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Abstract
Viruses have been shown to be responsible for 
10%-15% of cancer cases. Epstein-Barr virus (EBV) is 
the first virus to be associated with human malignancies. 
EBV can cause many cancers, including Burkett’s lym-
phoma, Hodgkin’s lymphoma, post-transplant lympho-
proliferative disorders, nasopharyngeal carcinoma and 
gastric cancer. Evidence shows that phosphoinositide 
3-kinase/protein kinase B (PI3K/Akt) plays a key role in 
EBV-induced malignancies. The main EBV oncoproteins 
latent membrane proteins (LMP) 1 and LMP2A can ac-
tivate the PI3K/Akt pathway, which, in turn, affects cell 
survival, apoptosis, proliferation and genomic instabil-
ity via  its downstream target proteins to cause cancer. 
It has also been demonstrated that the activation of 
the PI3K/Akt pathway can result in drug resistance to 
chemotherapy. Thus, the inhibition of this pathway 
can increase the therapeutic efficacy of EBV-associated 
cancers. For example, PI3K inhibitor Ly294002 has 
been shown to increase the effect of 5-fluorouracil in 
an EBV-associated gastric cancer cell line. At present, 
dual inhibitors of PI3K and its downstream target mam-
malian target of rapamycin have been used in clinical 
trials and may be included in treatment regimens for 
EBV-associated cancers. 
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INTRODUCTION
It is now evident that virus-induced cancers account for 
10%-15% of  all cancer cases[1,2]. Studies of  viruses as 
causes of  cancer have played an important role in the 
elucidation of  the mechanisms of  carcinogenesis, as indi-
cated by several Nobel Prizes being awarded to scientists 
in the field of  oncoviruses. The initial work to demon-
strate that viruses can induce cancer was done by Peyton 
Rous[3,4]. He identified Rous sarcoma virus as the cause of  
chicken sarcoma in 1911, and the discovery earned him 
the 1966 Nobel Prize. The human analogue of  the viral 
oncogene v-Src was found and named c-Src, which was the 
first human oncogene[5,6]. This work led to the awarding 
of  a Nobel Prize to John Michael Bishop and Harold E. 
Varmus in 1989. More recently, Harald zur Hausen iden-
tified human papillomavirus (HPV) as the cause of  cervi-
cal cancer (Nobel Prize, 2008)[7]. This discovery led to the 
invention of  the vaccines Gardasil and Cervarix which 
can effectively prevent HPV-associated cervical cancer[8,9]. 
The Epstein-Barr virus (EBV); [also called human her-
pesvirus 4 (HHV-4)] is the first virus identified (in 1964) 
to be associated with human cancers[1]. It belongs to the 
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B-lymphotropic γ-herpesvirus family with a genome con-
sisting of  172 kb of  linear double-stranded DNA[1,10,11]. 
EBV infects both epithelial and B-cells and, thus, can 
induce both epithelial cancers and lymphoma[12,13]. After 
EBV infection, there are two viral phases: lytic and la-
tent[14]. In its lytic phase, the virus replicates in epithelial 
cells, and, in its latent phase, it transforms B-cells. 

Cancer is characterized by the loss of  the balance 
between cell proliferation and apoptosis[15-17]. It has been 
demonstrated that EBV can increase cell proliferation 
and decrease apoptosis[18]. EBV has been shown to cause 
several B-cell lymphomas, including Burkitt’s lymphoma, 
Hodgkin’s lymphoma and post-transplant lymphoprolif-
erative disorders (PTLDs). This notion is demonstrated 
by the detection of  EBV virus in these cancers, the repli-
cation of  the virus and its ability to transform B-cells[18,19]. 
EBV is also closely associated with epithelial cancers. 
For example, EBV can cause nasopharyngeal carcinoma 
(NPC), a highly metastatic cancer[20]. The EBV latent 
membrane proteins (LMP) 1 and LMP2A are frequently 
detected in NPC[21]. LMP1 may also lead to metastasis of  
the cancer, as it has been demonstrated that LMP1 can 
cause epithelial-mesenchymal transition (EMT) via tran-
scription factor Snail[22]. Both LMP1 and Snail are cor-
related with NPC metastasis[22]. Overall, EBV has been 
shown to be responsible for about 10% of  gastric can-
cers worldwide[23-25]. However, the mechanisms for EBV-
induced gastric cancer are not clear.

