World Journal of *Virology*

World J Virol 2023 January 25; 12(1): 1-67

Published by Baishideng Publishing Group Inc

World Journal of Virology

Contents

Bimonthly Volume 12 Number 1 January 25, 2023

MINIREVIEWS

1	Joint replacement and human immunodeficiency virus			
	Salimi M, Mirghaderi P, Mosalamiaghili S, Mohammadi A, Salimi A			
12	Severe acute respiratory syndrome coronavirus 2 may cause liver injury <i>via</i> Na ⁺ /H ⁺ exchanger <i>Cumhur Cure M, Cure E</i>			
22	Association between COVID-19 and chronic liver disease: Mechanism, diagnosis, damage, and treatment <i>Qi RB</i> , <i>Wu ZH</i>			
30	COVID-19 in patients with pre-existing chronic liver disease – predictors of outcomes <i>Walia D, Saraya A, Gunjan D</i>			
44	Commentary on COVID-19-induced liver injury in various age and risk groups Özdemir Ö, Arsov HEM			

SYSTEMATIC REVIEWS

COVID-19-related liver injury: Focus on genetic and drug-induced perspectives 53 Parchwani D, Sonagra AD, Dholariya S, Motiani A, Singh R

Contents

Bimonthly Volume 12 Number 1 January 25, 2023

ABOUT COVER

Editorial Board of World Journal of Virology, Bruno Pozzetto, MD, PhD, Professor, Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne 42055, France. bruno.pozzetto@univ-st-etienne.fr

AIMS AND SCOPE

The primary aim of World Journal of Virology (WJV, World J Virol) is to provide scholars and readers from various fields of virology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WIV mainly publishes articles reporting research results obtained in the field of virology and covering a wide range of topics including arbovirus infections, viral bronchiolitis, central nervous system viral diseases, coinfection, DNA virus infections, viral encephalitis, viral eye infections, chronic fatigue syndrome, animal viral hepatitis, human viral hepatitis, viral meningitis, opportunistic infections, viral pneumonia, RNA virus infections, sexually transmitted diseases, viral skin diseases, slow virus diseases, tumor virus infections, viremia, and zoonoses.

INDEXING/ABSTRACTING

The WJV is now abstracted and indexed in PubMed, PubMed Central, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yu-Xi Chen; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS
World Journal of Virology	https://www.wjgnet.com/bpg/gerinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 2220-3249 (online)	https://www.wjgnet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
February 12, 2012	https://www.wjgnet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Bimonthly	https://www.wjgnet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT
En-Qiang Chen, Mahmoud El-Bendary	https://www.wjgnet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/2220-3249/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS
January 25, 2023	https://www.wjgnet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2023 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2023 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

WJVWorld Journal of Virology

Submit a Manuscript: https://www.f6publishing.com

World J Virol 2023 January 25; 12(1): 44-52

DOI: 10.5501/wjv.v12.i1.44

MINIREVIEWS

ISSN 2220-3249 (online)

Commentary on COVID-19-induced liver injury in various age and risk groups

Öner Özdemir, Hacer Efnan Melek Arsoy

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): 0 Grade C (Good): C Grade D (Fair): D Grade E (Poor): 0

P-Reviewer: Gulyaev SA, Russia; Nooripour R, Iran

Received: September 25, 2022 Peer-review started: September 25, 2022

First decision: November 5, 2022 Revised: November 15, 2022 Accepted: December 21, 2022 Article in press: December 21, 2022 Published online: January 25, 2023

Öner Özdemir, Hacer Efnan Melek Arsoy, Department of Pediatrics, Sakarya University, Medical Faculty, Sakarya 54100, Türkiye

Corresponding author: Öner Özdemir, MD, Professor, Department of Pediatrics, Sakarya University, Medical Faculty, Şirinevler Mahallesi Adnan Menderes Caddesi No. 193 Adapazarı, Sakarya 54100, Türkiye. ozdemir_oner@hotmail.com

Abstract

Towards the end of 2019, a new type of coronavirus, severe acute respiratory syndrome, emerged in the city of Wuhan in China's Hubei Province. The first occurrence was described as a case of pneumonia. Coronavirus disease 2019 (COVID-19) can progress primarily with symptoms varying from a mild upper respiratory tract infection to severe pneumonia, acute respiratory distress syndrome, and death. Determining the mechanisms of action of this virus, which can affect all systems including gastrointestinal, is vital for predicting the progression of the disease and managing its treatment. It is important to demonstrate the mechanisms of action of COVID-19 in patients without a previously known chronic or systemic disease. Although there is still no specific treatment for the virus, various algorithms have been created. As a result of the applied algorithms, the response to the treatment was satisfactory in some patients, while unexpected side effects occurred in some patients. It helps to clarify whether the unwanted effects that occur are due to the effect of the disease or the side effects of the drugs used in the treatment. There is currently increasing interest in COVID-19 interaction with liver tissue. Therefore, we would like to discuss the details of liver injury/dysfunction in the current literature.

Key Words: COVID-19; Liver injury; SARS-CoV-2

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Coronavirus disease 2019 (COVID-19) can progress primarily with symptoms ranging from a mild upper respiratory tract infection to severe pneumonia, hepatic injury, and even death. There is currently increasing interest in COVID-19 interaction with liver tissue. We would like to discuss the details of liver injury/dysfunction in COVID-19 in the current literature.

