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Abstract 
At present, proven clinical treatments but no cures 
are available for diabetes, a global epidemic with a 
huge economic burden. Transplantation of islets of 

Langerhans by their infusion into vascularized organs 
is an experimental clinical protocol, the first approach 
to attain cure. However, it is associated with lifelong 
use of immunosuppressants. To overcome the need 
for immunosuppression, islets are encapsulated and 
separated from the host immune system by a per
mselective membrane. The lead material for this 
application is alginate which was tested in many animal 
models and a few clinical trials. This review discusses 
all aspects related to the function of transplanted 
encapsulated islets such as the basic requirements 
from a permselective membrane (e.g. , allowable 
hydrodynamic radii, implications of the thickness of 
the membrane and relative electrical charge). Another 
aspect involves adequate oxygen supply, which is 
essential for survival/performance of transplanted 
islets, especially when using large retrievable macro-
capsules implanted in poorly oxygenated sites like the 
subcutis. Notably, islets can survive under low oxygen 
tension and are physiologically active at > 40 Torr. 
Surprisingly, when densely crowded, islets are fully 
functional under hyperoxic pressure of up to 500 Torr 
(> 300% of atmospheric oxygen tension). The review 
also addresses an additional category of requirements 
for optimal performance of transplanted islets, named 
auxiliary technologies. These include control of inflam
mation, apoptosis, angiogenesis, and the intra-capsular 
environment. The review highlights that curing diabe
tes with a functional bio-artificial pancreas requires 
optimizing all of these aspects, and that significant 
advances have already been made in many of them. 
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Core tip: Replacing standard insulin therapy for patients 
with type Ⅰ diabetics with a cell-based cure is yet to 
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be achieved. Assuming unlimited supply of beta cells, 
allogeneic or xenogeneic cells should be separated from 
the host immune system by a permselective membrane 
that still allows insulin egress. In addition, a mandatory 
requirement for such a cure in a poorly oxygenated 
environment includes adequate oxygen supply. In 
addition, to optimize islet functionality, control over 
inflammation, cell apoptosis, angiogenesis, and the 
close environment of the transplanted cells must be 
accomplished.

Barkai U, Rotem A, de Vos P. Survival of encapsulated islets: 
More than a membrane story. World J Transplant 2016; 6(1): 
69-90  Available from: URL: http://www.wjgnet.com/2220-3230/
full/v6/i1/69.htm  DOI: http://dx.doi.org/10.5500/wjt.v6.i1.69

INTRODUCTION
Diabetes is considered an epidemic with global 
prevalence of 9% [based on World Health Organization 
(WHO) data from 01/2015] and a huge economic 
burden[1]. Type I diabetes, consists of 10% of the total 
diabetic population. Prevalence of clinical diabetes is 
predicted to double in the next 20 years[2]. 

Transplantation of cadaveric islets of Langerhans 
(IOL) by their infusion into vascularized organs, 
preferentially the liver, is an experimental clinical 
protocol which was first established in Edmonton in 
2000[3]. Since then, 2000 allogeneic transplantations 
are estimated to have been performed worldwide. 
A report published by the Collaborative Islet Tra­
nsplant Registry at the end of 2013 summarized 
clinical data from 864 such recipients[4]. Despite the 
promise, clinical application of islet transplantation is 
limited due to short organ supply, inefficient use of 
organs (approximately 2.5 donors are required per 
recipient), low reproducibility of quantity and quality 
of the isolated IOL, and the obligatory use of life-
long immunosuppressive therapy. Thus, the current 
global research focuses on resolving all bottlenecks 
in the pathway to successful clinical application. 
These include addressing the limited supply of β-cells 
by using juvenile/adult porcine IOL[5-8] and β-cells 
derived from renewable sources (e.g., stem cells[9-11]); 
development of efficient and reproducible protocols 
for isolating donor IOL[12-14]; and development of 
efficient encapsulation technologies in order to 
allow immunosuppression-free procedures. These 
encapsulation approaches, which include macro, 
micro, and nano-encapsulations were tested in 
animal models and a few clinical trials (for reviews, 
see[15-18]). To date, the least developed niche in the IOL 
transplantation approach is the use of active oxygen 
supply and auxiliary technologies to provide “friendly 
microenvironment” to the transplanted islets. 

This article reviews the various aspects related to 
optimizing cell-based curing product for diabetes and 

highlights the achievements made to date. 

THE IMMUNE BARRIER
For clinical islet transplantation, systemic administra­
tion of immunosuppressive drugs has remained the 
foundation for preventing graft rejection. However, 
chronic immunosuppressive therapy is associated with 
loss of islet mass as well as with significant risk for 
higher rates of malignancies and opportunistic infections. 
The risk of these serious side effects is inherent, as 
it is currently impossible to block rejection of foreign 
tissues without simultaneously suppressing necessary 
immune functions. Cell encapsulation is an alternative 
technology. It creates a passive barrier between the 
implanted graft and the hostile immune system using 
a permselective membrane. The membrane must be 
discriminative in terms of molecular diffusivity, allowing 
for free ingress and egress of low molecular-weight 
nutrients such as glucose, amino acids, and insulin. 
Diffusion of small molecules, such as oxygen, glucose, 
and L-tryptophan, has been shown to be only marginally 
affected by hydrogel like alginate and agarose[19-25]. 
At the same time, the permselective membrane must 
create impassable barrier for host immune effectors in 
order to efficiently prevent graft rejection. The immune 
system uses plethora of mechanisms to reject grafts, 
most of them are dependent on cell-to-cell contacts 
and effector macromolecules. Therefore, diffusion resis­
tance constitutes the foundation of all immunoisolation 
strategies. 

The cellular arm of the immune rejection is me­
diated by cytotoxic T-cells and the process requires 
direct representation of donor MHC class Ⅰ molecules 
to recipient CD8 T cells. This mechanism, however, 
has only a minor impact on encapsulated grafted cells 
because the membrane physically separates donor 
cells from recipient cells[26]. 

Humoral rejection does not require cell-to-cell 
contact and is operable via mechanisms activated by 
the indirect recognition pathway. Antibody-complement 
mediated rejection is a major contributor to this 
pathway. A cascade of biochemical reactions, termed 
the complement cascade, follows the binding of either 
IgG or IgM paratopes to their matching epitopes. 
Eventually, this cascade leads to the formation of 
membrane attack complexes (MAC), which are 100-nm 
diameter transmembrane channels characterized by a 
hydrophilic internal surface. MACs are integrated across 
the cell plasma membrane thus allowing for free 2-way 
passage of water and molecules. Loss of essential 
differential concentrations of ions between the intra- 
and extracellular compartments is fatal and induces 
necrosis (e.g., as demonstrated by Papadimitriou et 
al[27]). With respect to this type of rejection, the merit 
of inserting a separating membrane between the donor 
and recipient depends on the permeability indices of 
the membrane, the dimension of the solutes, and their 
hydrodynamic radius (RH). IgG (a pivotal activator of 
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the complement cascade), IgM, C1q (the rate-limiting 
activator of the complement cascade), and transferrin 
(a molecular chaperone transporting iron to the graft), 
vary in their molecular dimensions (Table 1)[28-38]. In 
order to concomitantly prevent damage to encapsulated 
cells and allow essential nutrition, the permselective 
membrane should permit free diffusion of molecules 
with RH < 4 nm (i.e., molecular chaperones such as 
transferrin) while preventing ingress of molecules 
with RH ≥ 12 nm (i.e., IgM, C1q). Notably, even if the 
intermediate size IgG passes the membrane, it is an 
inefficient cell killer on its own. 

