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Abstract
In view of the advancement in the understanding about the most diverse types of 
cancer and consequently a relentless search for a cure and increased survival rates 
of cancer patients, finding a therapy that is able to combat the mechanism of 
aggression of this disease is extremely important. Thus, oncolytic viruses (OVs) 
have demonstrated great benefits in the treatment of cancer because it mediates 
antitumor effects in several ways. Viruses can be used to infect cancer cells, 
especially over normal cells, to present tumor-associated antigens, to activate 
“danger signals” that generate a less immune-tolerant tumor microenvironment, 
and to serve transduction vehicles for expression of inflammatory and immuno-
modulatory cytokines. The success of therapies using OVs was initially 
demonstrated by the use of the genetically modified herpes virus, talimogene 
laherparepvec, for the treatment of melanoma. At this time, several OVs are being 
studied as a potential treatment for cancer in clinical trials. However, it is 
necessary to be aware of the safety and possible adverse effects of this therapy; 
after all, an effective treatment for cancer should promote regression, attack the 
tumor, and in the meantime induce minimal systemic repercussions. In this 
manuscript, we will present a current review of the mechanism of action of OVs, 
main clinical uses, updates, and future perspectives on this treatment.

Key Words: Oncolytic viruses; Antitumor response; Tumor lysis; Tumor cells; Mechanism; 
Therapy

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.5501/wjv.v10.i5.229
http://orcid.org/0000-0002-9463-8114
http://orcid.org/0000-0002-9463-8114
http://orcid.org/0000-0002-6445-9318
http://orcid.org/0000-0002-6445-9318
http://orcid.org/0000-0001-7078-9789
http://orcid.org/0000-0001-7078-9789
http://orcid.org/0000-0003-1650-5807
http://orcid.org/0000-0003-1650-5807
http://orcid.org/0000-0003-1650-5807
http://orcid.org/0000-0002-9474-1816
http://orcid.org/0000-0002-9474-1816
http://orcid.org/0000-0002-8877-892X
http://orcid.org/0000-0002-8877-892X
http://orcid.org/0000-0002-5135-7785
http://orcid.org/0000-0002-5135-7785
http://orcid.org/0000-0002-5135-7785
http://orcid.org/0000-0002-5140-2996
http://orcid.org/0000-0002-5140-2996
http://orcid.org/0000-0002-5680-2753
http://orcid.org/0000-0002-5680-2753
http://orcid.org/0000-0002-5680-2753
mailto:freiremelo@yahoo.com.br


Santos Apolonio J et al. Oncolytic virus therapy in cancer

WJV https://www.wjgnet.com 230 September 25, 2021 Volume 10 Issue 5

on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Invited 
manuscript

Specialty type: Oncology

Country/Territory of origin: Brazil

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): 0 
Grade C (Good): C 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: March 10, 2021 
Peer-review started: March 10, 2021 
First decision: May 5, 2021 
Revised: May 19, 2021 
Accepted: August 9, 2021 
Article in press: August 9, 2021 
Published online: September 25, 
2021

P-Reviewer: Chung YH 
S-Editor: Wang JL 
L-Editor: Filipodia 
P-Editor: Xing YX

Core Tip: Oncolytic viruses are organisms able to infect and lyse the tumor cells 
beyond stimulating the immune system to combat the disease. The clinical use of 
oncolytic viruses has shown to have positive results in the treatment of some types of 
cancers, contributing to reducing the tumor. Furthermore, the combined use of these 
viruses and other antitumor therapies have contributed to better prognosis in the 
patient’s clinical condition.
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URL: https://www.wjgnet.com/2220-3249/full/v10/i5/229.htm
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INTRODUCTION
The first theories about the possible use of viruses to combat tumor cells date from the 
early 20th century with the description in 1904 of a woman with acute leukemia who 
presented remission of the clinical picture and a patient with cervical cancer in 1912 
that demonstrated extensive tumor necrosis, both after a viral infection[1]. Thereafter, 
between 1950 and 1980, influenced by the possibility of developing a therapy for 
cancer, many studies were performed with different types of wild viruses aiming at an 
oncolytic action; however, the goal was not achieved due to the non-existence of 
necessary tools to control the viral pathogenesis and direct the virus to specific targets
[2]. Viruses can be used to infect cancer cells, specifically over normal cells, to present 
tumor-associated antigens, to activate “danger signals” that generate a less immune-
tolerant tumor microenvironment, and to serve transduction vehicles for expression of 
inflammatory and immunomodulatory cytokines[3]. Currently, in order to overcome 
these obstacles, the updates in the field of genetics seek to increase the specificity and 
efficacy of some viruses in infecting the abnormal cells through mechanisms such as 
gene deletion and the combined use of viruses and immune checkpoint inhibitors 
(ICIs)[4].

The oncolytic viruses (OVs) are organisms able to identify, infect, and lyse different 
cells in the tumor environment, aiming to stabilize and decrease the tumor 
progression. They can present a natural tropism to the cancer cells or be oriented 
genetically to identify specific targets[5]. Several OVs are being studied as a potential 
treatment for cancer in clinical trials[6]. Moreover, the OVs are capable of contributing 
to the stimulation of the immune system against the tumor cells, influencing the 
development of an antitumor response[7].

It is known that there are several evasion mechanisms in the tumor environment 
that contribute to the downregulation of the immune system, positively influencing 
the stability and progression of the disease even in immunocompetent patients[8]. 
Antigen presenting cells can be prevented from presenting tumor antigens to the T 
cells correctly, which contributes to the non-activation or discouragement of these cells
[9]. Moreover, certain types of tumors can promote an abnormal stimulation of 
immune checkpoint receptors in T cells, like the cytotoxic T lymphocyte-associated 
antigen 4 and the programmed cell death protein 1/programmed death ligand 1(PD-
L1), both related to the negative regulation of the inflammatory response and immune 
system homeostasis contributing to apoptosis and inhibition of proliferation of T cells
[10]. In addition, the excess of tumor-associated macrophages, main lymphocytes 
regarding the inflammatory response against the tumor, are also an important 
mechanism of immune evasion since they have some similar functions and features to 
type M2 macrophages, which are responsible for tissue repair and immune response 
regulation. Thus, the abnormal rise of tumor-associated macrophages has been related 
to the downregulation of inflammation and increase of tumor growth rates[11].

Therefore, the clinical use of OVs emerges as an alternative to modifying the tumor 
environment from a state of immune desert caused by the evasion mechanisms that 
contribute to tumor progression, to an inflamed state, where the immune system is 
able to kill the abnormal cells[12]. In addition, the viruses present different 
mechanisms that would lead the infected cells to a cell lysis process, contributing to 
tumor cell death and increasing the efficacy of the immunotherapy[4]. This review will 
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encompass the viral mechanisms responsible for the oncolytic action of OVs, the 
clinical use of these viruses in certain tumors, and the future perspectives about their 
use.

MECHANISM
General mechanism
OVs are able to infect abnormal cells through specific targets, such as nuclear 
transcription factors and among them human telomerase reverse transcriptase, 
prostate specific antigen, cyclooxygenase-2, osteocalcin, and surface markers as 
prostate-specific membrane antigen, folate receptor, CD20, endothelial growth factor 
receptor, and Her2/neu, which are substances produced by the tumor cells[5]. 
Furthermore, the deletion of pathogenic viral genes in the laboratory in order to 
increase the selectivity to the tumor cells and decrease the aggressiveness of the OVs to 
normal tissues is also possible[13].

The administration route of OVs is intrinsically related to the type of tumor to be 
treated, given that the virus pathway directly influences the effectiveness of the 
therapy due to the virus availability on-site and the natural barrier of the organism of 
combat to antigens. The distribution can occur via intraperitoneal, intrathecal, 
subcutaneous, intratumoral, which provides greater control of viral quantity in the 
tumor environment and less adverse effects, and intravenous, which is related to the 
treatment of distant metastases[14].