Many EBV proteins are expressed in the latent phases 
and are potentially related to carcinogenesis. These pro-
teins include EBV nuclear antigen (EBNA)-1, -2, -3A, 
-3B, -3C and leader protein, and LMP-1, -2A and -2B[14]. 
However, the major identified oncoproteins in EBV are 
LMP1 and LMP2A[20,26]. These proteins can activate mul-
tiple signal pathways, such as the phosphoinositide 3-ki-
nase/protein kinase B (PI3K/Akt), the mitogen-activated 
protein kinase (MAPK) and the signal transducer and ac-
tivator of  transcription 3, all of  which are important for 
carcinogenesis[15,27,28]. LMP1 is considered as an analog of  
the tumor necrosis factor receptor 1, and it can transform 
human B-lymphocytes and rodent fibroblasts via activa-
tion of  multiple intracellular signal pathways through its 
two signaling domains, the carboxyl-terminal activating 
regions 1 and 2 (CTAR1 and CTAR2)[29]. Activated path-
ways include the nuclear factor κB (NF-κB), PI3K/Akt, 
Notch, MAPK and Jun N-terminal protein kinase (JNK) 
signaling pathways[27,30-32]. It has been demonstrated that 
point mutations in the C-terminal region of  the LMP1 
cytoplasmic domain can influence the transforming 
potential of  the EBV by reducing the ability of  LMP1 
to activate PI3K/Akt, NF-κB and AP1[29]. LMP1 is es-
sential for EBV-mediated B-cell transformation and is 
sufficient to transform several cell lines, such as rodent 
fibroblasts[33]. A recent study showed that LMP1 expres-
sion is regulated by C/EBP in addition to EBNA2[34]. 
This article will discuss how EBV-expressed proteins ac-
tivate the PI3K/Akt pathway to cause carcinogenesis in 
EBV-associated cancers. Although EBV oncogenes can 

affect many signal pathways, such as NF-κB, MAPK, and 
JNK, it seems that the PI3K/Akt pathway is the most 
important. In an LMP1-mediated transformation of  ro-
dent fibroblasts, inhibition of  PI3K activity by Ly294002 
induced apoptosis and inhibited cell growth, however, 
the NF-κB inhibitor BAY 11-7085 had no such effect[35]. 
Another study also showed that the PI3K/Akt pathway, 
but not the MAPK or NF-κB pathways, can account for 
the LMP-1-induced transformation[36].

ROLE OF PI3K/AKT SIGNAL PATHWAY 
IN CARCINOGENESIS AND METASTASIS
In 1985, Lewis Cantley initially discovered that PI3K 
plays an important role in cancer[37-41]. PI3K has now 
been extensively studied with investigation determin-
ing its role in carcinogenesis and the potential use of  its 
inhibitors in the treatment of  cancers[42-44]. This kinase 
phosphorylates the 3’ OH position of  phosphatidylino-
sitol 4,5-biphosphate (PIP2) and converts it to phospha-
tidylinositol 3,4,5-triphosphate (PIP3), leading to activa-
tion of  Akt[45,46], which causes a cascade of  cellular signal 
alterations via its downstream target proteins[39]. 

Many factors, such as insulin, insulin-like growth fac-
tor-1, vascular endothelial growth factor, and cytokines 
interleukin (IL)-6, IL-17 can increase the activity of  the 
PI3K/Akt pathway[6,47-52]. Mutations of  genes encoding 
key components in the pathway have been found to cause 
the pathway activation in many cancers[38,53]. Many cancer-
related viruses can also activate the PI3K/Akt pathway 
and rely on it for their transformations[38,39]. Such viral 
oncoproteins include polyoma virus middle-T antigen, 
Rous sarcoma virus oncoprotein v-Src, HPV oncopro-
teins E6, E7 and the human T-cell leukemia virus type 1 
oncoprotein Tax[54-57]. It has also been demonstrated that 
the PI3K/Akt pathway plays a critical role in the carcino-
genesis of  EBV viral oncoproteins[27].