Citation: Özdemir Ö, Arsoy HEM. Commentary on COVID-19-induced liver injury in various age and risk groups. World J Virol 2023; 12(1): 44-52 URL: https://www.wjgnet.com/2220-3249/full/v12/i1/44.htm DOI: https://dx.doi.org/10.5501/wjv.v12.i1.44

INTRODUCTION

Hepatotropic viruses replicate in their main target liver, which can be involved in these viruses' infections. The host is mostly afflicted as a consequence of the immune response to viruses like hepatitis A, hepatitis B, hepatitis C, and hepatitis E viruses which can be a known reason for hepatitis and liver damage[1]. In non-hepatotropic viral infections like severe acute respiratory syndrome (SARS), Epstein-Barr virus infection, etc., it is known that the liver is mainly affected as a result of immune infiltrates and reactions that occur as a result of the virus-induced immune system response. The result of this effect can range from mildly irregular liver biochemistry to fulminant hepatic failure. The liver is also affected by infections such as adenovirus, cytomegalovirus, and other opportunistic viruses in people with immunocompromised and other immune system disorders^[2].

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is identified to result in severe acute respiratory syndrome through its host cell receptor, angiotensin-converting enzyme 2 (ACE-2). As a part of multi-organ involvement, cardiac, kidney, and liver injury can be seen[3]. The fact that coronavirus disease 2019 (COVID-19) is more important than diseases caused by many other viruses and needs to be investigated is its high mortality. In a meta-analysis of 3772 patients acquired from 326 studies examining SARS-CoV-2 and liver damage, it was demonstrated that there is a link between liver dysfunction and fatality[4]. Interestingly, besides the respiratory system, a significant proportion of SARS and COVID-19 patients showed signs of liver damage of varying degrees, the mechanism and effect of which have yet to be determined (Table 1).

PREVALENCE OF LIVER INJURY IN COVID-19

The prevalence of liver damage in COVID-19 patients differed from 16% to 29%. A meta-analysis showed that the rate of liver dysfunction among COVID-19 cases was 27.4% [5,6]. Fu et al [7] collected data from 355 patients in China and demonstrated that 39.6% of COVID-19 cases were afflicted with cholestasis, 51.9% with hypoproteinemia, and 39.0% with hepatocellular injury at presentation.

SUPPOSED MECHANISMS OF LIVER INJURY

The etiology of acute liver injury in COVID-19 patients remains unclear but is likely to be multifactorial (Table 1). It is supposed that it may be due to the direct invasion of hepatocytes by viruses, immunemediated damage, the toxicity of drugs utilized in the treatment, hypoxia, ischemia, endothelial dysfunction, microthrombi formation, systemic inflammatory response syndrome, sepsis, or exacerbation of underlying liver disease^[8].

ACE-2 receptors can be demonstrated in hepatic cholangiocytes and hepatocytes. These receptors make the gastrointestinal system a target for SARS-CoV-2 infection, which can vigorously infect and reproduce. The strong affinity of the SARS-CoV-2, particularly to cholangiocytes, results from a high binding rate to the ACE-2 receptor, which suggests that it is related to impaired hepatic function [9,10]. In a study, cell type-specific expression of ACE-2 was investigated in healthy liver tissues. The researchers showed that the virus can bind directly to ACE-2-positive cholangiocytes, but not hepatocytes. This finding suggests that liver abnormalities of SARS and COVID-19 patients are due to cholangiocyte dysfunction, not hepatocyte damage. What is confusing at this point is that in many studies conducted in China, elevation in aspartate aminotransferase (AST) instead of γ -glutamyl transpeptidase (GGT) and alkaline phosphatase (ALP) indicates cholangiocyte and bile duct damage [11]. But it should be in mind that this occurs only infrequently on hepatocytes, nevertheless it may be upregulated on hepatocytes during periods of physiologic stress[12]. Myalgia or myositis are also common symptoms in COVID-19 patients. Therefore, it may be necessary to examine the elevations in lactate dehydrogenase and creatinine kinase in COVID-19. The AST elevations observed in this circumstance can be ascribed to some degree to muscle injury[13].

In addition, it is known that patients with COVID-19 have severe hypoxia, and this hypoxemia significantly affects all organs, including the liver. As a part of SARS-CoV-2 infection in severe acute respiratory syndrome, capability to trigger severe hypoxia that was recalcitrant to the management of high inspired fractions of oxygen and high mean airway pressures was observed. Hypoxic hepatic damage is noticeable by alanine aminotransferase (ALT)/AST elevations owing to oxygen imbalance.

Table 1 Events in the liver from a broad perspective of severe acute respiratory syndrome coronavirus 2 infection				
Effect	Mechanism	Result	Outcomes and morphological changes	
SARS-CoV-2 virus	Genomic translations and replication	More viruses in circulation	Inflammation features. Usually, the biliary intrahepatic tree and bile duct did not show any significant histological alteration. Actin smooth muscle antibodies existed in pericytes which were in portal vein walls and adventitial areas	
Viral proteins of SARS-CoV-2	SIRS -> stimulate cytokine storm	Increased TNF- α , IL-6, IL-1 β , IL-2, IL-8, CCL2, CCL3, CCL5, CXCL10 levels. Decreased (CD4 ⁺) T cell and NK cell counts	Increase in the number of portal vein branches associated with lumen massive dilatation and focal periportal abnormal vessels. Portal vein endotheliitis (fragmented smooth muscle layer). Scattered portal and lobular lymphocytes. Extremely activated Kupffer cells with large cytoplasm containing necrotic debris	
Нурохіа	Hypoxic ischemic injury of all organs and also liver	Decreased SpO2 levels, mitochondrial dysfunction, and hypoxic hepatocytes express higher ACE-2 levels	Partial or complete luminal thrombosis of the portal and sinusoidal vessels, focal portal vein parietal fibrosis, enlarged and fibrotic vessels. A diffuse network of sinusoids decorated by CD34 suggests a disturbed circulation of blood within the liver	
Drugs (antivirals, immune stimulants)	Liver damage	Increase in ALT, AST, LDH, CRP, D-dimer, ferritin, and bilirubin levels and a decrease in albumin levels	Portal fibrosis, lobular and mild portal inflammation	
Drugs and viral proteins	The cytopathic effect, oxidative imbalance	Apoptosis and steatosis	Small and/or large droplets of steatosis in hepatocytes	