Regarding the mechanisms of immune evasion by the tumor, the cancer cells can 
present certain alterations in the expression and activation of some mechanisms, such 
as protein kinase R and interferon 1 signaling pathway, which interferes in the 
response to viral infections, programmed apoptosis, and maturation of inflammatory 
cells. The modifications in the antiviral response, allied to viral factors capable of 
preventing apoptosis, allow OVs to survive longer in cancer cells and consequently to 
conclude the life cycle and maturation to the lytic phase[15].

The presence of viruses in the human organism stimulates the recognition of 
different immune signs related to the virus structure, such as viral proteins, RNA, 
DNA, and viral capsid, the pathogen-associated molecular patterns (PAMPs)[16]. 
Dendritic cells, upon recognition of the PAMPs through toll-like receptors (TLRs), 
which are pattern recognition receptors, stimulate production of inflammatory 
molecules with antiviral characteristics, like the type 1 interferons, tumor necrosis 
factor alpha (TNF-alpha) and cytokines such as interleukin 2 (IL-2), important 
mechanisms of recruitment of immune cells, and maintenance of the inflammatory 
environment[17].

TNF-alpha is related to response to the viral infection, positively regulating the 
expression of class 1 major histocompatibility complex in the cell membrane and 
positively influencing the action of caspase enzyme and cell apoptosis on some tumors
[18]. This interferon is capable of stimulating cancer cell death through mechanisms 
that contribute to necrosis and apoptosis, generating thrombotic events through its 
antiangiogenic effects, which can lead to the destruction of some blood vessels 
responsible for the blood supply of the tumor[19]. TNF-alpha is also related to the 
stimulation of T helper cells type 1 (Th1) response, increase of the cytotoxicity of 
natural killer cells, and maturation of antigens presenting cells[18].

Studies have shown that IL-2 is related to the stimulation of cytotoxic lymphocytes 
and activation of T cell response, contributing to maturation and expansion of CD8+ T 
cells (TCD8) and natural killer cells, along with positive regulation of CD4+ T cells 
(TCD4). IL-2 is also capable of regulating T regulatory cell action and homeostasis, 
creating an inflammatory environment favorable for combating the tumor[20]. 
Furthermore, the Th1 inflammatory profile was also related to the decrease of T 
regulatory cells, increased rates of TCD4 and TCD8 effector cells, stimulation and 
differentiation of T lymphocytes as well as the maturation of dendritic cells, which 
contributes to the reversal of the immunosuppressive state of the tumor and promotes 
an inflammatory response[21].

In addition to the damage caused by the inflammatory response, the viral action 
inside the cell is also an important factor in the lysis and death of the aberrant cells. 
The presence of OVs could stimulate some dysfunction of organelles, such as the 
endoplasmic reticulum, mitochondria, or lysosome, compromising the normal cellular 
function. Moreover, the virus can stimulate oxidative stress through the production of 
reactive nitrogen species and endoplasmic reticulum stress, which is related to an 
increase of intracellular calcium levels[17], contributing to the stabilization and 
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decrease of the tumor.
The combined use of cell checkpoint blockers and OVs is an important mechanism 

to increase viral survival rates in the human organism, given that it contributes to the 
stimulation of an inflammatory response against the tumor. Through negative 
regulation of PD-L1, the tumor can circumvent the immune system, avoiding the 
maturation of T cells. In this way, PD-L1 inhibition was capable of stimulating a 
response with a Th1 profile, contributing to the appearance of TCD8 cells against the 
tumors and stimulating natural killer cell action[22]. Furthermore, studies have 
demonstrated that the administration of the OVs and monoclonal antibodies that 
inhibit the action of cytotoxic T lymphocyte-associated antigen 4 contributed to 
enhancing the effectiveness of immunotherapy[21].

The aforementioned mechanisms contribute to different types of elimination of the 
tumor cells, such as autophagic cell death, apoptosis, pyroptosis, and necrosis, leading 
to the production of immune signs related to the cell damage: damage-associated 
molecular patterns (DAMPs), like high mobility group box 1 protein and ATP. The 
DAMPs are important elements in the stimulation of the dendritic cell maturation 
process and contribute to the presentation of tumor-associated antigens to the immune 
cells through the cross-presentation between DAMPs and tumor-associated antigens, 
which leads to the perpetuation of the inflammatory response process[23]. Therefore, 
cellular lysis allows the liberation of the viruses in the extracellular environment and 
subsequent infection of other tumor cells, creating a chain reaction of combat to the 
tumor[16]. Besides that, the cell death contributes to the release of tumor antigens 
liable to be identified by immune cells in the inflammatory environment, stimulating a 
response against tumor cells, even in the uninfected ones, by the OVs[15].

The main mechanisms of action of OVs are represented in (Figure 1).

OVs
Adenovirus: The adenoviruses are non-enveloped organisms with double-stranded 
linear DNA and an icosahedral capsid with three main proteins, hexon, penton base, 
and fiber, which when identified by the immune system contribute to the emergence 
of an antiviral response. There are more than 80 human types of adenoviruses that 
belong to the Adenoviridae family[24]. These viruses have a high tropism for different 
tissues of the organism, including ocular, respiratory, enteric, renal, and lymphoid and 
are able to use several receptors, such as human coxsackie-adenovirus receptor, CD86, 
CD46, and CD80 to enter the host cells[25]. Moreover, due to its capacity of serving as 
a viral vector[24], allied to their chemical and thermal stability outside the cell, various 
mechanisms of cellular entry, and the great knowledge about their biology, the 
adenoviruses have been used for the development of different immune therapies[26].

The viral replication process starts inside the cellular nucleus, inducing the 
expression and liberation of some proteins in the cytoplasm such as E1a and E1b, 
which are related to the stimulation of the autophagy process. This mechanism 
induces the production of some autophagosomes that can later merge with lysosomes 
resulting in the death of organelles or even the full cell[27]. Furthermore, research has 
shown that in tumor cells the expression of E1a can be related to the stimulation of the 
production of autophagic complexes, and E1b possibly supports the potentiation of 
action of these complexes, both contributing to the stabilization and decrease of the 
tumor[28].

When identifying and responding to different proteins of the viral capsid of adenov-
iruses, the human organism starts producing several inflammatory cytokines, such as 
IL-12 and TNF-alpha[29], which are related to the stimulation of cytotoxic cells like 
natural killer cells and TCD8, besides contribution in the maturation of immune cells 
and against the tumor. The type 5 Ad is commonly used for oncolytic therapy, since it 
can be detected by TLRs in the cellular membrane (TLR-2) or inside the cell (TLR-9) 
teasing the stimulation of different mechanisms in order to create a Th1 profile inflam-
matory response[29]. Moreover, the Adenoviruses can activate other pathways of the 
immune system, such as the complement system stimulating the opsonization 
processes, increasing the migration rates of inflammatory cells and production of 
inflammatory cytokines[23], which contributes to destroying infected cells.