The third path to rejection involves inflammation-
type reactions. Surgical incision, preceding any type 
of graft implantation damages the vascular bed and 
irritates the tissue, while insertion of any artificial 
device into an interior site enhances the magnitude 
of this reaction. The process induces inflammatory 
responses immediately. These are manifested by 
cross activation of immune cells of the innate system 
(neutrophils, basophils, and macrophages[39]). Once 
activated, these cells release bioactive cytokines[40-42] 
in the vicinity of the graft that aim to heal the wound. 
However, some of these cytokines are destructive to the 
grafted cells. Indeed, studies in a model of syngeneic 
islet transplantation demonstrated that damage to 
islet grafts is primarily due to nonspecific inflammatory 
response[43,44]. This effect is aggravated when allotype 
or xenotype islets are being transplanted. Although the 
inflammation lasts less than 2 wk, up to 60% of islet 
cells may be lost in this timeframe[45].

The 3 major effectors that damage islets include: 
Interleukin (IL)-1β, interferon (INF)-γ, and tumor 
necrosis factor (TNF)-α[46-52]. These cytokines also play 
a major role in the neutrophils-macrophage activation 
cascade. Their apparent molecular masses differ (17 
kDa for IL-1b, 47 kDa for dimeric glycosylated INFγ 
and 52 kDa for trimeric TNF-α); however, their RH are 
similar (2.2, 3.1, and 3 nm, respectively)[53,54]. This 
range of radii is well below the minimal threshold 
required for immunoisolating membranes (12 nm), 
but is close to the RH value of transferrin. Therefore, 
reducing the size of membrane pores to approximately 
4 nm, and the fact that the pores are geometrically 
inhomogeneous may attenuate ingress of the pro-
inflammatory cytokines TNF-α and INF-γ but at 
the expense of transferrin. Still, no permselective 

membrane can prevent IL-1β diffusion. In summary, 
based on pore size only, permselective membranes 
are effective against cell-mediated and complement-
mediated cytotoxicity; however, they are less helpful 
against harmful cytokines.

Besides pore size, the physical makeup of per­
mselective membranes also affects their permeability 
properties. In water, diffusion of a solute is a process of 
random movement of molecules across concentration 
gradient and is quantitatively portrayed by a diffusion 
coefficient. In a typical hydrogel, the void volume is > 
95%; however, diffusion of a solute across a hydrogel 
is not determined solely by its diffusion coefficient. 
Permeability of larger molecules is also controlled 
by slow transfer across lengthy path of traversing 
pores, hydrodynamic drag on the moving solute, 
and polar or hydrophobic interactions between the 
membrane material and the traversing macromolecule. 
Crosslinking of acidic alginate polymers by divalent ions 
creates an “eggs-in-a-box” hydrogel scaffold that is 
never saturated by the divalent cross-linker. Therefore, 
under physiological environment (pH = 7.35), alginate 
hydrogel is negatively charged in its core and even 
more at the exposed surfaces. Proteins usually have 
hydrophobic core and hydrophilic surfaces. There­
fore, electrical repulsion between negatively-charged 
domains on protein surfaces and the exterior of the 
hydrogel is expected[55] and may play a role in selective 
permeability of polypeptides. This hypothesis could 
be tested for IL-1β, the most devastating interleukin. 
This cytokine, despite extensive sequence homology 
and similar biological activity, has a range of isoelectric 
points (pI) across species. On one side, porcine IL-1β 
(NP_001005149.1) has an acidic pI of approximately 
5.5, whereas rat IL-1β (NP_113700) is characterized 
by a basic pI (> 8.5). Local surface charges may also 
make a difference. The exposed amino acid shells of 
human (PDB 9ILB; pI = 5.92) and mouse (PDB 8I1B; 
pI = 8.30) IL-1β shown in Figure 1 clearly demonstrate 
enhanced electronegativity of the human compared 
with the murine molecule. Therefore, the transfer 
rate of these cytokines across alginate hydrogels may 
provide insights into the role of electrical charges in 
differential permeability, and may help in the design of 
better protecting membranes. 

Concentration of local cytokines is a balance between 
synthesis and degradation at inflammation sites. 
Proteolysis of IL-1β is controlled by a plethora of matrix 
metalloproteinases (e.g., as described by Ito et al[56]). 
In addition, a group of serine proteases (e.g., cathepsin 
G and elastase) are capable of cleaving nearly all 
proteins in an unspecific manner. Most cytokines contain 
many cleavage sites for serine proteases. Activated 
macrophages and neutrophils, major producers of these 
proteases, co-localize with inflammatory cytokines 
at implantation sites. As such, direct restrictive effect 
of proteases on the lifetime of cytokines is envisaged 
and was shown for TNF-α which is rapidly degraded 
by supernatant of activated neutrophils and by 
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Table 1  Characteristics of effectors involved in immune 
rejection of transplanted islets, and of molecular chaperones 
involved in transporting key nutrients to the transplanted 
islets

Effector Molecular 
weight, kDa

Crystal 
dimensions, nm

Hydrodynamic 
radius, nm

Ref.

IgG    150 15 × 6 × 2   5.4 [32-36]
IgM > 900 30 × 13 12.7 [35,213]
C1q > 400 30 × 33 12.8 [28-31]
Transferrin      80   5 × 10   3.7 [37,38]
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the viability/functionality of the grafted cells, be 
biocompatible to the host, flexible, and mechanically 
stable. Collectively, immune barrier could replace 
immunosuppressive therapy only when the size of 
the graft is small and internal re-vascularization is not 
mandatory for its proper function (e.g., IOLs). 

Several strategies for islet microencapsulation 
were developed to protect grafted islets from the 
host immune system. These are described in several 
excellent review articles[15,18,45,78-81]. This paper focuses 
on retrievable devices, for which hollow fiber and flat 
geometry configurations are practical solutions. 