Activated Akt, which is phosphorylated by PDK1, 
can affect many downstream targets[38,42]. The resulting 
biological effects include increased genomic instability, 
increased proliferation, decreased apoptosis and changed 
cytoskeleton. (Figure 1)[58]. Genomic instability is impor-
tant for the accumulation of  genetic mutations necessary 
for carcinogenesis[59,60]. Recently, it was reported that 
constitutively active (CA) Met tyrosine kinase (hepatocyte 
growth factor receptor) can induce chromosomal insta-
bility (CIN), as indicated by increased centrosome counts, 
multinucleated cells and micronuclei formation[61-63]. 
While CA-Met increased both phosphorylated Akt and 
phosphorylated Erk, only phosphorylated Akt is critical 
in CA-Met-induced CIN. The PI3K inhibitor Ly294002, 
PTEN (an inhibitor of  PI3K), and siRNA against Akt 
all abolished CA-met mediated CIN[62]. It has also been 
demonstrated that phosphorylation of  Akt can block 
checkpoint kinase 1 (Chk1), which controls cell cycle 
progression and maintains genomic stability[61,63,64]. The 
activation of  Chk1 will phosphorylate cdc25A and induce 
the transient arrest of  cells in G1 and S phase before 
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the onset of  mitosis[65]. The inhibition of  Chk1 has been 
shown to increase double-strand DNA breaks[66].

The activation of  Akt can increase cell proliferation 
and cell size by accelerating the cell cycle and cell metabo-
lism. Akt can phosphorylate glycogen synthase kinase 
3β (GSK3β) and, thus, deactivate it, leading to increased 
cyclin D1 and Myc[67]. Myc is an oncoprotein that upregu-
lates cyclin-dependent kinase 4 (CDK4)[68]. Additionally, 
the Akt-mediated inhibition of  the forkhead protein re-
sults in the downregulation of  the cell cycle proteins p27 
and p21[69], thus promoting cell cycle progression[70]. Both 
p27 and p21 are G1-checkpoint CDK inhibitors which 
can promote G1/S transition and thus, accelerate cell cy-
cle[17,71,72]. Another target activated by the activation of  Akt 
is mTORC1, which plays an important role in the carci-
nogenesis of  many cancers, including Burkitt’s lymphoma 
and NPC[73-75]. Phosphorylated Akt blocks TSC1 and 2 
(tuberous sclerosis complex 1 and 2) and, thus, activates 
Rheb (Ras homolog enriched in brain), thereby activating 
the mTOC1 complex[38]. The mTORC1 is composed of  
mammalian target of  rapamycin (mTOR), regulatory as-
sociated protein of  mTOR (Raptor), mammalian LST8/
G-protein β-subunit like protein (mLST8/GβL), PRAS40 
and Deptor[73]. The activation of  mTORC1 can increase 
protein synthesis, cell growth and cell metabolism via its 
downstream targets[76-78]. The mTORC1 increases protein 
translation by activating the 70 kDa ribosomal S6 kinase 
(S6K), and inhibiting the elongation-initiation factor 4E 
binding protein[79,80]. A recent study using phosphoprome-
otic technique and new inhibitor Torin1 revealed many 
more proteins regulated by mTORC1 including protein 
Grb 10 which feedback inhibits PI3K[76]. Further study 
may elucidate the roles of  these proteins in mTORC1 me-
diated carcinogenesis.

The activation of  Akt can decrease apoptosis by de-
creasing Fas ligand transcription via blocking the forkhead 
protein and thus affecting FasL-mediated apoptosis[58]. 
Akt decreases the pro-apoptotic proteins BAD and BAX 

and increases anti-apoptotic Bcl-xl, Bcl-2 and Mcl1 to 
promote cell survival[81]. Akt also inhibits the p53 tumor-
suppressor, which can cause apoptosis under stimulation 
of  DNA damage or environmental factors[82,83]. 