Finally, the cellular stress caused by the viral infection and the inflammatory 
process lead to tumor cell death through necrosis, autophagy, or apoptosis and further 
liberation of DAMPs or PAMPs in the inflammatory environment, stimulating the 
maturation and migration of inflammatory cells as well as the production of cytokines. 
Furthermore, in addition to the direct tumor cell killing, the adenoviruses are capable 
of initiating the formation of an antitumor immune memory that contributes to the 
combat in metastatic sites[25]. Table 1 shows some genetic modifications to improve 
the adenoviruses oncolytic action.
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Table 1 Genetic modifications in the adenovirus

Ref. Virus Updates Aim

Rojas et al
[219]

COVIR -7/-15 Insertion of E2F-binding sites in 
the gene E1A

Specific targeting to the tumor cells, which express E2F and increase viral 
replication rate and antitumor action

Sarkar et al
[220]

CTV-m 7 Insertion of the transgene MDA-
7/IL-24

Expression of the protein MDA-7/IL-24 increases the cytotoxic action in the 
tumor sites and lyse the metastatic cells. The studies have shown greater 
effectiveness in the therapy of prostate cancer

Sarkar et al
[220]

tCCN1 -CTV - m 7 Replacement of E1A by tCCN1 Specific targeting and cytotoxicity against the tumor cells, which express the 
promoter tCCN1 in prostate cancer

Choi et al
[221]

Ads armed with 
inhibitors of tumoral 
angiogenesis

Incorporation of the gene FP3 Increase of the antiangiogenic capacity, which decreases the vascular 
endothelial growth factor production and suppresses the rate of tumor growth

Lucas et al
[222]

Ad5 armed with the 
peptide CKS17

Replacement of HVR5 by the 
peptide CKS17

Specific target to the TGFBRII in the liver cancer cells, increasing the viral 
cytotoxic action and decreasing the liver sequestration

Garofalo et 
al[223]

AdV-D24-ICOSL-
CD40L

Insertion of D24, ICOSL and 
CD40 genes in the chimeric 
virus, AdV-D24, serotype 5/3

Selectivity to infect the cancer cells through DSG-2 receptor and stimulation of 
the immune system by ICOSL and ICOS, both contributing to the immunogenic 
cell death in melanoma

Vera et al
[224]

VCN-01 Selectivity to the pRB pathway 
and ability to express 
hyaluronidase

Specific viral replication, decreasing the side effects and degradation of the 
extracellular matrix by the enzyme hyaluronidase in solid tumors

Yang et al
[225]

Ad5/3-CXCR4-TIMP2 Replacing Ad5 knob with Ad3 
knob and incorporating the gene 
TIMP2

Selective replication in the cancer cells, which reduces the action over the 
normal cells and the expression of inhibitors of metalloproteinases, contributing 
to the degradation and remodeling of the extracellular matrix, preventing tumor 
growth and metastasis

Ads: Adenoviruses; CD40L: CD40 ligand; DSG-2: Desmoglein 2; FP3: Farnesylated protein 3; HVR5: Hypervariable region 5; ICOSL: Inducible co-
stimulator ligand; IL-24: Interleukin 24; MDA-7: Melanoma differentiation-associated gene-7; pRB: Retinoblastoma protein; tCCN1: Truncated cellular 
communication network factor 1; TGFBRII: Transforming growth factor-beta receptor II; TIMP2: Tissue inhibitor of metalloproteinases 2.

Protoparvovirus: The Protoparvoviruses are single-stranded DNA, non-enveloped 
viruses that belong to the Parvoviridae family. They are capable of infecting 
mammalian cells, including human beings, through fixation factors such as the 
transferrin receptor or glycosidic substances like the N-acetylneuraminic acid that is 
expressed on the cellular membrane and contributes to an environment favorable to 
viral fixation in the cell[30].

The major capsid protein VP1 is a protein that coordinates the penetration of 
protoparvoviruses in the host cell by an endocytosis process and enables the 
destruction of the endocytic vesicle inside the cell and further liberation of viral 
proteins in the cytoplasm. Moreover, VP1 has nuclear localization signals responsible 
for assisting the viral protein displacement to the cell nucleus[31]. From this point, the 
virus can remain inert until the beginning of the cellular division process when during 
the S/G2 phases through protein NS1 action, it can block the cell genome replication 
and allow the integration of viral material with the host genetic material to ensure the 
viral survival[31].

H-1PV can produce an oxidative stress state through the increase in levels of 
reactive oxygen and nitrogen species through NS1 protein action inside the cell. NS1 is 
also related to the regulation of RNA viral replication, leading to the destruction of 
genetic material and activation of apoptosis pathways with later cell death. 
Furthermore, the virus can stimulate the liberation of proteases from the lysosome to 
the cytoplasm causing cellular necrosis of tumor cells[17].

In addition, the protoparvoviruses are capable of triggering an inflammatory 
response with antitumor characteristics generating the production of cytokines with a 
Th1 profile like IL-2 and TNF-alpha, which[32] sets an inflammatory environment able 
to deal with the tumor cells. H-1PV also contributes to the stimulation of T 
lymphocytes like TCD8, cytotoxic cells, and the auxiliary cells TCD4 and formation of 
an immune memory against the tumor[33].

During the lytic phase, the viral action enables the increase of membrane 
permeability of lysosomes that allows the passage of the cathepsins enzymes to the 
cytoplasm and decreases the action of inhibitory agents of these proteases. Both factors 
play an important role in the gathering of cathepsins in the cellular cytoplasm, 
stimulation of their action, and contribution to the apoptosis pathways and to tumor 
cell death[34]. Moreover, the expression of NS1 contributes to cellular apoptosis 
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Figure 1 Mechanism of action of oncolytic viruses. Initially, oncolytic viruses can be administered by different pathways, such as intratumoral, 
subcutaneous, intraperitoneal, and intrathecal. Natural tropism and genetic targeting are responsible for favoring the arrival of oncolytic viruses to the tumor cells. 
Thereafter, the oncolytic viruses start to recognize the abnormal cells through substances expressed in the tumor environment and can use different receptors to 
connect and infect the host cell. From this point, the virus starts to use the cellular machinery for its replication process, producing viral proteins, reducing the cell 
function, stimulating oxidative stress states and contributing to the activation of some pathways related to the autophagic processes. At the same time, the antigen-
presenting cells encompass some viral organisms, generating the formation of an endosomal vesicle that will merge with a lysosomal vesicle and will cause the 
digestion of the virus, providing smaller viral particles to be processed inside the cell. Later, the expression of the major histocompatibility complex class 2 together 
with the viral proteins on the cell surface occurs, creating a favorable environment for the antigenic presentation and subsequent activation and stimulation of the 
CD4+ T cells and CD8+ T cells, the first related to the production of cytokines responsible for contributing to the migration and maturation processes of inflammatory 
cells, and the second related to the direct action against the infected cells. Finally, the viral action and the immune response contribute to the destruction of the tumor 
cells releasing the viral progeny in the host organism allowing it to infect other abnormal cells and restart the process of combatting the tumor. Furthermore, cell death 
also releases tumor antigens that the immune system can identify, contributing to the formation of new inflammatory responses capable of acting both in the tumor 
environment and even in metastatic sites.

through damage to the genetic material, activation and stimulation of caspase action, 
and the generation of oxidative stress processes, bypassing the apoptotic evasion 
mechanism of the tumor cells[35].

Vaccinia virus: The vaccinia viruses (VACVs) are enveloped viruses with double-
stranded linear DNA and belong to the Poxviridae family. They were used for smallpox 
vaccination in 1796, and currently after the eradication of this disease, their scientific 
use is aimed at the creation of vaccines and therapies for other pathologies[36]. One of 
the members of this family is the Pexa-Vec (pexastimogene devacirepvec, JX-594), 
which is genetically modified to possess the granulocyte-macrophage colony-
stimulating factor (GM-CSF) along with thymidine kinase (TK) gene deletion in order 
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to increase the tropism to the tumor cells and limit the replication to the cells that 
express aberrant levels of TK[37].

The administration of VACVs in the tumor environment was related to the 
stimulation and expression of GM-CSF and IL-24, factors that together could 
contribute to stabilize and provide tumor cell death. GM-CSF is related to the 
maturation and differentiation of immune system cells like dendritic cells and 
neutrophils, which create an inflammatory environment that enables the combat of the 
tumor, and IL-24 inhibits tumor angiogenesis, positively influencing the apoptosis 
pathways and the formation of an antitumor response while inhibiting the formation 
of tumor metastases[38].

The viral action of some VACVs strains stimulate different cell death pathways such 
as necrosis and apoptosis, leading to the liberation of substances related to damage 
and danger, like ATP and high mobility group box 1 protein, that provides an 
immunogenic environment. Thereafter, the DAMPs support the cross-presentation 
between them and the tumor antigens, stimulating the TCD8 cell action and 
contributing to the stimulation of the antitumor response[39]. Furthermore, the Pexa-
Vec has a tropism for endothelial cells that are responsible for tumor growth through 
the expression of vascular endothelial growth factor or fibroblast growth factor. It 
leads to the destruction of vasculature that irrigates the tumor and consequently a 
tissue necrosis process and decreasing of the tumor extension[40]. Some genetic 
modifications in the VACVs and updates in oncolytic therapy are listed in Table 2.