ACE-2: Angiotensin-converting enzyme 2; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; LDH: Lactate dehydrogenase; CRP: Creactive protein; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; SIRS: Systemic inflammatory response syndrome; TNF-α: Tumour necrosis factor-alpha; IL: Interleukin.

This shows that severe hypoxia may be one of the pathophysiological elements of hepatic injury in COVID-19[13,14].

Therapeutic agents, *e.g.*, hydroxychloroquine, immune modulators (tocilizumab, steroids, and anakinra), anti-retroviral drugs (remdesivir, favipiravir, and lopinavir), antibiotics (azithromycin and ceftriaxone), and antipyretics (paracetamol and ibuprofen), which are utilized in the management of COVID-19, also have hepatotoxic effects. Patients are recommended to have regular follow-ups who have management with single and/or combined use of these potential hepatotoxic drugs for possible hepatic injury[8,13].

The existence of viral particles in the feces of infected cases indicates that the gastrointestinal system is affected by SARS-CoV-2. This is another reflection that demonstrates the possible direct impact of SARS-CoV-2 on liver tissue, provided the close association between the bowel and the liver. The exact mechanisms of this suggested direct injury route are yet to be explained[15]. Even the gut microbiome is important at this point since ACE-2 is also expressed in the luminal intestinal epithelium. With the attachment of SARS-CoV-2 to the ACE-2 receptor, intestinal permeability and inflammation increase. All these events increase the risk of bacterial translocation, which leads to dysregulation of the gut microbiome and, *via* this pathway, to Gram-negative sepsis, through portal circulation[16]. This translocation is also partially responsible for liver damage in COVID-19 patients[17].

PATHOGENESIS

SARS-CoV-2 is a new positive-strand RNA virus from the beta coronavirus family and has a glycolipid envelope. The virus connects to the host's ACE-2 receptor to start an infection. The viral access and reproduction process begins. ACE-2 is existing in cardiomyocytes and most endothelial cells except for those lining the liver sinusoids, lungs, bile ducts, bowels, and kidneys[18]. The spike protein (S protein) is located on the SARS-CoV-2 surface that will attach to ACE-2. After binding to the cell membrane, the virus is detained when the viral envelope fuses with the host membrane. Moreover, the type 2 transmembrane serine protease, which is present in host target cells (predominantly alveolar epithelial type II cells), stimulates viral uptake. The viral genome accesses the cytoplasm and is converted to produce new virions. After the virus enters the cell by fusion with the host membrane, an antiviral immune response begins with the viral nucleocapsid proteins remaining on the cell surface. These viral nucleocapsid proteins are recognized by antigen-presenting cells. Viral antigens are passed to cytotoxic (CD8⁺) and regulatory (CD4⁺) T lymphocytes by major histocompatibility complexes, also known as human leukocyte antigens[19].

Viral-specific CD8⁺ T cells stimulated as a response to viruses affecting organs other than the liver are thought to be involved in the manifestation of T cell-mediated hepatitis lacking viral antigens in the

Raishidena® WJV | https://www.wjgnet.com

liver. Even with the extrahepatic influence of viruses, liver damage can be seen when no virus is detected in the liver. Because most strains of these viruses infect only the epithelial cells of the airway and therefore viral antigens should not be existing in the liver. This phenomenon was detected by the effect of the influenza virus and defined as collateral damage^[20].

Previous studies on viral infections other than SARS-CoV-2 are therefore important and show that the liver is involved in diseases not only by antigen-specific T-cell response activation but also by some clinical hepatic inflammation syndromes that are not easily explained. It is expected that lymphocytes are caught in the liver sinusoids and cause occlusion, reducing blood flow, and infiltrates consisting of inactivated lymphocytes are expected to increase liver damage. All of these and more may cause more liver damage with the effect of autoimmunity. Exacerbated inflammation in response to SARS-CoV-2 is also a cause of immune damage. The immense discharge of cytokines by the immune system in reaction to the viral infection can cause a cytokine storm and symptoms of sepsis that are the reasons for fatality in 28% of mortal COVID-19 patients[21].

OTHER ETIOPATHOGENETIC FACTORS IN LIVER DAMAGE INDUCED BY SARS-COV-2

Preexisting liver diseases

The relationship between chronic or dormant liver diseases and COVID-19 has been investigated in many studies. In the frequency of COVID-19, a higher number has not been determined in patients with previous liver disease, unlike the general population. Two to five percent of COVID-19 cases had known liver disease before contracting COVID-19. However, there is an opinion that there may be an increase in severe COVID-19 and death in chronic liver patients [5]. As liver damage increases, patients begin to worsen in their clinical condition and prognosis. Established hepatic diseases may have adversarial effects on COVID-19 prognosis, including severity, fatality, and need for mechanical ventilation[22].