Two major classes of natural polymers are being 
used for cell encapsulation: Polysaccharides and 
polypeptides. Polysaccharides gained widespread 
use because they are simple to use, allow hydrogel 
formation under mild conditions (gentle heat or 
presence of divalent cations), and because they 
do not interfere with cell viability and functional 
performance. Alginate, the most studied polymer, 
which was tested in many animal models and even in 
clinical trials (for example, see Matsumoto et al[5]), is 
the leading biomaterial for cell encapsulation. Other 
polysaccharides are also being used (e.g., chitosan, 
agarose, and cellulose). Alginate is a natural product 
mainly extracted from seaweeds. It is chemically 
composed of two monomers: Guluronic (G) and man­
nuronic (M) acid. These form linear polymers with a 
wide distribution of molecular masses, different ratios 
of G to M, and various combinations of homo- and 
hetero-polymer blocks. Therefore, inter-lot variability in 
the chemical composition of the polymer is inevitable. 
This variability is an advantage for facilitating selec­
tion of an optimal variation of the polymer but once 
chosen, it presents a disadvantage, as the specific 
chemical composition of every alginate lot is unique. 
Currently, no practical method for producing lots with 
identical chemistry exists. Only 3 variables in the 
final makeup of an alginate hydrogel are controllable: 

elastase[57,58]. Some membrane design, including those 
with extended width of the membrane, has been 
shown to partially protect encapsulated cells against 
cytokines[59-62]. Therefore, attenuation of ingress of 
cytokines may expose them to enhanced degradation 
by resident proteases thereby reducing the necessity to 
completely prevent their ingress.

Following islet transplantation, nitric oxide (NO) and 
reactive oxygen species (ROS) are released by cells 
of the innate immunity, responding to the insult[63,64]. 
Working independently or as effectors of IL-1β, they 
contribute to the loss of functionality and viability 
of encapsulated islets soon after implantation[65-68]. 
Likewise, hydrogen peroxide, an abundant ROS, impairs 
glucose-induced insulin secretion in β-cells[69,70]. ROS are 
constantly produced in living systems but are kept by 
homeostatic mechanisms at relatively low levels. Upon 
transplantation of IOLs, this balanced state is deranged. 
Oxidative stress is much enhanced, but is not countered 
by efficient antioxidant machinery as islets contain 
ineffective antioxidant protection system. Consequently, 
transplanted islets are prone to destruction by NO and 
ROS[71-74]. 

Due to their miniaturized molecular dimension, 
none of the permselective membranes can prevent 
free passage of NO and ROS. This inherited challenge 
may be solved using a different approach. It is based 
on the short half-lives of these molecules (seconds 
for NO and even shorter for ROS), and consequently 
their limited radii of effectiveness (approximately 
200 μm for NO and < 100 μm for ROS)[75-77]. Thus, 
increasing the distance between the cells that are 
generating ROS and NO and the transplanted islets 
may decrease the deleterious effect of the formers. 
Figure 2 summarizes proven and putative mechanisms 
by which permselective membrane protect grafted 
cells from the host immune system.

In order for the separating membrane to be func­
tional, it should also protect the graft without impacting 

Figure 1  Surface design of mouse (A) and human (B) interleukin-1β. The proteins are imaged at identical angles. Blue: Positively-charged amino acids; red: 
Negatively-charged amino acids; pink: Polar amino acids (slightly negative at physiological pH). The arrows point to differences in surface charges between the 2 
proteins. Image resolved using ASAview[214].

Mouse 8I1B                                                                   Human 9ILBBA
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The G to M ratio, dry matter composition and the 
type/concentration of the divalent cation used for 
crosslinking. To a minimal extent, physical parameters 
of the final hydrogel (e.g., viscosity) can be adjusted 
by varying these parameters. At present, the field of 
alginate-based cell encapsulation is in urgent need for 
an industrialized source of controlled and reproducible 
raw material. A group of epimerase enzymes[82-84], 
converting G to M, thus providing tailor-made alginates 
form the first step in addressing this critical need.

Agarose has also been tested as an encapsulating 
hydrogel for cells. Its use for islet encapsulation 
started in the late 80’s[85,86] and was subsequently 
broadened[87-91]. Other natural polysaccharides used 
for encapsulation of cells/islets include chitosan 
and cellulose. The data generated for chitosan as 
an encapsulating hydrogel are limited and chitosan 
is usually formulated as part of a more complex 
membrane that also includes alginate or methacrylated 
glycol[92-94]. Also, its application is rather limited 
because it binds crosslinking molecules at acidic 
pH and does not bind them at physiological pH[95]. 
Cellulose was also tested for encapsulation; however, 
it never reached animal testing[96,97]. PharmaCyte 
Biotech, Inc. (Silver Spring, MD) is planning to use 
cellulose sulfate and polydiallyldimethyl ammonium 
chloride, known as “Cell-in-a-Box®” as an immune 
barrier for β-cell transplantation. Chitosan and cellulose 
were both found to be inferior to agarose and alginate 

(reviewed by de Vos et al[45]).
In 1996, French scientists published a design 

of a planar bioartificial pancreas (BAP) that used a 
synthetic membrane developed for dialysis of blood 
(AN69) to create an immune barrier between grafted 
islets and the host immune system. Normoglycemia 
of diabetic mice implanted with this device lasted 30 
d[98]. A variation of this membrane is now a part of a 
new medical device, MAILPLAN (Defymed; Strasbourg, 
France), which is scheduled to start clinical trials in 
2016. No preclinical data supporting this claim have 
been published so far. In 2001, Islet Sheet Medical (San 
Francisco, CA) presented an advanced planar BAP 
generated by encapsulating donor islets in a thin sheet 
of alginate[99]. At a dose of approximately 10000 islet 
equivalent (IEQ)/kg, a diabetic dog was cured for 84 
d. Five years later, a Belgian group reported six-month 
normoglycemia in diabetic Cynomoglus monkeys[100]. 
Xenotype islets were encapsulated in a planar mo­
nolayer cellular device consisting of 2-sided collagen 
matrix enveloped in 3% (w/v) high mannuronic acid 
alginate (US patent 2008/0050417). 