Reovirus: Respiratory enteric orphan virus (Reovirus) is a non-enveloped and double-
stranded RNA virus that belongs to the Reoviridae family, which has a wide range of 
hosts (fungi, plants, fish, mammals, among others)[41,42]. This name is due to the 
isolation of the pathogen in the respiratory and gastrointestinal tract and the inability 
to cause any known human diseases[43,44]. Interestingly, this last characteristic is 
strongly correlated to the successful use of reoviruses in oncolytic therapy as well. The 
primary connection of reoviruses to an oncolytic role was found in 1977 when a study 
demonstrated that they have a tropism for “transformed cells” and that normal cells 
are resistant to the virus[45]. This information led, consequently, to further studies in 
order to evaluate the possibility of reoviruses as an alternative for cancer treatment.

There are three different reovirus serotypes: type one Lang, type two Jones, and 
type three Abney and Dearing[44]. Among them, the T3D is the most widely studied 
as a possible therapeutic for cancer treatment and is also known as Reolysin[46]. 
Furthermore, reoviruses are dependent on a mutation in the ras gene in order to 
replicate properly in the tumor cells[47], a fact that limits its use, given that only 
approximately 30% of the human tumors have these mutations. However, the Ras 
pathway can be activated by some elements, which means that more types of cancer 
can be subjected to viral oncolytic therapy by reoviruses (up to 80%)[48].

Regarding the mechanism in which reoviruses replicate in tumor cells, the Ras 
pathway plays an important part, given that it inhibits protein kinase R and therefore 
enables viral protein synthesis[49]. Moreover, studies also show that the epidermal 
growth factor receptor, more specifically the tyrosine protein kinase signaling 
pathways, increases reovirus infection and viral peptide synthesis[50]. In addition, 
reovirus-resistant NIH 3T3 cells capable of being infected and enhance protein 
production when transfected with the gene encoding epidermal growth factor receptor 
or with the v-erbB oncogene are also documented[51]. Thereby, these works on 
reoviruses clarified their possible use in oncolytic therapy, given that they are also 
non-pathogenic in humans, which makes it an attractive option.

The main mechanism of tumor lysis by reoviruses is virus-induced apoptosis, along 
with the immunomodulatory characteristics of the virus. The viral capsid proteins are 
able to activate an apoptotic pathway in the tumor cells through release into the 
cytosol of cytochrome c and smac/DIABLO from the mitochondria[52]. In regard to 
the immune response, once the reoviruses start protein synthesis, there is a secretion of 
proinflammatory cytokines and chemokines through PAMPs and DAMPs, which 
eases the generation of an adaptive antitumor immune response[15,53]. Then, 
cytotoxic TCD8 cells recognize the reovirus antigens and lyse the cells, along with a 
maturation of dendritic cells[54], consequent activation of natural killer cells, and 
further cytotoxicity[55].

Herpes simplex virus type I: The herpes simplex virus-1 (HSV-1) is a double-stranded 
DNA virus with a large genome of 150kb encoding for 70 or more genes that belongs 
to the alpha-herpesviruses subfamily[56,57]. Its large genome is very important, given 
that it can be easily modified in order to improve oncolytic properties and safety for 
the patient[56]. Unlike the reoviruses, HSV-1 is pathogenic to humans and can cause 



Santos Apolonio J et al. Oncolytic virus therapy in cancer

WJV https://www.wjgnet.com 236 September 25, 2021 Volume 10 Issue 5

Table 2 Genetic modifications in the vaccinia virus

Ref. Virus Updates Aim

Parato et al
[226]

JX-594 Express GM-CSF and lacZ transgenes Increase lytic activity and antitumor immunity

John et al
[227]

vvDD-
GFP

Insertion of an Ab specific for the 
costimulatory molecule 4-1BB 

Increase antitumor responses with myeloid cells, greater infiltration of CD8+ 
effector T and NK cells

Zhang et al
[228]

GLV-1 
h68

Insertion of three expression cassettes into 
the A56R, F14.5L, and J2R

Increased tumor targeting specificity and reduced toxicity

Yoo et al[229] CVV Deletion of viral thymidine kinase genes Regression of liver tumorigenicity and metastasis to the colon

Ricordel et al
[230]

deVV5 TK-deleted chimeric VV armed with the 
suicide gene FCU1 

Union of different VV strains, with increased oncolytic properties, with more 
efficient replication in human tumor cells

Ge et al[231] vvDD-IL-
12

Oncolytic VV delivering tethered IL-12 Increase tumor infiltration of activated CD4+ and CD8+ T cells, decrease the 
transforming growth factor β and increase interferon γ

Deng et al
[232]

VG9 The oncolytic potency of VG9 was evaluated 
in various cell lines

Evaluate replication and cytotoxicity in vitro, antitumor effects and process of 
biodistribution of VG9 in a B16 tumor model

Ab: Agonist antibody; GM-CSF: Granulocyte-macrophage colony-stimulating factor; IL-12: Interleukin 12; NK: Natural killer; TK: Thymidine kinase; VV: 
Vaccinia virus.

infections of the mucosa or skin and central nervous infections, which reveals the need 
of deletions and insertions of additional transgenes in order to produce a viable 
oncolytic virus therapy[58].

In that context, a large number of oncolytic HSVs-1 have been developed and tested, 
with good outcomes, and among them the Talimogene Laherparepvec (T-VEC) is 
approved by the Food and Drug Administration[59,60]. T-VEC is one of the most 
studied HSV-1 oncolytic virus; it is created through deletion of γ34.5 and ICP47 and 
insertion of GM-CSF to inactivate neurovirulence factors and enhance the virus 
replication and immunogenicity[61,62]. It was also found possible to link HSV-1 to the 
ras signaling pathway in order to provide viral replication[63].

The mechanism of action of these viruses, especially T-VEC, is dual. The first aim is 
to perform direct tumor cell killing in which the viruses are able to enter the tumor 
environment, normally by local injection, and then start replication and consequent 
lysis of the infected tumor cell, release of tumor antigens, and local immune response
[64]. In addition, the GM-CSF expression enables an accurate migration and 
maturation of dendritic cells to the environment and further antigen presentation to 
CD4+ and CD8+, which are capable of reaching distant metastases[65,66]. Studies also 
demonstrate that interferon response increases PD-L1 expression, and consequent T 
cell infiltration in the tumor environment is also possible[66,67]. Table 3 lists some 
genetic modifications in HSV-1 and impacts in the oncolytic action.

CLINICAL USES
Pancreatic cancer 
Worldwide, the occurrence of pancreatic cancer is low, and the disease is not 
recommended for screening by the World Health Organization[68]. The survival rate 
of pancreatic ductal adenocarcinoma, responsible for 95% of pancreatic cancers[69], is 
6% in 5 years[70], and the only potential cure for pancreatic ductal adenocarcinoma 
(duodenopancreatectomy) does not offer a big change in mortality[69].

Reolysin® (Oncolytics Biotech Inc., Calgary, AB, Canada) is the name of a reovirus 
that is in a Phase II clinical trial in pancreatic cancer[71]. The studies are not yet 
conclusive. However, intraperitoneal administration of reovirus has been shown to be 
effective and safe in the control of peritoneal metastases in hamsters with pancreatic 
ductal adenocarcinoma carcinomatosis[72].