Liver transplantation

After the liver transplantation in approximately 700 children with chronic liver disease, only three had SARS-CoV-2 infection and no lung or other system disease such as pneumonia was observed in these patients^[23]. Also, in a different study that included data on 151 Liver transplant adults, six recipients fell ill with COVID-19, while three long-term liver transplant recipients died. Data from liver transplant recipients continue to be organized in the form of case reports[24]. It should be kept in mind that patients with liver transplantation receive immunosuppressive treatments and these treatments may initiate cytokine storms or increase viral spread with an asymptomatic course in mild COVID-19 infections^[25].

Cholestatic liver disease

Considering the cells and organs where ACE-2 receptors are located, it is expected to be affected in cholestatic liver disease. The fatality rate was higher in patients with cholestasis^[22].

Cirrhosis

The incidence of COVID-19 varies widely in patients with cirrhosis. In a study that analyses cirrhosis patients in China, it was reported that 5 of 16 cirrhosis patients died[26]. The reason can be cirrhosisassociated immune dysfunction. They are more likely to have poor outcomes from ARDS.

Other liver diseases

All liver diseases have interactions with COVID-19 resulting from their specific disorder[26]. Chronic low-grade inflammation known to be associated with metabolic dysfunction-associated fatty liver disease may worsen COVID-19 outcomes [22,27,28].

EFFECTS OF VARIOUS AGE AND RISK GROUPS ON LIVER INJURY

When the literature is examined, the striking point is that SARS-CoV-2 does not occur with the same clinical features in patients. Since the severity of the disease is also related to the liver, liver involvement is not the same in every patient. Liver injury varies in patients having previously known blood disease, susceptibility to thrombosis for portal/hepatic thrombosis or immunosuppression, etc. [29]. Risk factors such as age, gender, previous diseases, chronic or acute health status, various medications, coronary artery diseases, metabolic diseases, serologies for other viruses related to hepatitis, and other etiologies affect the severity of the disease[3,8].

Elevated liver enzymes were more frequent in males with severe COVID-19 than in females[30]. Also, male gender, older age, and lymphopenia were three important independent risk elements forecasting hepatic dysfunction among COVID-19 cases[7]. Additionally, a clinical study showed that pulmonary failure was related to poor prognostic indicators of hepatic failure[31].

When the pediatric group is examined, only scarcely data is in the pediatric literature. We believe that the reason for this may be a milder course or asymptomatic transmission of SARS-CoV-2 infection in children[32]. In the data of a study that examined SARS-CoV-2 infection by dividing it into two groups, the data of children who had COVID-19, the first group, and that of multi-system inflammatory syndrome in children and adolescents (MIS-C), the second group, were shared. Elevated ALT was found in 36% of the 291 patients, with 31% having COVID-19, and 51% having MIS-C. High levels of ALT in COVID-19 were accompanied by obesity, immune-compromised status, and chronic hepatic disease. Children with elevated ALT and MIS-C were more often boys. Children with MIS-C had a 2.3fold augmented risk of high ALT compared to COVID-19. No relationship was detected between elevated ALT and fatality[29].

EFFECTS OF DRUGS ON COVID-19-INDUCED LIVER INJURY

With the onset of the pandemic, various guidelines have been published for the treatment algorithm for COVID-19. Some drugs have been removed from the list due to their side effects and benefits. Currently, no specific drug for the SARS-CoV-2 virus has been discovered, and studies on this subject are continuing. The effects of the commonly used medications on the liver are examined.

Remdesivir

Remdesivir is a nucleotide analog prodrug with antiviral activity against SARS-CoV-2. Recently, the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) endorsed remdesivir for the management of cases admitted with severe COVID-19. The most common adverse drug reaction reported in hospitalized patients treated with remdesivir with a diagnosis of severe COVID-19 was elevations in liver enzymes. There is limited data on the number of patients exposed to remdesivir in clinical studies reporting severe hepatotoxicity or drug-induced liver injury[33].

Adverse effects reported in at least 5% of all patients in remdesivir trials were decreased glomerular filtration rate, a decline in hemoglobin level, decreased lymphocyte count, pyrexia, increase in blood glucose and creatinine level, transaminase elevations, etc., whose rates were generally similar between remdesivir and placebo[34]. In general, when the adverse events in the remdesivir group and the placebo group were compared, adversarial events were detected in 102 (66%) of 155 remdesivir users and 50 (64%) of 78 placebo users. However, 18 (12%) patients in the remdesivir group and 4 (5%) patients in the placebo group had to be discontinued early due to side effects (including gastrointestinal symptoms, aminotransferase or bilirubin elevations, and worsening cardiopulmonary status), which is more frequent with remdesivir than with placebo. However, when we examined the liver enzymes in cases where treatment was required to be terminated, it was observed that there was an indication in only three (2%) patients in the remdesivir group due to the increase in aspartate aminotransferase[35]. In a more comprehensive study describing the drug-induced liver injury and liver disorders caused by remdesivir, the data were different. Among 387 events with remdesivir listed in VigiBase, 130 hepatic adverse events (34%) were described; they were the most frequent adverse drug reactions. One hundred and fourteen cases had elevated liver transaminases. A more pronounced correlation of the incidence of hepatic failure has been reported with the use of remdesivir compared with hydroxychloroquine, lopinavir/ritonavir, or tocilizumab (odds ratio, 1.94; 95% confidence interval, 1.54-2.45)[36].

Baricitinib and JAK (Janus kinase) inhibitors

Tofacitinib and baricitinib are immunomodulators that are thought to have potent antiviral effects through interference with viral entry. There is not enough data on the side effects on the liver in clinical trials[37].