TheraCyte Inc. (Laguna Hills, CA) also attempted to 
macroencapsulate islets in a minimally invasive device 
based on technology developed by Baxter Healthcare 
(Round lake, IL)[101]. It is a robust, mesh-supported, 
and retrievable planar device consisting of a 3-layer 
membrane. An outer layer of woven polyester mesh 
supports a 5 μm pore size polytetrafluoroethylene 

Figure 2  Mechanisms (demonstrated and putative) by which permselective membrane protect grafted cells from the host immune system. The 
permselective membrane allows free ingress of low molecular weight nutrients (e.g., glucose and amino acids) and egress of insulin and waste products. The 
membrane separates the grafted cells from the cellular arm of the immune system and prevents humoral rejection by preventing ingress of IgM and C1q (due to their 
high molecular weight). In addition, the membrane attenuates free diffusion of hazardous cytokines thereby exposing them to proteases, and increases the diffusion 
distance between reactive oxygen species, nitric oxide, and the grafted cells promoting their thermodynamic degradation.
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(PTFE) leaf and an inner PTFE leaf with nominal pore 
size of 0.45 μm[102]. The 3-layer approach is designed 
to allow for development of dense vascularization on 
the outer part of the membrane in order to reduce 
the diffusion distance of nutrients and waste products 
from the vascular bed and the encapsulated cells. 
The most inner leaf of this structure is supposed to 
create an immune barrier between the graft and 
the host immune system although the nominal pore 
size seems to be inadequate for this purpose. Rat 
islets implanted within this device were functional for 
4 wk in immunocompromized mouse recipients[103], 
for > 6 mo in allogeneic rat recipients[104] and for 
30 d in a mouse model resembling autoimmune 
diabetes[105]. Also, reversal of diabetes for a 16-wk 
period was reported when neonatal porcine islets were 
transplanted subcutaneously in nonobese diabetic 
mice[106]. Successful reversal of diabetes by this device 
is currently limited to rodent recipients. Data on 
successful transplantation of donor islets into larger 
animal models are limited. Nonetheless, the device was 
transplanted in non-human primates, including a 3-mo 
trial with xenogeneic porcine islets[106], and up to 12-mo 
trial with allogeneic NHP islets[107]. However, cell doses 
in these studies were minimal (substantially below 
curing doses). ViaCyte, Inc. (San Diego, CA) is using 
a modified TheraCyte membrane (Encaptra) as an 
immune barrier in order to protect stem cells-derived 
β-cells from the host immune system. Preclinical data 

on the efficacy of Encaptra as an immune barrier 
are yet to be published, but the company launched 
a phase Ⅰ/Ⅱ clinical trial in September 2014 (NCT 
02239354). Practically, neovascularized devices 
are not easily retrievable because of bleeding and 
hematoma[108].

A quite different macroencapsulation method was 
developed at the Rogosin institute (Xenia, OH)[90,91]. 
Donor islets are encapsulated in double layer agarose 
macrobeads; a 5% external agarose film functions as 
the immune barrier. Using this method, porcine islets 
were shown to lower blood glucose in diabetic rats and 
reduce their insulin requirements for > 6 mo[91,109]. 
Similar results were obtained when porcine islets 
encapsulated in these macrobeads were implanted 
into diabetic dogs; however, no complete remission 
of diabetic state was evident even with high islet 
dose[110,111]. This macroencapsulation technology is 
currently awaiting regulatory approval for initiating 
Phase I studies.

Beta O2 Technologies (Rosh Ha’ayin, Israel) 
developed the β-Air device which includes a composite 
membrane serving as an immune barrier (Figure 3). 
This barrier includes 2 (25 μm each) hydrophilized 
PTFE membranes with pore size of 0.45 μm, similar 
to the inner leaf of the TheraCyte membrane. High 
viscous high mannuronic (HM) acid alginate (G = 0.46) 
at 6% (w/v) is impregnated into the membrane pores 
using mild vacuum[112]. The β-Air composite membrane 

HM alginate                          PTFE mesh

Figure 3  The β-Air immune barrier, a double hydrophilized polytetrafluoroethylene membrane impregnated with 6% high mannuronic alginate. A: 
Environmental scanning electron microscope (ESEM) surface image of a virgin membrane; B: ESEM surface image of impregnated membrane; C: Drawing of 
hypothetical cross section in one polytetrafluoroethylene (PTFE) membrane; D: Cross section of double PTFE membrane impregnated with colored alginate (total 
width = 60 μm). 

A B

C D
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is strong but quasi-flexible. It does not allow host cells 
to permeate into the device (e.g., CD3 cells; Barkai 
et al, unpublished data), and is also impermeable to 
viruses, C1q and IgG molecules, while allowing free 
diffusion of glucose and insulin both inwards and 
outwards[112].  

OXYGEN SUPPLY
The vasculature of the pancreas consists of a complex 
network differentially adopted for the distinctive needs 
of the endocrine and exocrine parts of the organ. 
Pancreatic islets possess an autonomous mechanism 
of blood flow regulation, independent of that of the 
exocrine pancreas. The endocrine tissue, which in 
humans includes approximately 1 million IOL, is 
scattered in the exocrine pancreas and constitutes 
only 1%-2% of its biomass, while utilizing 10%-20% 
of the total blood flow into the organ[113-115]. The 
proportion of arteriole endings and of vascular density 
in IOL and exocrine tissue is similar[116,117]. IOL are 
supplied with arterial blood via one or more arterioles 
which, after penetrating the capsule, form dense, 
glomerular-like network of capillaries. They are wider 
than their exocrine counterparts and have much more 
fenestrae[118]. The sinusoidal capillaries are drained 
via several efferent venules. Figure 4 (courtesy of Dr. 
Bonner-Weir[119]) demonstrates the complexity of single 
islet vascularization. Vascular density is such that all 
endocrine cells are no more than one cell away from 
arterial blood[120]. This architecture is dramatically 
changed following transplantation. Capillary densities 
of rodent islet grafts implanted under the kidney 
capsule average 500-700 capillaries/mm2[121-124], which 
is approximately half the density of native pancreatic 
islets (1300 capillaries/mm2)[123] and vascular density 
of murine islets transplanted into the liver is not more 
than 20% of the original density[117]. The vascular 
density of the human subcutis is lower by an additional 
order of magnitude averaging only 60-100 capillaries/

mm2[125-127]. The density of local vasculature should 
be reflected in the perfusion characteristics of these 
organs. Basic pancreatic blood perfusion is measured at 
200-300 mL/100 g per minute[128-130]. So far, perfusion 
values for islet blood flow were not reported but they 
are expected to be higher than the average pancreatic 
values. Notably, subcutaneous blood flow is lower by 2 
orders of magnitude[131-133]. Thus, when addressing the 
question of islet transplantation into the subcutis, these 
differential values should be considered.

Oxygen supply to cells in tissues/organs is driven 
by a concentration gradient. Oxygen is solubilized 
from oxygenated hemoglobin on plasma membrane 
of red blood cells into the plasma, further diffuses into 
the interstitial space and then through the cell plasma 
membrane into the mitochondria. As it diffuses, a 
pressure gradient is formed. The oxygen transfer 
rate (flux) from the plasma to the mitochondria is 
dictated by the oxygen gradient, the distance it has 
to cross, and the diffusion coefficients in the various 
tissues being crossed. When oxygen consumption 
rate (OCR) of the mitochondria increases, local 
oxygen concentration decreases. Similarly, as distance 
between blood plasma and target mitochondria 
increases, the flux of oxygen decreases. 