Measles viruses depend on overexpression of CD46, a viral entry receptor also 
found in many cancer cells[73]. In a previous study, a modified measles virus showed 
oncolytic activity in pancreatic tumor xenografts in mice with tumor regression and 
increased survival[74]. In another study, the virus was modified to target prostate 
stem cell antigen, which is a protein expressed in pancreatic cancer and was armed 
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Table 3 Genetic modifications in the herpes simplex virus-1

Ref. Virus Updates Aim

Liu et al[61] T-VEC Insertion of GM-CSF and deletion of γ34.5, US12 Increase lytic activity and antitumor immunity

Ushijima et al
[233]

HF10 Insertion of UL53, UL54 and deletionof UL43, UL49.5, UL55, 
UL56, LAT

Reduce neurovirulence and increase immunogenicity

Ebright et al
[234]

NV1020 Incorporation of the HSV-1 TK gene and deletion of α0, α4, 
γ34.5, UL56, UL24

Reduce neurovirulence and provide susceptibility to antiviral 
chemotherapy

MacKie et al
[235]

HSV 
1716

Incorporation of γ34.5 Reduce neurovirulence

Mineta et al
[236]

G207 Insertion of lacZ and deletion of γ34.5 Avoid ribonucleotide reductase encoding and reduce 
neurovirulence

GM-CSF: Granulocyte-macrophage colony-stimulating factor; HSV-1: Herpes simplex virus 1; LAT: Latency-associated transcript; T-VEC: Talimogene 
laherparepvec; TK: Thymidine kinase.

with the drug purine nucleoside phosphorylase. The authors concluded that viral 
therapy demonstrated antitumor activity in immunocompromised mice[75].

A study using H-1PV, a parvovirus, associated with gemcitabine in mice showed a 
reduction in tumor growth, in addition to increased survival and absence of 
metastases in imaging studies[76]. In another previous study using parvovirus, the 
infection increased natural killer-mediated cell death in pancreatic ductal adenocar-
cinoma[77]. However, many studies still need to be done to obtain a conclusive answer 
since current studies only suggest the viral oncolytic action of parvoviruses[76]. 
However, the myxoma virus demonstrated in vitro lysis of pancreatic ductal adenocar-
cinoma cells[78] and prolonged the survival of mice, especially when the therapy was 
combined with gemcitabine[79].

Adenoviruses are the main viral vectors used to treat cancer, as they are able to bind 
to a target cell receptor with great affinity[80]. This great affinity is due to the 
possibility of building the ideal selectivity using two techniques: excluding viral genes 
necessary for replication in normal cells and introducing fundamental proteins 
accompanied by specific tumor promoters[81]. In preclinical tests, ONYX-15, an 
adenovirus, had a deletion mutation of the E1B gene and showed increased survival 
and antitumor efficacy in murine animals[82], in addition to showing viability and 
tolerability when combined with gemcitabine. However, its development was 
interrupted due to its limited clinical activity[83]. The LOAd703 virus, a parvovirus 
with the deleted E1A gene, has shown that it can change the tumor microenvironment 
from immunosuppressive to immunocompetent[84]. Tests have also shown its ability 
to elicit immune responses by releasing tumor-associated antigens while positively 
regulating favorable chemokines as well as dendritic cells[85].

HSVs are recognized for infecting and killing tumor cells quickly[86]. In addition, 
HSV has exhibited strong tumor reactivity mediated by T cells, indirectly causing an 
immune response to cancer[87]. In 1999, preclinical data showed that G207, an HSV-1 
virus with gene deletions and inactivations, lysed pancreatic ductal adenocarcinoma 
cells in vitro[88] and induced complete tumor eradication by 25% when injected into 
mice xenograft tumors[89]. L1BR1, an HSV-2 with deletion of the US3 gene, replicated 
in pancreatic ductal adenocarcinoma cells and induced apoptosis cytolysis, especially 
when combined with 5-fluorouracil and cisplatin[90]. In a phase I study, HF10, a 
natural HSV-1 mutant, was injected into pancreatic tumors in 6 patients. Biopsies 
revealed a greater number of infiltrating CD4+ and CD8+ lymphocytes. In addition, an 
objective response was observed in 1 patient, while disease stabilized in 3 patients, and 
in the remaining 2 cases there was disease progression[91]. Finally, two phase I trials 
were performed to test the safety of the intratumoral injection of T-VEC (OV HSV-1 
with multiple deletions) and Orien X010 (OV hGM-CSF HSV-1 recombinants) in 
advanced pancreatic cancer patients[92-94]. However, unfortunately, the results have 
not yet been reported to the scientific community.

Melanoma
Melanoma is a potentially fatal malignant skin disease that continues to have greater 
incidences in the world, while the scenario of other tumors is the opposite[95]. The 
average risk of melanoma is 1 in 50 in several western countries[96] and is more 
frequent in light-skinned populations[97].
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Regarding OV therapy, the vaccinia virus is a prototypical poxvirus with high 
clinical relevance, which can be easily attenuated by deleting virulence genes and 
inserting therapeutic genes[98]. Two phase I studies using JX-594, an OV vaccinia 
modified to activate local macrophages and dendritic cells[99], involved a total of 17 
patients with unresectable cutaneous melanoma. The studies concluded that JX-594 
replicated successfully in the tumor microenvironment, led to local oncolysis, and that 
increasing doses of JX-594 were safe and effective[100,101]. In two other similar phase I 
clinical trials, they used the vaccinia virus, which encodes B7.1 T cell co-stimulating 
molecules[102], in 25 patients with unresectable melanoma. As a result of these tests, 
the rate of complete objective response was 20% with limited toxicity and low-grade 
reactions[102,103].

The herpes simplex virus is an attractive option for OV in melanoma since the large 
genome has several non-essential genes that can be deleted in order to reduce 
pathogenicity and insert genes of interest[104]. Currently, T-VEC is the first oncolytic 
virus approved by the United States Food and Drug Administration for melanoma 
cancer therapy[105]. Phase I, II, and III clinical trials were concluded with positive 
results from the use of T-VEC in the treatment of melanoma[106-108]. Biopsies of 
injected lesions were performed in phase I and showed significant tumor necrosis 
caused by T-VEC[107]. In phase II, the overall objective response rate was 26% with a 1 
year survival rate for all patients of 58% and mild side effects in 85% of patients[107]. 
Finally, in phase III, the objective response rate for the T-VEC arm remained at 26% 
with 11% complete responses, but unfortunately the final survival data are not 
available[108]. Even so, this was the first randomized clinical trial to reveal beneficial 
therapeutic use of OV for patients with advanced or unresectable melanoma[104].

HF10, a spontaneously mutated strain of HSV-1 with a deletion mutation in some 
viral genes[109], was used in an in vitro study that revealed that murine and human 
melanoma tumor cells had relevant cytolytic effects after HF10 infection[110]. In that 
same study, immunocompetent mice with advanced melanomas received HF10 intrat-
umorally. Tumor growth was reduced in injected and non-injected tumors, which 
suggests direct oncolysis and induction of a systemic antitumor immune reaction
[110]. HF10 was associated with dacarbazine to assess the oncolytic efficacy of the 
virus in mice prepared with subcutaneous melanoma models. The combined treatment 
of dacarbazine with HF10 showed a very fast and strong cytotoxic effect compared to 
monotherapy since a robust systemic antitumor immune response was induced and 
prolonged survival[111].

Other viruses with fewer highlights have been tested and have shown good results. 
Coxsackievirus A21 demonstrated in preclinical studies oncolytic activity in melanoma 
cells, maintaining tolerability and low viral pathogenicity[112]. CVA21, a commercial 
version of coxsackievirus A21, was studied clinically in phase I and II in patients with 
advanced and unresectable melanoma who received the virus intratumorally for 15 
wk. As a result of these trials, the treatment was generally well tolerated with low-
grade reactions, being able to observe complete therapeutic responses and an 
acceptable safety profile[113,114]. Finally, a phase II trial evaluated the oncolytic action 
of Reolysin® in 21 patients with metastatic melanoma who received intravenous 
injections[71]. All patients tolerated the injections well, and in 2 patients viral 
replication was evident when evaluating post-treatment biopsy samples from 13 
patients. However, the study did not obtain observed objective responses nor did it 
achieve its primary efficacy objective, although the trial data support the use of 
reovirus in combination with other therapies to treat malignant melanoma[71].