IL-6 pathway inhibitors (e.g., tocilizumab)

Serious adverse events in the trials were not greater with IL-6 pathway inhibitors than with comparators. It has been discussed in some studies that these inhibitors may be associated with an increased risk of secondary infections[38]. Tocilizumab and baricitinib which are used widely in COVID-19 may also cause HBV reactivation[37].

Glucocorticosteroids

Glucocorticosteroids may result in hepatic steatosis (fatty liver) that can infrequently cause systemic fat embolism or cirrhosis as an adverse effect[39].

Non-steroidal anti-inflammatory drugs

The use of paracetamol was considered relatively safe after the especially beginning of the COVID-19 epidemic and the effect of ibuprofen on ACE receptors was revealed. Therefore, patients suffering from COVID-19 frequently consumed paracetamol for its antipyretic and analgesic effects[40]. It is known that the effects of paracetamol are generally dose-dependent. However, hepatotoxicity risk can be seen

at levels much lower than the expected dose, even at therapeutic doses. At this point, genetic characteristics and metabolic differences may be due to immune-mediated mechanisms[41].

Non-steroidal anti-inflammatory drugs (NSAIDs) impede cyclooxygenase (COX)-1 and COX-2. Significant and well-known common side effects are on the gastrointestinal and renal systems. There are cases of liver toxicity reported and frequently encountered in the literature^[42]. Currently, there is no strong evidence about the safety of the use of NSAIDs in COVID-19 patients^[43].

HISTOLOGICAL FINDINGS OF LIVER INJURY INDUCED BY SARS-COV-2

Hepatic histology in cases with COVID-19 is nonspecific, comprising moderate microvesicular steatosis with mild, mixed lobular and portal activity and focal necrosis. In a series of 48 autopsies, pathologic hepatic outcomes consisted of focal portal and lobular lymphocytic infiltrates and changes indicative of hepatic vascular participation^[44]. In another study conducted with the liver samples of 40 patients who died due to COVID-19, hepatic involvement was observed in all of the patients. Macrovesicular steatosis was the most frequent (30 cases, 75%), followed by mild lobular necroinflammation and portal inflammation (20 patients each, 50%). Vascular pathology, including sinusoidal microthrombi, was rare and observed in six (15%) cases. PCR using hepatic tissue samples was positive in 11 of 20 cases tested, but quantifying viral load in the liver is lacking[45].

DIFFERENT LABORATORY FINDINGS INDICATIVE OF LIVER INJURY INDUCED BY SARS-COV-2

An increase in liver transaminases has been detected in approximately two-thirds of patients with severe COVID-19. The analysis demonstrated that the more severe the coronavirus infection, the greater the levels of ALT, AST, total bilirubin, ALP, and GGT, and the lesser the level of albumin[46]. Mean levels of AST and ALT over 400 U/L have been reported [47]. Low albumin has been associated with severe COVID-19. Nevertheless, it is uncertain if hypoalbuminemia is a risk element for severe COVID-19 or if hypoalbuminemia is a consequence of severe COVID-19[7,48]. Although they are rare, cases progressing from liver damage to ischemia have been reported[49]. Liver functional indexes of twothirds of COVID-19 cases stay abnormal 14 d after discharge[7].

BRIEF SUMMARY OF OUR OPINION

COVID-19 is still a multisystemic disease with many unknowns. It is known today that it affects the liver, albeit indirectly, as it has on all systems. Due to its mortal course, the disease has been tried to be treated with rapidly created emergency treatments and algorithms. However, the effectiveness of these treatments, which are performed without knowing the effects of SARS-CoV-2 on the organs, is controversial. It is an already known fact that more studies are needed on the virus and the pathogenesis of COVID-19. However, the side effects of drugs should also be analyzed in detail. The treatment and algorithms of liver failure, especially seen in the severe patient group, are confusing. Things to do in liver involvement due to virus and liver effects that can be seen due to drug side effects may be completely different. While it is necessary to ensure that the liver recovers from the cytopathic effects of the virus with the least damage and continues to fight the disease, it should also be noted that liver failure can be triggered by the drugs applied for this. In these two different situations, different procedures need to be implemented. At this point, we think that histopathological data can be used as we have mentioned in detail in our article. We would like to draw attention to the fact that most of the histopathology data were made postmortem in the studies. We can suggest that liver biopsy should be performed in patients with appropriate clinical status before the treatment procedures are discontinued or changed, and histopathological and immunological examinations should be on the agenda. Although liver biopsy is an invasive and costly procedure, we think that the data obtained may be useful in explaining the liver pathologies of the patients, as well as in providing an idea about the side effects of drugs and in the follow-up of the patients.

CONCLUSION

Liver diseases in COVID-19 have been studied in different groups, from mild to severe and chronic. In light of these studies, our general opinion is that SARS-CoV-2 infection will be more fatal in the case of liver disease. We think that both the direct injury to the liver and other etiological factors including the drugs used have an effect. Exploring liver injury related to COVID-19 has an important role in the

estimation of fatality and might be used for the creation of prognostic tools to recognize cases with possible worse consequences.

FOOTNOTES

Author contributions: Özdemir Ö and HE Melek Arsoy wrote the mini-review.

Conflict-of-interest statement: All the authors declare that they have no conflict of interest to disclose.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Türkiye

ORCID number: Öner Özdemir 0000-0002-5338-9561; Hacer Efnan Melek Arsoy 0000-0002-9812-5447.