In the normal blood circulation, oxygen partial 
pressure (PO2) in the large arteries starts at > 100 
Torr. It then decreases to approximately 65 Torr in 
the smallest arterioles and further decreases to 40 
Torr in the venous system. In pancreatic IOL, the 
average PO2 measured in situ in anesthetized animals 
is 35-40 Torr[134,135]. This level is slightly higher in 
healthy, wake animals and comparable to the PO2 
values measured in the hepatic portal vein used for 
clinical islet transplantation[136]. However, following 
isolation and transplantation of IOL, this level changes 
dramatically. As IOLs are cut from their blood supply, 
oxygen is supplied from the periphery solely by 
diffusion and quickly becomes a rate-limiting nutrient. 
Transplantation is followed by neo-vascularization 
and IOLs transplanted into the subcapsular space of 
the kidney or into the hepatic sinusoids undergo a 
similar neovascularization process. Finally, they almost 
reach level of vascular density of normal pancreatic 
islets[137]. However, the anatomy of this vascular bed is 
completely different than that of the native complex; 
blood is supplied from the periphery inside instead of 
the original core-shell direction. Consequently, under 
the kidney capsule, PO2 of transplanted IOL is only 
10 Torr[134] and values in diabetic animals are even 
lower (5-6 Torr[138]). This is also the level recorded 
for islets transplanted into the liver or spleen[134,138]. 
Pimonidazole is an oxygen tension indicator signa­
ling at ambient pressure of ≤ 10 Torr. In the native 
pancreas, approximately one third of the islets are 
pimonidazole positive. This proportion is doubled in 
islets isolated from a donor and infused into the liver of 
diabetic recipients[139]. 

Figure 4  Vasculature of a large islet (300-μm diameter) as seen in scanning 
electron microscope. Republished with permission of the American Diabetes 
Association, from Ref. [119] permission conveyed through Copyright Clearance 
Center, Inc. 
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While transplantation of islets into vascularized 
spaces presents perfusion limitation, encapsulation 
just aggravates this situation (Figure 5). As no 
revascularization process is allowed, the distance of 
these islet cells from the nearest capillary is extended 
substantially. A mathematical model developed 
by Johnson et al[140] predicts that whereas islets 
transplanted under the kidney capsule or into the 
portal venous system are exposed to ambient PO2 of 
40-50 Torr, encapsulation (in standard 500 μm width 
microspheres or planar macrocapsules) reduces the 
PO2 to 25 Torr. Under these conditions, cells in a 50 μm 
cores of these islets are exposed to PO2 < 10 Torr. Most 
encapsulation methods use an enveloping hydrogel 
with a width of 500-800 μm. If positioned at the 
geometric center of the capsule, the innermost islets 
cells are up to 400 μm away from the host vascular 
bed. To provide sufficient oxygen to mitochondria 
inside a cell, the maximal distance between capillary 
and the cell must not exceed 200 μm[141]. Cancer cells 
have relatively high OCR but OCR of cancer cell lines[142] 
is only one third of that of islet cells. Even though, 
cancer cells placed > 100 μm away from capillaries 
become necrotic[143]. Evidently, following encapsulation, 
the distance between the islets and the vascular 
bed becomes a major impediment for their normal 
physiological performance and even for their ability to 
survive.  

Several mathematical models were developed in 
order to simulate oxygen transfer to encapsulated 
islets. In a detailed analysis, Dulong and Legallaise[144] 
presented pessimistic data on the feasibility of 
producing a BAP device using microencapsulated 
islets or islets encapsulated in hollow fibers. Based on 

oxygen transfer parameters, efficient performance of 
a human-type BAP requires a minimum of 570000 
IEQ. These should be encapsulated in narrow, 250 μm 
diameter, hollow fiber measuring 270 cm. Under the 
same conditions, planar encapsulation is preferred. 
A sheet of 240 cm2 surface area and 300-μm width 
containing 420000 IEQ suffices the needs but, 
increasing the width to only 500 μm, which is desirable 
to protect the islets from the host immune system, 
makes this design impractical. About 1 million islets 
have to be encapsulated in a sheet of 600 cm2 surface 
area. Another model by Johnson et al[140] predicts 
that even at surface density of 500 IEQ/cm2, the core 
of a standard encapsulated IEQ becomes hypoxic. 
These findings were confirmed in an independent 
mathematical model[145]. Islets cultured under 
normoxic conditions in 1 mm high standard culture 
medium at density of 1600 IEQ/cm2 present hypoxic 
core when their size exceed a diameter of 100 μm. 

A BAP device should continuously sense ambient 
glucose concentrations and respond to a glucose 
concentration change by releasing adequate amounts 
of insulin. This process is also PO2-dependent[146,147]. 
Fractional secretion of islets decreases at PO2 below 
60 Torr and reaches 50% efficiency at 27 Torr. At 
PO2 of 10 Torr, fractional secretion is only 10% of the 
normoxic level (Figure 6).

In their native environment, islets enjoy surface 
PO2 of 40-60 Torr and the efficiency of insulin secretion 
is predicted to be high (> 75% of the normoxic level; 
Figure 6). In contrast, islets transplanted under 
the kidney capsule or into the hepatic sinusoids, as 
practiced in clinical transplantations, are exposed 
to PO2 of ≤ 10 Torr[134]. Diabetes and encapsulation 

Figure 5  Cartoon representation limitations of oxygen supply to encapsulated islets of Langerhans.
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just worsen this situation. Under surface PO2 of ≤ 10 
Torr, insulin secretion is expected to be reduced by 
an order of magnitude compared with physiological 
conditions. Also, short distance from capillaries and 
high perfusion rate which are characteristic of native 
islets are obstructed following encapsulation. As such, 
protection against the host immune system imparted 
by a standard permselective membrane is traded for 
low efficiency of insulin secretion. 

A simple solution to this apparent oxygen deficiency 
is active delivery of oxygen by generating it in situ 
or using stored reservoirs. Some solutions were ex­
perimentally tested including a direct supply of oxygen 
to cultured cells using decomposition of solid calcium 
peroxide[148], electrochemical generator[149] (USP 
8368592), or local photosynthesis[150,151]. Unfortunately, 
none of these systems generated enough oxygen to 
maintain clinical doses of islet graft viable and functional 
for long periods of time. Recently, we published a 
series of manuscripts describing active oxygen supply 
to encapsulated islets from internal storage. The islets 
were packed in a planar slab at a very high surface 
density, 1400-3600 IEQ/cm2 (5%-13% v/v). The 
device, β-Air), was implanted under the skin or into the 
pre-peritoneal space of diabetic recipients and gaseous 
oxygen was injected daily into a gas chamber that is an 
integral part of the device[24,112,152-154]. 