Akt can also regulate cytoskeleton, which is important 
for cell mobility and the metastasis of  cancers[84-86]. The 
p70 S6K, a downstream target of  mTORC1, has been 
demonstrated to promote actin cytoskeleton change to 
increase cancer cell migration[87]. In addition, PI3K can 
cause the change of  cytoskeleton independent of  Akt. 
It can activate Rac1, which also causes reorganization of  
actin cytoskeleton[88-90].

INCREASED PI3K/AKT PATHWAY IN 
EBV-INDUCED CANCERS
Examination of  activated PI3K in EBV-associated can-
cers provides evidence for the critical role of  the PI3K/
Akt pathway in the carcinogenesis of  EBV. Adams et al[91] 
(2009) examined eight cases of  post-transplant Hodgkin 
lymphoma and found that all of  them expressed PI3K. 
Analyses of  NPC biopsy samples using microarray 
and affymetrix assays showed PI3K mediated LMP2A-
induced expression of  the carcinogenic UDP-glucose 
dehydrogenase (UGDH) gene[92,93]. The overexpression 
of  LMP2A in HEK293 cells increased the expression 
of  UGDH which was abolished by the inhibition of  the 
PI3K/Akt pathway[92]. Proteomic analyses of  the EBV-
infected gastric carcinoma cell line NU-GC-3 [EBV (+)] 
showed that EBV infection upregulated the phosphory-
lated Akt[94]. The fact that the increased phosphorylated 
HSP27 was reduced by treatment with the PI3K inhibi-
tors Ly294002 and wortmannin suggests that EBV infec-
tion can upregulate the phosphorylation of  HSP27 via 
the PI3K/Akt pathway. In PTLDs, protein microarrays 
of  samples from patients showed that PI3K, mTOR and 
NF-κB were also dysregulated[95]. 

The activated PI3K/Akt pathway in EBV-associated 
cancers have been demonstrated to be mediated by LMP1 
and LMP2A. A study showed that LMP1 expression in 
EBV-infected B-cells induced the production of  cellular 
IL-10, an autocrine growth factor for B cell lymphomas, 
in a PI3K-dependent manner[96]. In these cell lines, PI3K/
Akt pathway is activated and the LMP1-mediated IL-10 
production is suppressed by mTORC1 inhibitor rapa-
mycin. It has also been demonstrated that expression of  
dominant negative forms of  LMP1 in EBV-immortalized 
monocytic and lymphocytic cell lines resulted in decreased 
Akt and NF-κB activities with increased apoptosis[97]. At 
present, six identified sequence variants of  LMP1 includ-
ing Alaskan, China 1, China 2, Med+, Med-, and NC have 
been shown to induce the PI3K/Akt signaling pathway 
to similar extents after being transformed into Rat-1 fi-
broblasts, HFK cells and BJAB cells[98]. EBV LMP2A has 
also been shown to activate PI3K in epithelial cells and to 
affect differentiation[26]. In epithelial cells, the overexpres-
sion of  LMP2A of  Rhesus lymphocryptovirus (LCV), 
which is highly homologous to EBV LMP2A activated 
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Figure 1  Epstein-Barr virus activates the phosphoinositide 3-kinase/pro-
tein kinase B pathway to transform cells. The Epstein-Barr virus latent pro-
teins latent membrane protein (LMP)1 and LMP2A activate the phosphoinositide 
3-kinase/protein kinase B (PI3K/Akt) pathway, which promotes carcinogenesis 
by increasing cell proliferation, genomic instability and cytoskeleton changes 
and by decreasing apoptosis.
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the PI3K/Akt pathway, indicated by Akt activation and 
GSK3β inactivation[26]. LMP2A was shown to act as a 
B-cell receptor (BCR) signal, which results in B cells exit-
ing the bone marrow and decreases B cell apoptosis in the 
periphery via the activation of  PI3K[99].

EBV CAUSES CANCER VIA THE 
ACTIVATION OF THE PI3K/AKT 
PATHWAY
There are many studies demonstrating that EBV can af-
fect the PI3K/Akt pathway to cause cancers. EBV activa-
tion of  the PI3K/Akt pathway can increase carcinogen-
esis via multiple downstream targets, including increased 
genomic instability, cell proliferation, decreased apoptosis 
and increased cytoskeleton dynamics.