Breast cancer
Breast cancer (BC) is a multifactorial and heterogeneous disease in which the 
interaction between family history, lifestyle, and hormonal components has a 
fundamental role in its development[115,116]. Worldwide, the numbers of the disease 
are increasing, partly due to the increase in life expectancy of the population but also 
associated with the increase in early diagnosis techniques. Currently, 1 in 8 women 
have a chance of being diagnosed with BC in the world, making it the most common 
cancer among women[117].

There are prospects for treatment of more advanced forms of the disease since to 
date oncolytic virotherapy has demonstrated a wide variety of options for action at the 
cellular and molecular level[118]. Among the options currently most sought for this 
purpose, there are double-stranded DNA viruses that replicate and transcribe in the 
cell nucleus, without the integration of its genetic material with that of the host cell
[118]. In addition, it is essential that OVs are extremely selective to replicate in cancer 
cells[15], a fact corroborated by tests that show the good tolerability and selectivity of 
genetically modified viruses for this purpose, such as the vaccinia virus[119]. Another 
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important OV, adenovirus, one of the most studied for BC, is still controversial. 
Preclinical studies show efficacy in tumor reduction by inhibiting the growth of its 
cells in addition to controlling metastases in mice[118]; however, other phase I trials 
demonstrate low efficacy for BC either in monotherapy or in combination with other 
drugs[119]. In addition to these, T-VEC approved in the United States and Europe for 
use in some types of melanomas[120] has been clinically tested in BC and shows good 
tolerability by the patient as well as relative success in inducing tumor necrosis and 
immune response[119,121].

RNA viruses such as Pelareorep (Reolysin) have also been studied for BC[119]. 
Although inconclusive, the trials show that there is safety in its use, in addition to an 
efficiency in viral replication and in its induction of cell death[122]; however, they 
suggest that the administration of Pelareorep in combination with the drug paclitaxel 
is more effective when compared to its isolated use[123]. An important point of this 
virus is its optimized form of intravenous administration, which favors its develo-
pment even more and extends its use when compared to most of the OVs that are still 
administered in clinical trials by intratumoral route[119]. Also very promising against 
BC is the marabá virus, a strain of rabdovirus. Its MG1 variant was developed to have 
a greater oncolytic action and also little replicative action in normal cells, achieving 
success in these objectives[118]. As for tumor control, trials have shown an important 
association of positive results in the use of MG1 for the prevention of metastasis in the 
preoperative period[124] as well as in the safety of its use and the possibility of having 
a good systemic efficiency[125].

Liver cancer 
A highly malignant tumor type, liver cancer is still a major challenge to current 
medicine[126]. Its most common form is hepatocellular carcinoma (HCC)[126,127], 
which represents one of the six most prevalent and four most lethal types of cancer in 
the world[128-131]. Linked to this, HCC is attributed to an increase over the years
[128], related to a high worldwide prevalence, concentrated mainly in underdeveloped 
countries[130]. The unfavorable numbers corroborate to a high rate of disease 
recurrence after conventional therapies currently used, with just over 10% of patients 
surviving after 5 years[129].

The literature shows OVs as promising in the possibility of overcoming HCC, 
especially in more advanced stages, in a safe manner and with the least possible 
chance of recurrence[129,131]. One of the most widely used is adenovirus, which 
shares a relevant tropism for liver cells[128]. Among this type of virus, there are 
several lines of studies with particular modifications aiming at a better viral 
adaptation to the obstacles found in tumor cells. One of them is the Ad5 viral vector 
integrated with the GP73 and SphK1-shRNA promoters[130], in which through 
preclinical tests it was able to induce cell apoptosis and inhibit tumor expansion 
considerably, improving the survival of mice[131]. The adenovirus ZD55 vector was 
modified to overcome the high resistance of HCC cells to tumor necrosis factor-related 
apoptosis ligand and successfully managed to reduce the tumor size by associating 
ZD55-tumor necrosis factor-related apoptosis ligand with ZD55-Smac, a variant that 
has a second mitochondrial caspase activator in its constitution[128].

The vaccinia virus has also been studied for HCC. The JX-594 variant has been 
proven safe and effective through preclinical studies in rabbits by eradicating lung 
metastases and liver tumors in these animals[126,128]. In addition to this, the vaccinia 
virus may also be associated with cytokines, such as recombinant VV-IL-37, which 
with interleukin 37 associated with its genome also inhibited liver tumor growth[130]. 
Among the therapeutic options, it is also worth highlighting the findings in trials using 
HSV. A study using mice developed Ld0-GFP, a more selective and more oncolytic 
vector for liver cells, which has safely demonstrated an important potential in the 
induction of cell apoptosis and in the release of DAMPs related to immunogenic cell 
death[129].

Glioblastoma
Glioblastoma is the most common malignant primary brain tumor in adults, with a 
median age of approximately 55 to 60 years and has a 10% survival rate after 5 years
[6], even with important advances in recent years in cancer therapy. Thus, oncolytic 
therapy has been highlighted in the treatment of glioblastoma, once it kills tumor cells 
via direct oncolysis and via stimulation of antitumor immune response[132].

Regarding the use of OVs, studies have shown its use with combined therapy and 
monotherapy. A research conducted at clinicaltrials.gov, Martikainen et al[133] found 
more than fifteen clinical studies at different stages. A phase II study, using the 
modified DNX2440 adenovirus, combining oncolytic virus with tumor-targeting 
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immune checkpoint modulators, demonstrated that the virus was able to specifically 
increase T cell activation, facilitating tumor recognition. In other studies, HSV (phase 
I), vaccinia virus (phase I/II), poliovirus (phase I/Ib), parvovirus H-1PV (phase I/II), 
and unmodified human reovirus were also used[134-137]. The study using attenuated 
(Sabin) poliovirus with internal ribosomal entry site from human rhinovirus 2 was 
applied to 61 patients over a period of 5 years with the result of increasing their 
patients’ survival rate by 24 and 36 mo compared with the rate among historical 
controls. On the other hand, the study with unmodified rat parvovirus indicated that 
H-1PV treatment was safe and well tolerated. It showed favorable pharmacokinetics, 
induced antibody formation in a dose-dependent manner, and triggered specific T cell 
responses. There was an increase in survival compared to recent studies. Furthermore, 
researchers who used unmodified human reovirus reported that 10 of the 12 patients 
had tumor progression and 1 had stabilized, while the median survival was 21 wk. 
Finally, the preclinical study involving HSV-1 and rats used the modern approach of 
viral redirection with IL-12, resulting in increased overall survival and complete tumor 
elimination in 30% of the animals.

Prostate 
Prostate cancer is the most common cancer among men and the second type of cancer 
that kills men the most in Western countries[138]. In view of the therapies currently 
available, the OVs are an attractive way of treating prostate cancer, either as 
monotherapy or in combination with other immunotherapies (for example, anti-
programmed cell death protein 1 and anti-PD-L1 inhibitors)[139]. This is due to the 
immunological events induced by the administration of OVs in cancer-bearing animals 
that bring down multiple tumor immune evasion mechanisms and induce strong, 
multiclonal, and protective anti-prostate cancer immunity. The effect of OVs on 
prostate cancer occurs because of abnormalities in antiviral defense pathways, 
including those attributed to impaired tyrosine-protein kinase Janus kinase, a signal 
transducer and activator of transcription signaling.

To date, there are several clinical trials in phase I and II using adenovirus, reovirus, 
HSV-1, vaccinia virus, fowl pox virus, and Sendai virus[140]. Among the studies with 
adenovirus, one was able to insert mk5 (the mutational kringle5 of human 
plasminogen) into a DD3-promoted (differential display code 3) oncolytic adenovirus, 
showing that mK5 has been proven to be able to inhibit the tumor angiogenesis and 
inhibit cell proliferation[141]. Currently, a number of Ad5-CD/TK OVs have been 
developed and tested as a therapeutic for prostate cancer. These viruses provide two 
suicide genes, cytosine deaminase and HSV-1 TK, to tumor cells. Studies using a 
reovirus in patients with metastatic castration-resistant prostate cancer, on the other 
hand, showed an increase in the secretion of inflammatory cytokines[138].