THE β-AIR DEVICE
Hypoxia adversely affects the functionality of donor 
islets transplanted into a recipient and has emerged 
as the bottleneck in the development of efficient BAP 

devices. The role played by hyperoxia is less explored. 
In culture, IOL exposed to atmospheric air survive and 
function properly for extended periods of time. Higher 
PO2 levels, on the other hand, were reported to be 
toxic[155-157], but the levels used in these experiments 
were extremely high (680-1300 Torr, 5-9 times the 
atmospheric pressure). We hypothesized that some 
degree of hyperoxia could be beneficial to implanted 
islets as high PO2 at the surface of the encapsulated 
graft is necessary to fuel islet cells across the entire 
width of the capsule and all the way to the islet core. 
Also, hyperoxia may allow the use of denser islet grafts 
which may contribute to decreased device volume. 

β-Air is a BAP device implanted under the skin 
or into the pre-peritoneal cavity, both of which are 
easily accessed by minimal surgical intervention. The 
rat variant of this device is composed of an integral 
macrochamber, access ports and connecting tubing 
(Figure 7). The device also holds an islet module 
containing 2400 IEQ [approximately 8000 IEQ/kg 
body weight (BW)] separated from an integral gas 
chamber by a rubber silicone membrane (Figure 8). 
Gas blend is infused into the gas chamber every 2 h 
(first prototype) or once a day using the access ports 
and a manual injector. 

Using this device we exposed the islet module 
to increasing levels of PO2 and tested the effect of 
hyperoxia on their functional performance under culture 
conditions and following implantation of the BAP into 
diabetic animals. At a dose of 2400 IEQ/device and 
surface density of 1000 IEQ/cm2, none of 10 devices 
implanted in the subcutis without direct oxygen supply 
were functional for more than 3 d. On the other hand, 
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refueling of 15 min every 2 h with atmospheric air 
was sufficient to maintain normoglycemia in diabetic 
recipients through the end of the experiments (up to 
240 d)[24]. Surprisingly, all the devices equipped with 
the same islet dose but at increased surface density 
(2400 IEQ/cm2) failed to cure diabetic animals for > 
1 wk when refueled alike the former group. Similar 

negative results were obtained when β-Air devices 
were refueled once a day with a gas blend at PO2 of 
230 Torr (30% O2; Barkai et al, unpublished data). 
As the null hypothesis was that this failure stemmed 
from under and not hyper oxygenation of islets, PO2 in 
the gas chamber was raised further to 304, 456, and 
570 Torr. Most of the diabetic animals implanted with 

Figure 7  The rat variant of the β-Air device. A: Shaved animal demonstrating relative positions of the device, connecting tubes, and access ports. A syringe needle 
used for gas refueling is inserted into one of these ports; B: Schematic illustration of the device. Size of the gas chamber and the islets module is shown; C: The 
macrochamber and connected access ports (each square is 1 cm × 1 cm); D: Implantation of the device under the skin of diabetic recipient (the inactive surface faces 
the skin and the active surface faces the fascia). 
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Figure 8  Islet modules of the β-Air device at surface density of 1000 IEQ/cm2. A: Before implantation; B: At explantation (after 90 d); C: Cross section of an islet 
module before integration into the β-Air device. 
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β-Air devices and refueled as such were cured from the 
disease for the entire study period (Evron, Barkai et al, 
unpublished data). Notably, no signs of oxygen toxicity 
to the islets were observed in devices refueled with 
oxygen at 304 and 456 Torr at surface densities of 2400 
or even at 3600 IEQ/cm2. Raising PO2 level to 570 Torr 
led to inconclusive observations, with part of the animals 
refueled at this level failing to achieve normoglycemia 
for more than a month. Therefore, we concluded that 
any PO2 < 550 Torr at the islet module-gas chamber 
interface is safe and maintains normoglycemia in 
implanted animals for long periods of time. These results 
also explain the toxic effects of oxygen observed at 
higher PO2 (> 680 Torr) reported by others[155,157,158].

The data collected with the rat-type β-Air device 
were used to design a larger, porcine-type device 
(Figure 9), which can maintain up to 180000 IEQ 
and is, theoretically, capable of supporting glycemic 
demands of diabetic animals of 25-30 kg at a dose of 
6000-7500 IEQ/kg. The porcine-type device (Figure 
9A and B) is a disc-shaped structure composed of 2 
opposing islet modules attached to a gas chamber. The 
islet modules are composed of a planar, 600-μm thick, 
alginate hydrogel encapsulating donor islets at surface 
density of 3600 IEQ/cm2 (approximately 11% v/v). 
They are separated from the gas chamber by a porous 
gas-permeable membrane. The gas chamber is a 
3-compartment structure. A central cavity is separated 

from 2 “reduced pressure chambers” by a pair of 
porous membranes. It is connected by polyurethane 
tubes to subcutaneous access ports (Figure 9D). 
These ports allow direct injection of oxygen-enriched 
gas mixture (95% oxygen at 1.4 ATM; 1011 Torr) into 
the central cavity. Oxygen is diffusing from the central 
cavity into the “reduce pressure chambers” and from 
these chambers into the islet module where it is being 
dissolved in the aqueous environment of the hydrogel. 
The role of the 2 silicone membrane pairs separating 
the central cavity from the side chambers and the 
side chambers from the islet module is to reduce the 
PO2 at the chamber-islet module boundary to < 550 
Torr. A mathematical model developed for this purpose 
(Lorber, Barkai et al, unpublished data) predicted that 
this level is never crossed during a standard refueling 
cycle and that refueling every 24 h ensures minimal 
PO2 at a critical value of 60 Torr, even at a depth of 
450 μm from this boundary (Figure 10). Porcine-type 
β-Air devices, equipped with xenogeneic rat islets, 
were implanted into 4 diabetic Sinclair mini swine 
with fasting blood glucose levels of > 350 mg/dL 
(Figure 11A). The device maintained close to normal 
blood glucose levels in the diabetic animals and was 
functional for 1 mo. The islet dose was 6700 ± 600 
IEQ/kg at the onset of the experiment and 5500 ± 
500 at time of explantation. When implantation time 
was extended to 90 d, BW increased by more than 

Figure 9  The design, makeup, and implantation site of the porcine-type β-Air device. A: Schematic cross section of a porcine-type β-Air device. The four 
dashed lines separating the central cavity from the “reduced pressure chambers” and the “reduced pressure chambers” from the islet modules are silicone rubber 
membranes; B: A surface image of an islet module; C: Cross section of an islet module; D: The macrochamber and connected access ports (each square is 1 cm × 1 
cm); E: Illustration of the device (including the subcutaneous access ports) implanted into a mini-swine recipient; F: X-ray image of an implanted device.
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60%, islet dose decreased to < 4000 IEQ/kg and, 
eventually, glycemic control was lost by day 75[112]. 
These results clearly demonstrate that under proper 
oxygenation regime, xenogeneic islets dosed at 
6000 IEQ/kg (half of the standard clinical dose) are 
curative[112]. 