EBV increased genomic instability through the 
activation of the PI3K/Akt pathway
Genomic stability is important to avoid carcinogenesis 
and is maintained by the DNA repair system[16,59,60,100-102]. 
It has been demonstrated that genomic instability plays 
an important role in EBV-induced cancers[103-107]. In hu-
man epithelial cells, LMP1 represses DNA repair via the 
CTAR1-mediated activation of  PI3K/Akt pathway[33]. 
The activated PI3K/Akt pathway resulted in inactiva-
tion of  FOXO3a, which plays an important role in DNA 
repair via DNA damage-binding protein 1[33]. The critical 
role of  FOXO3a was further demonstrated by the fact 
that constitutive expression of  an active FOXO3a abol-
ished LMP1-mediated repression of  DNA repair[33]. Fur-
thermore, a recent study has shown that phosphorylated 
Akt can block Chk1 to affect genomic instability[62]. This 
effect may be involved in LMP-1-induced genomic insta-
bility and warrants further study.

EBV increased cell proliferation through the activation 
of the PI3K/Akt pathway
In EBV-immortalized B-cells, also known as lymphoblas-
toid cell lines, the activation of  the PI3K/Akt pathway 
can promote E2F transcriptional activity to affect the 
cell cycle and increase proliferation[108]. Inhibition of  the 
PI3K by Ly294002 in these cells reduced both cyclin D2 
and cyclin D3, which are two key regulators of  cell cycle 
and increased p27, a cyclin-dependent kinase inhibitor[108]. 
CTAR1 of  LMP1 has been identified to mediate the acti-
vation of  PI3K signaling and associated induction of  cell 
cycle markers in G1/S transition[30]. This PI3K activating 
effect was mapped to the TRAF-binding domain within 
CTAR1. In Rat-1 fibroblast cells, PI3K/Akt has been 
demonstrated to be a key factor in LMP1 mediated ro-
dent fibroblast transformation[35]. Inhibition of  the path-
way abolished LMP1-induced cell growth. CTAR1 but 
not CTAR2 is critical for the activation of  the PI3K/Akt 
pathway and associated cell growth. In human fibroblasts, 
LMP1 also caused phosphoryaltion of  Akt and decreased 
levels of  p27 and thus increased cell proliferation[35]. A 

study showed that, in an EBV-positive NPC cell line, 
LMP1 enhanced cell growth and migration through the 
activation of  PI3K/Akt and NF-κB signaling which was 
reduced by the inhibition of  PI3K, Akt, and NF-κB[109]. 
However, it has been shown that constitutive activation 
of  Akt alone is not sufficient to promote cell growth; 
NF-κB activation is also required by LMP1 for its effect. 
Activation of  PI3K/Akt and NF-κB has also been dem-
onstrated to increase glucose import which is necessary 
for increased cell proliferation[110].

EBV decreased apoptosis through the activation of the 
PI3K/Akt pathway
Several studies have shown that LMP2A can decrease 
apoptosis via the activation of  the PI3K/Akt pathway. In 
LMP2A transgenic mice, peripheral BCR-negative B-cells 
have CA Ras, an upstream protein of  PI3K with corre-
lated increased expression of  Bcl-xL, a dowm-stream tar-
get protein of  PI3K[111]. The specific inhibitors of  PI3K 
and Akt can cause apoptosis of  these cells, suggesting 
the important role of  the PI3K/Akt in LMP2A medi-
ated B-cell survival. In an EBV-associated gastric cancer 
cell line, LMP2A activated PI3K/Akt pathway has been 
associated with the resistance to apoptosis induced by 
chemotherapy[112]. In PTLD-derived EBV+ B cell lines, 
LMP2A increased caspase inhibitor XIAP to block apop-
tosis via the activation of  PI3K/Akt pathway[113]. In NPC 
cell lines, expression of  LMP1 activated the PI3K/Akt 
pathway and its downstream Bcl-2, which in turn sup-
pressed the pro-apoptotic activity of  prostate apoptosis 
response-4[114]. These studies provide sufficient evidence 
that PI3K/Akt is a key pathway in LMP1 and LMP2A-
mediated decreased apoptosis. 