S-Editor: Liu JH L-Editor: Wang TQ P-Editor: Liu JH

REFERENCES

- Gallegos-Orozco JF, Rakela-Brödner J. Hepatitis viruses: not always what it seems to be. Rev Med Chil 2010; 138: 1302-1311 [PMID: 21279280]
- 2 Gupta E, Ballani N, Kumar M, Sarin SK. Role of non-hepatotropic viruses in acute sporadic viral hepatitis and acute-onchronic liver failure in adults. Indian J Gastroenterol 2015; 34: 448-452 [PMID: 26589230 DOI: 10.1007/s12664-015-0613-0
- 3 Noor FM, Islam MM. Prevalence and Associated Risk Factors of Mortality Among COVID-19 Patients: A Meta-Analysis. J Community Health 2020; 45: 1270-1282 [PMID: 32918645 DOI: 10.1007/s10900-020-00920-x]
- Wu ZH, Yang DL. A meta-analysis of the impact of COVID-19 on liver dysfunction. Eur J Med Res 2020; 25: 54 [PMID: 33148326 DOI: 10.1186/s40001-020-00454-x]
- 5 Wan J, Wang X, Su S, Zhang Y, Jin Y, Shi Y, Wu K, Liang J. Digestive symptoms and liver injury in patients with coronavirus disease 2019 (COVID-19): A systematic review with meta-analysis. JGH Open 2020; 4: 1047-1058 [PMID: 33319036 DOI: 10.1002/jgh3.12428]
- 6 Du M, Yang S, Liu M, Liu J. COVID-19 and liver dysfunction: Epidemiology, association and potential mechanisms. Clin Res Hepatol Gastroenterol 2022; 46: 101793 [PMID: 34428501 DOI: 10.1016/j.clinre.2021.101793]
- 7 Fu L, Fei J, Xu S, Xiang HX, Xiang Y, Hu B, Li MD, Liu FF, Li Y, Li XY, Zhao H, Xu DX. Liver Dysfunction and Its Association with the Risk of Death in COVID-19 Patients: A Prospective Cohort Study. J Clin Transl Hepatol 2020; 8: 246-254 [PMID: 33083246 DOI: 10.14218/JCTH.2020.00043]
- Coban M, Gündoğdu Çoban D, Özdemir Ö. SARS-CoV-2 Infection and Liver Involvement. J Biotechinol & Strategic Health Res 2022; 6: 1-7 [DOI: 10.34084/bshr.989891]
- 9 Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A, Zhou J, Shi G, Fang N, Fan J, Cai J, Lan F. "Specific ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019-NCoV Infection". bioRxiv, 04 Şubat 2020 [DOI: 10.1101/2020.02.03.931766
- 10 Fathema K, Hassan MN, Mazumder MW, Benzamin M, Ahmed M, Islam MR, Haque N, Sutradhar PK, Rahman AR, Rukunuzzaman M. COVID 19 in Children: Gastrointestinal, Hepatobiliary and Pancreatic Manifestation. Mymensingh Med J 2021; 30: 570-579 [PMID: 33830145]
- 11 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506 [PMID: 31986264 DOI: 10.1016/S0140-6736(20)30183-5]
- 12 Paizis G, Tikellis C, Cooper ME, Schembri JM, Lew RA, Smith AI, Shaw T, Warner FJ, Zuilli A, Burrell LM, Angus PW. Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2. Gut 2005; 54: 1790-1796 [PMID: 16166274 DOI: 10.1136/gut.2004.062398]
- 13 Cooper MG. Observational studies of children from diary to ethnogram. A century of progress. Child Care Health Dev 1977; 3: 283-292 [PMID: 340078 DOI: 10.14218/JCTH.2020.00126]
- 14 Wang Y, Liu S, Liu H, Li W, Lin F, Jiang L, Li X, Xu P, Zhang L, Zhao L, Cao Y, Kang J, Yang J, Li L, Liu X, Li Y, Nie R, Mu J, Lu F, Zhao S, Lu J, Zhao J. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol 2020; 73: 807-816 [PMID: 32437830 DOI: 10.1016/j.jhep.2020.05.002]
- Morgan K, Samuel K, Vandeputte M, Hayes PC, Plevris JN. SARS-CoV-2 Infection and the Liver. Pathogens 2020; 9 15 [PMID: 32486188 DOI: 10.3390/pathogens9060430]
- Özdemir Ö, Pala A. COVID-19 Hastalığında Probiyotiklerin Rolü, Önemi ve Kullanımı. Sakarya Tıp Dergisi 2022; 12: 16

193-201 [DOI: 10.31832/smj.933390]