Our mathematical model predicted that upon 
refueling with oxygen at pressure of >1000 Torr, the 
PO2 obtained at the “reduced pressure chamber” 
measured at the end of 24-h cycles (just before the 
next refueling), remains at > 100 Torr but never > 550 
Torr. Actual measurements were made in 3 devices 
implanted in diabetic pigs for 90 d and are illustrated 
in Figure 11B. At the central cavity, oxygen tension 
was between 400 and 450 Torr and in both “reduced 
pressure chambers” it was approximately 300 Torr. 
These values are consistent with our mathematical 
model and also proved that the stored oxygen in this 
device is sufficient to maintain the demands of a graft 
comprising > 80000 IEQ for > 24 h. 

A porcine-type β-Air device equipped with human 
donor islets was tested in first-in-human clinical 
trial[154]. Images from the surgical procedure used for 
implantation are shown in Figure 12. Although the dose 

of donor islets used was < 20% of the standard clinical 
dose (approximately 2100 IEQ/kg), efficacy was clearly 
demonstrated. Ten months after implantation, the daily 
insulin requirement was reduced by approximately 
15%, HbA1c decreased from 7.4% to 6.4%, and 
explanted islets stained for insulin and glucagon. The 
same device is now tested in a registered open labeled, 
pilot investigation clinical trial (NCT02064309).

In summary, the negative outcome of hypoxia on 
cultured or transplanted islets is a well-documented 
phenomenon. Shortage in oxygen supply must be 
resolved before long-term functional performance 
of macro-encapsulated islets graft is obtained. The 
studies described herein also set an upper level for 
long-term islet hyperoxia. Evidently, islets tolerate and 
are functional when directly exposed to PO2 < 300 
Torr, about 2 times the PO2 in atmospheric air. Using 
these PO2 levels, we were able to maintain isogeneic, 
allogeneic, and xenogeneic islet grafts in animal 
models and human diabetic recipients for extended 
periods of time. 

AUXILIARY TECHNOLOGIES 
Most of the BAP devices use physical encapsulation as 
a way to introduce donor islets into a recipient body. 
This approach is promising; yet, many unresolved 
obstacles still exist before a long-term functional 
BAP could be established. Auxiliary complementary 
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technologies, especially introduced during the period 
immediately after transplantation, are needed to 
create a “friendly environment” and prevent loss of 
transplanted islets. In the previous chapter we provided 
evidence that hyperoxic oxygen supply is beneficial to 
graft function. However, parameters such as chronic 
inflammation and biocompatibility, uncontrolled loss of 
viable cells, distance from the vascular bed to support 
readily exchange of glucose, insulin, and nutrients and 
supportive microenvironment are still considerable 
hurdles to get over in order to optimize graft function. 

Controlling inflammation
Implantation of a medical device is a 3-tier irritation 
process including: the surgical procedure; the che­
mistry and size of the implanted device; and the 
type and amount of contained cells. A tissue repair 
process is inevitable with any surgical procedure. 
It is aggravated by inserting an artificial device into 
the open wound and further intensified if the device 
includes cells. Inflammation during tissue repair 
process is a protective attempt of the immune system 
to remove the injurious stimuli and to initiate a healing 
process. It is a short-term process including vascular 
changes such as increased blood flow, vasodilation, 
infiltration of blood cells, and augmented permeability 
of plasma proteins. Inflammatory cytokines, pro­
staglandins, NO and ROS molecules that are locally 
produced by resident and imported immune cells are 
the major effectors of this response. 

Primary malfunction of transplanted islets accounts 
for the bulk of graft losses (for example, see[45,159,160]). 
The aforementioned encapsulation of islets in hydrogels, 
practiced for many years by many laboratories, is 
only a partial solution to this problem. Overgrowth of 
activated macrophages on just a fraction of implanted 
islet capsules negatively affects glucose responsive­
ness of the entire graft[161]. Therefore, strategies to 
reduce inflammation are expected to improve long-
term survival and proper operation of islet grafts. A 
pivotal approach in this direction involves using the 
protective mechanisms of immunomodulatory cells-
Sertoli and mesenchymal stem cells (MSCs). MSCs are 

described as an “injury drugstore” having antibacterial, 
immunomodulatory and trophic activities[162]. They 
produce a curtain of activities behind which tissue 
regeneration is operable. These range of activities led 
Arnold Caplan to suggest changing the “MSC” acronym 
to “medicinal signaling cells”[163]. Co-transplantation of 
islets and MSCs seeded on naked scaffold enhanced 
islet function[164,165], and similar advantage were de­
monstrated following co-encapsulation of islets and 
MSCs[166,167]. In our hands, rat islets co-encapsulated 
with marginal mass of pancreatic MSCs and cultured for 
2 wk demonstrated enhanced insulin secretion capacity 
and better survival rate (Barkai et al, unpublished 
data). Sertoli cells have similar effect on survival 
and functioning of islet graft in rodents[168,169] and co-
aggregates of core Sertoli cells and mantle β-cells 
promoted close-to-normal glycemic control in allogeneic 
recipients for > 100 d[170]. Sertoli cells were also 
able to enhance survival of islets graft in xenogeneic 
recipients[171-173]. Finally, co-encapsulated porcine islets 
and Sertoli cells were implanted into human subjects 
in a controversial Mexican clinical trial[8,174,175]. Some of 
the transplanted patients experienced reduction in their 
requirements for insulin therapy for up to 3 years.

Acute phase proteins, a group of circulating plasma 
proteins, rapidly respond to inflammation. Hepatic 
alpha-1 antitrypsin (AAT), a member of this class, is in 
abundant in the plasma and its level increases many-
folds in response to inflammation. AAT protects tissues 
from proteases released from inflammatory cells. It 
also exhibits protease-independent anti-inflammatory 
activities against these cells and against the soluble 
effectors they release[176,177]. Unlike immunosuppressive 
drugs, AAT helps the immune system to disting­
uish between desired responses against authentic 
threats and unwanted responses fueled by positive 
feedback loops[178], thereby transforming devastating 
inflammation into beneficial immune tolerance. AAT 
was shown to prolong survival of transplanted islets 
in rodents[179-181] and in non-human primates[182]. It 
also induces immune tolerance in animals receiving 
transplantation of multiple allografts[183]. We showed 
that, in diabetic animals implanted with β-Air devices, a 

Figure 12  Implantation of the β-Air device into a patient. A: Relative positions of the device and the access ports; B: Insertion of the device into the subcutis.
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week treatment with systemic AAT resulted in improved 
survival of islet cells (Barkai et al, unpublished data). 
Collectively, the findings suggest that proper control of 
inflammation may improve transplantation outcome of 
islets grafts. 