Colorectal cancer 
Colorectal cancer is the third most common cancer in the United States and the second 
leading cause of cancer-associated mortality[142]. There is currently no effective 
treatment for this type of cancer, so OVs can be an interesting option in this way. 
Heavily pretreated colorectal cancer patients were treated with the oncolytic vaccinia 
virus alone or combined, by increasing the expression of GM-CSF (a hematopoietic 
growth factor) and reached stable disease in 67% of patients[143,144]. Another study 
using oncolytic HSV2 performed an in vitro and in vivo analysis. In the first, oncolytic 
HSV2 effectively inhibited the growth of CT-26 cells. In the second, hepatic metastasis 
was reduced in mice models with xenograft tumor[145].

FUTURE CHALLENGES AND PERSPECTIVES
A wide variety of OVs are going through studies in phase I/II clinical trials or in 
preclinical cancer models[2,146]. According to clinicaltrials.gov, there are currently 114 
clinical trials listed at the time of this writing showing considerable progress in this 
field. Despite all the advances, some limitations still have to be surpassed to enhance 
OV-based immunotherapy[37,119,147]. Thus, to overcome these challenges, research 
scientists are creating new strategies, which will be presented below.

Choosing the optimal OV species
As aforementioned, a range of virus species has been developed as OVs recently. It is 
essential to comprehend the exclusive biological aspects to establish the most relevant 
antitumor oncolytic virotherapy, considering that distinct kinds of viruses have 
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different sizes, genetic materials, shapes, and pathogenicity[148]. First, the size of the 
virus must be considered; larger viruses are more suitable for the therapeutic gene 
insertion, but they are less inclined to infiltrate the physical barriers, whereas smaller 
viruses can penetrate and spread throughout the tumor more easily, though they are 
not as susceptible for genetic administration[148]. In addition, the viral genome is 
important; RNA viruses replicate faster than DNA viruses and are able to kill tumor 
cells because they do it in the cytoplasm and do not have to reach the nuclei of the 
target cells[149]. Nevertheless, they have shown fewer tumor-selective properties due 
to the same reason[150]. Likewise, the existence of a viral capsid is also a crucial factor 
in OV selection because enveloped viruses are less oncolytic and are more likely to be 
eliminated by the host immune system[149].

Therefore, during the past decade, some improvements have emerged in the area, 
such as capsid development, genome engineering, and chemical modifications[151]. 
The capsid can be altered to improve the binding between the virus and the entry 
receptors from the target cell. For example, researchers have noticed that genetically 
inserting protein domains or peptides into the viral capsid can benefit transduction 
efficacy in some cells and improve the attachment of the OVs to target tumor cells 
membranes, boosting viral tropism, and internalization[151-153]. Furthermore, viral 
cytotoxicity needs to be considered since the high capacity to generate cell injuries can 
decrease viral replication rates and consequently interfere in the effectiveness of 
therapy[154]. Meanwhile, all of those strategies still have limitations and need to be 
improved.

Effective delivery methods 
Finding an ideal route for OV administration still constitutes one of the major 
challenging issues in virotherapy[60]. The two leading delivery platforms include local 
intratumoral, which the OVs are injected directly into the tumor site, and systemic 
method (intravenous or intraperitoneal)[4,55]. Local intratumoral is the most common 
delivery route in preclinical or clinical trials due to its safety and to decrease the 
chance that preceding circulating antibodies might overcome the virus before it 
reaches its target[2,155,156]. However, this platform cannot be utilized for inaccessible 
or multifocal tumors, such as pancreatic or brain tumors, so it is not always a viable 
option[157]. On the other hand, the systemic injection is, theoretically, an ideal 
delivery method, because of the broad distribution of viruses, allowing the OVs to 
reach not only primary but also metastatic tumors, and it is relatively non-invasive 
and highly repeatable[155,157]. Nonetheless, its bioavailability and efficiency at the 
moment is unsatisfactory, and the viral particles in this route do not specifically target 
cancer because they can be rapidly sequestered and degraded by the host immune 
system before they reach the tumor[158].

In this way, several strategies have been studied to overcome these hurdles. For 
example, capsid modifications have been explored as a way to deliver OVs to tumor 
sites, like the changing of the viral envelope by polyethylene glycol polymers that 
prevent its recognition by macrophages[151,157,159]. Thus, considerable new 
approaches such as the use of nanoparticles, complex viral particle ligands, liposomes, 
polymeric particles, and immunomodulatory agents have been used and designed
[160-163]. Another hopeful strategy is the utilization of ultrasound image guiding and 
magnetic drug-targeting systems[164-166]. These are all different kinds of approaches 
for improving the delivery methods.

Immune response
The immune response is an obstacle capable of preventing the effectiveness of OVs, 
given that it can limit infection and viral replication, whether by the specific immunity 
from viral infections or by pre-existing immune memory[167,168]. There are many 
cases in which antiviral immunity already exists from previous infections or vaccin-
ations since many of the OVs used in anticancer therapy are originally pathogenic to 
humans[159,169]. Besides that, the excessive administration of OVs can induce 
antiviral immunity that eliminates it more quickly than supposed[159]. The presence 
of coagulation factors FIX, FX, and complement protein C4BP and the large number of 
immune cells infiltrated into the cancerous stem cells impair selective viral replication 
as well[149,170].

To overcome such problems, new treatment strategies were developed and showed 
promising results as genetic manipulation of OVs, cytokines, nanoparticles, complex 
viral particles binders, immunomodulatory agents, use of decoy viruses for seques-
tering pre-existing antibodies, and multiple administration of different serotypes[120,
168]. However, it is relevant to emphasize that viral immunity can be beneficial in 
some cases by recruiting immune cells for tumor microenvironment (TME) and 
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reversing the immunosuppressive TME. Therefore, there must be an adjustment in the 
balance between OV-induced antitumor immunity and antiviral immunity[147,169,
171].

Physical barriers
Another major challenge that OVs need to overcome is physical barriers, as viruses 
must pass through the endothelial layer to reach target cells. Studies have identified 
several physical barriers that limit effectiveness, such as chemotherapeutic agents, 
monoclonal antibodies, antitumor immune cells, and genetic therapies[149,172,173]. 
Furthermore, abnormal lymphatic networks and epithelial cell tumors are protected by 
extracellular matrix, which results in interstitial pressure and may impair the ability of 
OVs to spread themselves throughout the tumor mass, negating its effectiveness[174,
175].

Therefore, strategies to achieve efficient penetration and dissemination of OVs are 
highly necessary for significant improvements in this therapeutic modality[176]. To 
increase the viral spread, oncolytic adenovirus genetically modified to express 
molecules such as relaxin and hyaluronidase were generated in order to stop 
angiogenesis of the extracellular matrix and have shown promising preclinical results
[174]. An intravenous administration of the OVs can bring numerous benefits for the 
vascularization of the tumor, being able to be superior to intratumoral injections[176]. 
Studies show efficiency in the spread of OVs in solid tumors through changes in the 
viral envelope or by increasing the diffuse transport of the virus through changes in 
the interstitial space[177]. These data provide strong evidence of the significant 
antitumor effects of the therapy.

Clinical use of OVs allies to other therapies
Since OVs showed limited efficacy in monotherapy, the combination of immuno-
therapy drugs and virotherapy has become a potential direction and appealing choice
[158,178]. In this way, some preclinical studies in animal models and early clinical 
trials have confirmed the therapeutic responses increased with combination 
approaches, showing considerable response rates and tolerable safety profiles[120,
179]. The following sections discuss these diverse combination strategies.