- 17 Perez A, Cantor A, Rudolph B, Miller J, Kogan-Liberman D, Gao Q, Da Silva B, Margolis KG, Ovchinsky N, Martinez M. Liver involvement in children with SARS-COV-2 infection: Two distinct clinical phenotypes caused by the same virus. Liver Int 2021; 41: 2068-2075 [PMID: 33826804 DOI: 10.1111/liv.14887]
- 18 Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203: 631-637 [PMID: 15141377 DOI: 10.1002/path.1570]
- 19 Liu J, Wu P, Gao F, Qi J, Kawana-Tachikawa A, Xie J, Vavricka CJ, Iwamoto A, Li T, Gao GF. Novel immunodominant peptide presentation strategy: a featured HLA-A*2402-restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen bonds from severe acute respiratory syndrome coronavirus nucleocapsid protein. J Virol 2010; 84: 11849-11857 [PMID: 20844028 DOI: 10.1128/JVI.01464-10]
- Polakos NK, Cornejo JC, Murray DA, Wright KO, Treanor JJ, Crispe IN, Topham DJ, Pierce RH. Kupffer cell-dependent 20 hepatitis occurs during influenza infection. Am J Pathol 2006; 168: 1169-78; quiz 1404 [PMID: 16565492 DOI: 10.2353/ajpath.2006.050875]
- Zhang B, Zhou X, Qiu Y, Song Y, Feng F, Feng J, Song Q, Jia Q, Wang J. Clinical characteristics of 82 cases of death 21 from COVID-19. PLoS One 2020; 15: e0235458 [PMID: 32645044 DOI: 10.1371/journal.pone.0235458]
- 22 Váncsa S, Hegyi PJ, Zádori N, Szakó L, Vörhendi N, Ocskay K, Földi M, Dembrovszky F, Dömötör ZR, Jánosi K, Rakonczay Z Jr, Hartmann P, Horváth T, Erőss B, Kiss S, Szakács Z, Németh D, Hegyi P, Pár G. Pre-existing Liver Diseases and On-Admission Liver-Related Laboratory Tests in COVID-19: A Prognostic Accuracy Meta-Analysis With Systematic Review. Front Med (Lausanne) 2020; 7: 572115 [PMID: 33282888 DOI: 10.3389/fmed.2020.572115]
- 23 D'Antiga L. Coronaviruses and Immunosuppressed Patients: The Facts During the Third Epidemic. Liver Transpl 2020; 26: 832-834 [PMID: 32196933 DOI: 10.1002/lt.2575]
- 24 Bhoori S, Rossi RE, Citterio D, Mazzaferro V. COVID-19 in long-term liver transplant patients: preliminary experience from an Italian transplant centre in Lombardy. Lancet Gastroenterol Hepatol 2020; 5: 532-533 [PMID: 32278366 DOI: 10.1016/S2468-1253(20)30116-3]
- 25 Yılmaz EA, Özdemir Ö. Solid organ transplantations and COVID-19 disease. World J Transplant 2021; 11: 503-511 [PMID: 35070786 DOI: 10.5500/wjt.v11.i12.503]
- Saviano A, Wrensch F, Ghany MG, Baumert TF. Liver Disease and Coronavirus Disease 2019: From Pathogenesis to 26 Clinical Care. Hepatology 2021; 74: 1088-1100 [PMID: 33332624 DOI: 10.1002/hep.31684]
- 27 Zhou YJ, Zheng KI, Wang XB, Sun QF, Pan KH, Wang TY, Ma HL, Chen YP, George J, Zheng MH. Metabolicassociated fatty liver disease is associated with severity of COVID-19. Liver Int 2020; 40: 2160-2163 [PMID: 32573883 DOI: 10.1111/Liv.14575]
- Hu L, Chen S, Fu Y, Gao Z, Long H, Ren HW, Zuo Y, Wang J, Li H, Xu QB, Yu WX, Liu J, Shao C, Hao JJ, Wang CZ, 28 Ma Y, Wang Z, Yanagihara R, Deng Y. Risk Factors Associated With Clinical Outcomes in 323 Coronavirus Disease 2019 (COVID-19) Hospitalized Patients in Wuhan, China. Clin Infect Dis 2020; 71: 2089-2098 [PMID: 32361738 DOI: 10.1093/cid/ciaa539]
- Luglio M, Tannuri U, de Carvalho WB, Bastos KLM, Rodriguez IS, Johnston C, Delgado AF. COVID-19 and Liver 29 Damage: Narrative Review and Proposed Clinical Protocol for Critically ill Pediatric Patients. Clinics (Sao Paulo) 2020; 75: e2250 [PMID: 33206767 DOI: 10.6061/clinics/2020/e2250]
- Shokri Afra H, Amiri-Dashatan N, Ghorbani F, Maleki I, Rezaei-Tavirani M. Positive association between severity of 30 COVID-19 infection and liver damage: a systematic review and meta-analysis. Gastroenterol Hepatol Bed Bench 2020; 13: 292-304 [PMID: 33244371]
- 31 Audimoolam VK, McPhail MJ, Wendon JA, Willars C, Bernal W, Desai SR, Auzinger G. Lung injury and its prognostic significance in acute liver failure. Crit Care Med 2014; 42: 592-600 [PMID: 24152589 DOI: 10.1097/01.ccm.0000435666.15070.d5
- Melek Arsoy HE, Özdemir Ö. Mysterious Side of COVID-19 Pandemic; Children. İstanbul Medical Journal 2020; 21: 242-257 [DOI: 10.4274/imj.galenos.2020.13463]
- 33 Spinner CD, Gottlieb RL, Criner GJ, Arribas López JR, Cattelan AM, Soriano Viladomiu A, Ogbuagu O, Malhotra P, Mullane KM, Castagna A, Chai LYA, Roestenberg M, Tsang OTY, Bernasconi E, Le Turnier P, Chang SC, SenGupta D, Hyland RH, Osinusi AO, Cao H, Blair C, Wang H, Gaggar A, Brainard DM, McPhail MJ, Bhagani S, Ahn MY, Sanyal AJ, Huhn G, Marty FM; GS-US-540-5774 Investigators. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19: A Randomized Clinical Trial. JAMA 2020; 324: 1048-1057 [PMID: 32821939 DOI: 10.1001/jama.2020.16349]
- 34 Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, Lopez de Castilla D, Finberg RW, Dierberg K, Tapson V, Hsieh L, Patterson TF, Paredes R, Sweeney DA, Short WR, Touloumi G, Lye DC, Ohmagari N, Oh MD, Ruiz-Palacios GM, Benfield T, Fätkenheuer G, Kortepeter MG, Atmar RL, Creech CB, Lundgren J, Babiker AG, Pett S, Neaton JD, Burgess TH, Bonnett T, Green M, Makowski M, Osinusi A, Nayak S, Lane HC; ACTT-1 Study Group Members. Remdesivir for the Treatment of Covid-19 - Final Report. N Engl J Med 2020; 383: 1813-1826 [PMID: 32445440 DOI: 10.1056/NEJMoa2007764]
- Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, Fu S, Gao L, Cheng Z, Lu Q, Hu Y, Luo G, Wang K, Lu Y, Li H, Wang S, Ruan S, Yang C, Mei C, Wang Y, Ding D, Wu F, Tang X, Ye X, Ye Y, Liu B, Yang J, Yin W, Wang A, Fan G, Zhou F, Liu Z, Gu X, Xu J, Shang L, Zhang Y, Cao L, Guo T, Wan Y, Qin H, Jiang Y, Jaki T, Hayden FG, Horby PW, Cao B, Wang C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395: 1569-1578 [PMID: 32423584 DOI: 10.1016/S0140-6736(20)31022-9]
- 36 Montastruc F, Thuriot S, Durrieu G. Hepatic Disorders With the Use of Remdesivir for Coronavirus 2019. Clin Gastroenterol Hepatol 2020; 18: 2835-2836 [PMID: 32721580 DOI: 10.1016/j.cgh.2020.07.050]
- Varona Pérez J, Rodriguez Chinesta JM. [Risk of hepatitis B reactivation associated with treatment against SARS-CoV-2 (COVID-19) with corticosteroids]. Rev Clin Esp (Barc) 2020; 220: 534-536 [PMID: 32372768 DOI: 10.1016/j.rce.2020.04.012