Controlling apoptosis
Cysteine-aspartic proteases (caspases) play a pivotal 
role in apoptosis. Cell-permeable apoptosis inhibitors 
pentapeptides (V5 and DHMEQ) were shown to improve 
transplantation outcomes when used throughout the islet 
isolation process[184,185]. Similar improvements in yield 
and quality of rat and porcine islets were obtained when 
the tetra-peptide z-DEVD-FMK (caspase 3 inhibitor) 
was included in the enzymatic blend used to digest the 
pancreas (Barkai et al, unpublished data). With all the 
promise, there is only one anti-apoptotic drug, an orally 
delivered pan-caspase inhibitor (Emricasan, Conatus 
Pharmaceuticals Inc., San Diego, CA) that is currently 
evaluated as islet transplantation adjuvant therapy in a 
phase Ⅰ/Ⅱ clinical study (NCT01653899).

A subgroup of G-protein coupled receptors (GPCR) 
is the B-family GPCR consisting 15 members[186], 
which bind relatively short peptides (20-50 amino 
acids long). A subset of this family of effectors includes 
incretin hormones (GLP-1, GIP), growth hormone 
releasing hormone (GHRH), and corticotropin-releasing 
hormone (CRH), all of which augment insulin secretion. 
GLP-1 was shown to inhibit apoptosis of pancreatic 
β-cells[187-189], to reduce inflammation[190], and is cli­
nically used to treat type 2 diabetes. Less known are 
GHRH and CRH. Both ligands as well as their cognate 
receptors are expressed in pancreatic β-cells of rat and 
human[191-194]. Upon binding, these ligands increases 
cell proliferation and decreases β-cells apoptotic rate. 
Both peptides also change the intracellular balance bet­
ween the active and inactive glucocorticoid molecules 
in favor of the inactive form, thereby increasing insulin 
sensitivity[191]. We tested one of these effectors in 
diabetic rats using the β-Air BAP. Devices loaded with 
islets pretreated with a GHRH agonist significantly 
enhanced graft function by improving glucose tolerance 
and β-cell insulin reserve[153].

Controlling angiogenesis
BAP macro-devices are usually inserted under the 
skin. This site is characterized by poor vascularization 
to begin with, and adding the enveloping capsule 
creates a large diffusion distance between the capillary 
bed and the graft. Inducing dense angiogenesis 
at close proximity to the graft capsule may create 
a more supportive environment. Such induction 
attempts included temporal placement of pro-an­
giogenic membrane or mesh[195,196], slow release of 
pro-angiogenic factors[197-200], and using both these 
strategies concurrently[201]. Enhanced angiogenesis 
that promoted long-term islet function occurred, but 
was validated only in rodent models. Also, from a 

regulatory perspective, the use of pure pro-angiogenic 
factors that may promote growth of malignant cells 
may be problematic. 

Many cells shed small (0.1-1 μm) fragments of their 
plasma membranes into the circulation. Platelet micro-
particles (PMP) derived from megakaryocytes are the 
most abundant circulating micro-particle subtype. 
PMP contain broad spectrum of bioactive molecules 
including a concentrated set of cytokines and signaling 
proteins. PMP are postulated to play a key role in 
angiogenesis[202-204] and to treat hypoxia (WO patent 
2006059329). Notably, PMP are regulated as a blood 
product. When freely mixed with the encapsulating 
hydrogel of β-Air devices and implanted for 3 wk 
in rats, PMP promoted denser and more mature 
angiogenesis of the capsule formed around the devices 
(Figure 13). 

Controlling the Intra-capsular microenvironment
Research has focused on the inflammatory and 
immune responses against the capsule polymers, 
whereas the research on the compatibility of the intra-
capsular milieu with the contained islets remains 
insufficient. Islets are very sensitive clumps of cells 
requiring nutritional factors, hormones, extracellular 
matrix (ECM), and a relative pliable microenvironment. 
Islets undergo a cellular transition immediately after 
encapsulation, during which islet cells are very sensitive 
to changes in the rigidity of the microenvironment 
and may die by a mechanotransduction process[205]. 
The exact threshold at which islet cells are sensitive 
to mechanotransduction is unknown. Therefore, 
cell lines were used to explore whether increase 
in alginate-concentration in microcapsules could 
induce mechanotransduction-mediated cell-death. 
The study showed that the concentration as well 
as the type of alginate were critical in activating 
mechanotransduction[206]. Alginates that are high in 
guluronic acid form stiffer gels and are associated with 
massive cell death as of a concentration of 2% while 
alginates containing more mannuronic acid exhibited 
optimal survival up to alginate concentrations of 
3.4%[206]. The contribution of micro-environmental 
rigidity to the enormous inter-lab variability in survival 
of encapsulated islets remains to be established and 
warrants further investigation and standardization. 

Engineering the intra-capsular milieu with ECM 
molecules may decrease the effects of mechanotrans­
duction. It has been suggested that integrins are the 
sensors of the cells for mechanical stress. A synthetic 
peptide RGD, mimicking the original tri-peptide part 
on the ECM molecule fibronectin is now being sold by 
Novamatrix (Sandvika, Norway). It binds and prevents 
clustering of integrins which form an essential step in 
mechanotranduction[207,208]. Some groups have added 
RGD or IKVAV (another integrin binding epitope) to 
the intracapsular environment and demonstrated 
improved viability and functionality under culture 
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conditions (for examples, see[209,210]) and in animal 
models[211]. However, ECM molecules may be necessary 
for additional processes contributing to prevention of 
anoikis and prolonging survival of islet cells as they are 
anchoring sites for many essential growth factors. To 
date, only little is known on the role played by the lack 
of specific ECM components on islet longevity[45]. 

The quality of the intra-capsular milieu is far more 
than a step towards survival of more functional cells. 
It also contributes to prevention of pro-inflammatory 
immune responses against the grafts. Human en­
capsulated islets regularly undergo 4 processes of cell 
death: Necrosis, apoptosis, autophagy and necroptosis 
(de Vos et al, unpublished data). In islets, all these cell-
death processes ended with the release of significant 
amounts of danger-associated molecular patterns 
(DAMPs), which even in small amount activate immune 
cells. Microcapsules retain part of the DAMPs, however 
significant amounts are still released. Adding NEC-1, 
an inhibitor of necroptosis reduced DAMP release and 
activation of immune cells and rescued larger part of 
the islet cells[212]. Combined, these data highlight that 

the adequacy of the intracapsular microenvironment 
should be taken into consideration. 

CONCLUSION
Encapsulation in permselective membrane is experi­
mentally used in diabetes for progressing from drug- and 
standard cell-based therapy to immunosuppressive-free 
cell-based therapy. Cell encapsulation is a mandatory 
but not a sufficient requirement for an efficient curing 
technology. Adequate oxygen supply to the grafted cells 
constitutes the second tier of mandatory requirements. 
Fulfilling these requirements should enhance the 
practicability of clinical islet transplantation; however, 
successful implementation of a cell-based cure also 
depends on auxiliary technologies, some of which are 
portrayed in this review.
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