Combination with chemotherapy
The combination of virotherapy with chemotherapy agents is a promising approach. 
For example, adenovirus combined with chemotherapeutic agents such as cisplatin, 5-
fluorouracil, doxorubicin, temozolomide, irinotecan, and paclitaxel has successful 
results and enhanced antitumor effects compared to the response rate of the virus 
alone[179-181]. Concomitantly, a combination strategy also showed less risks and 
higher safety, extending the patient’s survival[182]. Likewise, vaccinia virus combined 
with paclitaxel also revealed a harmonious effect[183]. In some models, the 
combination of sorafenib and vaccinia virus demonstrated good antitumor results, 
while patient trials showed remarkable safety and clinical response, and it has been 
approved for use in kidney, liver, and thyroid cancers[184].

Combination with radiotherapy
Radiotherapy combined with OVs has shown potential effects in cancer treatment[185-
187]. Initially, the propitious result was observed in studies with oncolytic HSV[188-
190]. In addition, the forceful combination effects can also be observed in radiotherapy 
and vaccinia virus. For example, a study reported that VACV-scAb-vascular 
endothelial growth factor was able to boost the radiation therapy’s sensitivity of tumor 
locations, increasing the antitumor response[191].

Combination therapy with adoptive cell therapy
Another promising strategy is the combination of OVs and adoptive cell therapy since 
OVs can kill cancer cells specifically and have the potential of turning the TME into an 
immunostimulatory environment that is susceptible to T cell entry and activation
[192]. A recombinant oncolytic adenovirus, OAd-TNF-a-IL-2 combined with meso-
chimeric antigen receptor T cells in an animal model of pancreatic ductal adenocar-
cinoma caused considerably better tumor regression and expanded the antitumor 
effectiveness of chimeric antigen receptor T cells[193]. Furthermore, a preclinical trial 
of this combination approach utilizing GD2-chimeric antigen receptor T cells and a 
recombinant oncolytic adenovirus in a mouse model revealed substantial elevated 
overall survival of mice as with both monotherapy ways[194]
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Combination therapy with OVs and immune checkpoint inhibitors
One of the most common strategies to increase the effectiveness of OVs is to combine 
them with ICIs as the combination of the two therapies relieves the tumor 
immunosuppressive environment. The infection caused by OVs triggers an anticancer 
immune response, increasing the effectiveness of ICIs, which in the process interrupt 
the ligand-receptor interaction of cancer cells exposing T cells to attack[169,194,195]. In 
short, the objective of this combination is to make the local microenvironment more 
conducive to the proper functioning of ICIs through infections caused by OVs[195-
197]. This synergistic relationship has led to the development of several studies with 
promising results.

For example, a phase II study (clinicalTrials.gov: NCT02978625) studied how 
biological therapy T-VEC and the immunotherapy with monoclonal antibodies 
nivolumab worked in 68 patients with lymphoma who have not responded to 
treatment or non-melanoma skin cancers that have spread to other parts of the body or 
have not responded to treatment. In addition, the combination of ICIs with various 
OVs, such as vaccinia virus, coxsackievirus, adenovirus, marabá virus, reovirus, and 
vesicular stomatitis virus, is being evaluated in different phase I or phase II clinical 
trials[167,198]. Thus, new treatment options through this combination continue to be 
awaited with expectations of promising paths.

Combination therapy with OVs and bispecific T cell engagers
In recent decades, there has been great clinical progress in immunotherapy with 
bispecific antibodies and effective therapeutic applications[199]. By definition, 
bispecific T cell engagers (BiTEs) are proteins that, through DNA recombination, form 
bispecific antibodies with two variable fragments of single chain antibodies, one 
directed to a cell surface molecule in T cells (for example, CD3) and the other targeting 
antigens on the surface of malignant cells[172,200]. BiTE-mediated interaction triggers 
the formation of immune synapses, which ultimately result in tumor specific cell death 
and release of effector Th1 cytokines[201]. However, BiTEs have low penetration in 
solid tumors, in addition to the risk of toxicity in hematological cancers[172,200]. In 
this sense, the combination of BiTEs and OVs is considered in order to increase 
therapeutic efficacy since OVs are able to selectively replicate and infect malignant 
cells, thus alleviating the immunosuppressive state of the TME[172,201].

Currently, several BiTEs delivered by OVs have been tested on several types of 
hematological and solid tumors reported by preclinical research, and promising tests 
were obtained with a BiTE that recognizes fibroblasts associated with cancer (via 
fibroblast activation protein)[202]. In addition, preclinical studies also provided 
evidence of the effectiveness of OVs in combating the side effects of therapy with 
BiTEs through the redirection of T cells, in addition to improving antitumor activity
[203]. Such efforts should lead to the development of new anticancer agents as it is 
believed that this combination is powerful to address unmet clinical needs[199].

Biosafety on oncolytic virotherapy
Although OV therapy has shown potential to be a safe treatment for cancer patients, 
some biosafety issues in vivo still remain a concern as a treatment strategy. Primarily, 
some adverse events were associated with this therapy[14]. A few symptoms, such as 
mild flu-like syndromes[204,205], local reactions commonly manifested as pain, rash, 
peripheral edema, and erythema, are the most common events linked to the treatment
[124,206]. Some of them disappeared without intervention after a few days or with the 
administration of nonsteroidal anti-inflammatory drugs during the treatment course[4,
207]. In addition, other common adverse events, like leukopenia, liver dysfunction, 
anemia, lymphopenia and more, were noticed in the trials of HSV, reovirus, and 
adenovirus[208,209]. Besides this, few OV therapies have caused severe adverse 
reactions that brought harm to patients’ health[162,210-212], and they have been 
manageable and rarely caused a severe impact on the patients or threatened their lives
[162,213]

Moreover, the transmission and shedding of OVs during the treatment is also a 
potential safety issue. During the therapy, viruses such as T-VEC, Ad5- Δ24-RGD, 
HSV, adenovirus, pox, and reovirus, can be transmitted to people in close contact with 
the patient, such as the family and health care staff who are more likely to be exposed 
to the patient’s fluids, such as saliva or urine, or be shed to other parts of the patient’s 
body[214-216]. Another challenge in the biosafety of the use of OVs is the application 
of the treatment in specific populations, given that the studies in this area are currently 
limited[14]. Therefore, in order to reduce risks, the viruses observed are highly 
attenuated, in addition to being of the utmost importance that the health professionals 
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who administer OVs carefully follow the safety standards for the procedures[215,216]. 
On the other hand, the trials and preclinical studies of several viruses, like the T-VEC, 
HSV-1, and H-1PV indicate that pregnant women and people with low immunity 
should avoid using them[214,217].

Lastly, aiming to improve the biosafety of oncolytic viral therapy and decrease its 
side effects, the use of viruses that do not present pathogenicity to humans are being 
evaluated. H-1PV, for example, demonstrated no inducement of the production of 
specific antibodies when inoculated in humans, which means little chance of 
generating an active infection. Nevertheless, the virus has shown specificity to the 
tumor cells[218]. Furthermore, the recombinant therapies between different OVs, such 
as adenovirus and parvovirus, have shown satisfactory results in terms of biosafety 
since the synergistic action generated from the viral specificities, such as the infectivity 
of adenoviruses to the tumor cells and the lack of harmfulness of parvovirus to the 
normal cells, contributes to greater therapeutic efficacy and reduction of collateral 
damage[14].

CONCLUSION
OVs emerge as a way of bypassing the immune evasion mechanisms of the tumor, 
aiming to improve the clinical condition of patients through the stimulation of the host 
immune system or direct lysis of abnormal cells. The modern techniques of genetic 
engineering have made it possible to improve the construction of OVs, increasing the 
safety and the efficiency, targeting the virus to the tumor, and decreasing the adverse 
effects of their use. Furthermore, it is possible to observe significant effects of the 
clinical use of OVs, whether in single or combination therapy, to the treatment of 
tumors. Therefore, upgrading antitumor therapies and consequently improving 
patient prognosis with contributions from the areas of molecular biology, structural 
biology, immunology, genomics, and bioinformatics lays a solid foundation for future 
clinical success of OVs.
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