- 38 Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R, Menozzi M, Franceschini E, Cuomo G, Orlando G, Borghi V, Santoro A, Di Gaetano M, Puzzolante C, Carli F, Bedini A, Corradi L, Fantini R, Castaniere I, Tabbì L, Girardis M, Tedeschi S, Giannella M, Bartoletti M, Pascale R, Dolci G, Brugioni L, Pietrangelo A, Cossarizza A, Pea F, Clini E, Salvarani C, Massari M, Viale PL, Mussini C. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol 2020; 2: e474-e484 [PMID: 32835257 DOI: 10.1016/S2665-9913(20)30173-9]
- Liu D, Ahmet A, Ward L, Krishnamoorthy P, Mandelcorn ED, Leigh R, Brown JP, Cohen A, Kim H. A practical guide to 39 the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol 2013; 9: 30 [PMID: 23947590 DOI: 10.1186/1710-1492-9-30]
- Arsoy HEM, Özdemir Ö. Current therapeutic interventions for COVID-19. Bezmialem Science 2020; 8: 105-116 [DOI: 40 10.14235/bas.galenos.2020.4758]
- 41 Gulmez SE, Unal US, Lassalle R, Chartier A, Grolleau A, Moore N. Risk of hospital admission for liver injury in users of NSAIDs and nonoverdose paracetamol: Preliminary results from the EPIHAM study. Pharmacoepidemiol Drug Saf 2018; 27: 1174-1181 [PMID: 30112779 DOI: 10.1002/pds.4640]
- 42 Licata A, Minissale MG, Calvaruso V, Craxì A. A focus on epidemiology of drug-induced liver injury: analysis of a prospective cohort. Eur Rev Med Pharmacol Sci 2017; 21: 112-121 [PMID: 28379588]
- EMA advice on the use of NSAIDs for Covid-19. Drug Ther Bull 2020; 58: 69 [PMID: 32234728 DOI: 43 10.1136/dtb.2020.000021]
- 44 Sonzogni A, Previtali G, Seghezzi M, Alessio MG, Gianatti A, Licini, L, Zerbi P, Carsana L, Rossi R, Lauri E, Pellegrinelli A, Nebuloni M. Liver and COVID 19 Infection: A Very Preliminary Lesson Learnt from Histological Post-mortem Findings in 48 patients. Preprints 2020; 2020040438 [DOI: 10.20944/preprints202004.0438.v1]
- 45 Lagana SM, Kudose S, Iuga AC, Lee MJ, Fazlollahi L, Remotti HE, Del Portillo A, De Michele S, de Gonzalez AK, Saqi A, Khairallah P, Chong AM, Park H, Uhlemann AC, Lefkowitch JH, Verna EC. Hepatic pathology in patients dying of COVID-19: a series of 40 cases including clinical, histologic, and virologic data. Mod Pathol 2020; 33: 2147-2155 [PMID: 32792598 DOI: 10.1038/s41379-020-00649-x]
- 46 Zhao X, Lei Z, Gao F, Xie Q, Jang K, Gong J. The impact of coronavirus disease 2019 (COVID-19) on liver injury in China: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100: e24369 [PMID: 33530232 DOI: 10.1097/MD.00000000024369]
- Kaafarani HMA, El Moheb M, Hwabejire JO, Naar L, Christensen MA, Breen K, Gaitanidis A, Alser O, Mashbari H, 47 Bankhead-Kendall B, Mokhtari A, Maurer L, Kapoen C, Langeveld K, El Hechi MW, Lee J, Mendoza AE, Saillant NN, Parks J, Fawley J, King DR, Fagenholz PJ, Velmahos GC. Gastrointestinal Complications in Critically III Patients With COVID-19. Ann Surg 2020; 272: e61-e62 [PMID: 32675498 DOI: 10.1097/SLA.00000000004004]
- Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver Int 2020; 48 40: 998-1004 [PMID: 32170806 DOI: 10.1111/liv.14435]
- Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 2020; 5: 49 428-430 [PMID: 32145190 DOI: 10.1016/S2468-1253(20)30057-1]

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