EBV increased cytoskeleton dynamics through the 
activation of the PI3K/Akt pathway
The cytoskeleton plays an important role in carcinogenesis 
through the control of  cell mobility[84-86], and several can-
cer therapies have been developed targeting the proteins 
regulating the cytoskeleton[115,116]. The PI3K/Akt pathway 
has been shown to play a key role in LMP1-induced actin 
stress-fiber formation[36]. This pathway may be also impor-
tant in microtubule activity. A study has shown that EBV 
LMP1 can activate cdc2, which, in turn, phosphorylates 
Op18/stathmin, a regulator of  microtubules[117]. It is pos-
sible that this process is mediated by the PI3K/Akt path-
way, as Akt has been shown to increase cdc2 activity[118].

INHIBITION OF PI3K FOR THE 
TREATMENT OF EBV-ASSOCIATED 
CANCERS
The PI3K/Akt pathway is not only important in carci-
nogenesis and maintenance of  cancer but is important 
in metastasis and drug resistance to chemotherapy[119-121]. 
For example, insulin can increase drug resistance via this 
pathway[47,122-124]. Many studies have been performed to 
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test PI3K/Akt inhibitors and their utilization in com-
bination with chemotherapeutic agents[125-131]. In EBV-
associated cancer, the PI3K/Akt pathway is increased, as 
described above. Thus, the inhibition of  the pathway may 
be effective for the treatment of  these cancers. Indeed, 
some preliminary studies have shown that inhibiting the 
pathway increased the effect of  chemotherapy on EBV-
associated cancers.

In an EBV-positive gastric cancer cell line, SNU-719, 
Ly294002 was tested in combination with 5-fluoroura-
cil (5-FU), a common chemotherapeutic agent[112,132]. In 
these cells, the use of  5-FU alone increased phosphory-
lation levels of  Akt and NF-κB. The increased activity 
of  the PI3K/Akt is known to cause drug resistance to 
chemotherapy[120,121]. By contract, the sequential treatment 
of  5-FU and Ly294002 decreased their levels, as well as 
bcl-2 expression, and increased the sensitivity of  these 
cancer cells to 5-FU. The therapeutic efficacy of  the 
mTOR inhibitor rapamycin has been demonstrated; it de-
creased tumor growth and metastasis in a mouse model 
of  EBV-associated Burkitt’s lymphoma established by 
over-expression of  both LMP2A and myc[74]. Ly294002 
and Akt inhibitor II also induced the apoptosis of  EBV-
associated NK/T-cell lymphoma cell lines Hank-1 and 
NK-YS, which have high levels of  activated PI3K[133]. 
NPC is usually treated by radiotherapy, and studies have 
shown that inhibition of  the PI3K/Akt/mTOR pathway 
can increase the sensitivity of  cancer cells to radiothera-
py[131]. Thus, it may be useful to apply PI3K inhibitors in 
the treatment of  EBV-associated NPC. 

At present, dual inhibitors of  PI3K and mTOR in-
cluding BEZ235, PI-103, SF1126 and XL756 have been 
developed and some of  them are in clinical trials to treat 
cancers with activated PI3K[38,134,135]. These inhibitors may 
be ideal compounds to be added into treatment regimens 
for EBV-associated cancers. Compounds from traditional 
medicine have been studied to inhibit signaling pathways; 
specifically, curcumin and flavonoids can inhibit either 
the PI3K/Akt pathway or its downstream targets cyclo-
oxygenase-2 and NF-κB[136-142]. These compounds could 
also be tested for their effects on EBV-associated cancers.

CONCLUSION
The PI3K/Akt pathway can be activated by the EBV 
virus proteins LMP1 and LMP-2A and plays an impor-
tant role in the carcinogenesis of  EBV-associated can-
cers. This pathway is also known to be involved in drug 
resistance to chemotherapy. Thus, the inhibition of  the 
pathway may have therapeutic implications for EBV-
associated cancers. Indeed, some inhibitors of  the PI3K/
Akt pathway have been tested in EBV-associated cancer 
cell lines. At present, dual inhibitors of  PI3K and mTOR 
have been developed and may be useful in the treatment 
of  EBV-associated cancers. 
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