent clinical observation (case report) in 
three patients with severe corneal ulcers and recurrent 
erosions suggests that RHCⅢ hydrogels reinforced 
with phosphorylcholine polymer networks potentially 
withstand the “high-risk” environment (Figure 4) and 
is a safe and efficient alternative to donor corneal 
allografts in emergency situations where a corneal 
allograft is not available, as the corneal integrity can 
be well maintained in recipients[215]. 

Instead of fully in vitro generated hydrogel matrixes, 
decellularized corneas have also been tested in a clinical 
study[216]. This study showed promising clinical results in 
“high-risk” fungal keratitic patients where the implanted 
decellularized porcine corneas caused regression of 
corneal vascularization and improved corneal clarity. 
Although no safety problems were demonstrated, 
immunogenicity still could be a problem and so further 
studies addressing this issue may be required[216].

Thus, bioengineered collagen-based corneal equi
valents have shown to be a promising alternative to 
keratoprosthesis. Though collagen hydrogels show 
promise in the clinic, this applies mainly to lamellar 
keratoplasty, which is a partial thickness replacement 
of damaged cornea, where host endothelium is intact. 
Thus, the complications observed in experimental 

Figure 3  Clinical images of tissue engineered collagen-based hydrogels transplanted by full-thickness keratoplasty into naïve Balb/c mice at different time 
points post grafting. A: Clear hydrogel 1 d post transplantation; B: Hydrogel clarity is reduced 9 d post transplantation due to retro-hydrogel membrane formation (from 
periphery towards central cornea as indicated by arrows).
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models - fibrin deposition and retro-hydrogel me
mbranes formation are eliminated as the integrity of 
the anterior segment microenvironment is preserved. 
For PK, the “holy grail” of full-thickness artificial cornea 
remains the ultimate aim of current research.

CONCLUSION AND FUTURE DIRECTIONS 
In full-thickness corneal transplantation in “low-
risk” settings - the balance between the strength of 
alloimmune response and regulatory mechanisms 
dictates the outcome of the graft, whereas in “high-
risk” settings heightened innate and adaptive im
mune responses significantly tilt the balance to 
favour graft rejection. Though highly debated, tissue 
matching with long-term immunosuppression is 
recommended to reduce the rejection of “high-risk” 
grafts. Meanwhile, alternative approaches are being 
explored to avoid the side effects of prolonged use 
of systemic immunosuppressants. Such approaches 
including cell-based therapies and development of 
collagen-based corneal equivalents appear to be 
promising. Research continues to refine the available 
therapies for the betterment of the clinical outcomes. 
The recent surgical advances made in endothelial and 
stromal lamellar keratoplasty would be a potential 
realistic option to increase the success rates of some 
“high-risk” grafts. Manipulation of immunomodulatory 
molecules like TGF-β and IL-10 in the donor corneal 
layers by gene therapy might facilitate weakening 
the aggravated host immune response in “high-risk” 
grafts. The combined approach of cell or gene therapy 
along with allograft transplantation might render a 
better preventive measure for “high-risk” corneal graft 
rejection.
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