
systems. Importantly, recent studies using recombinant 
virus systems and animal infection models are begin-
ning to clarify the importance of certain mechanisms of 
IFN antagonism to in vivo  infections, providing impor-
tant indications not only of their critical importance to 
virulence, but also of their potential targeting for new 
therapeutic/vaccine approaches.

© 2013 Baishideng. All rights reserved.
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Core tip: The paramyxoviruses are a family of > 30 vi-
ruses that variously infect humans, other mammals and 
fish to cause diverse outcomes, ranging from asymp-
tomatic to lethal disease, with the zoonotic paramyxo-
viruses Nipah and Hendra showing up to 70% case-
fatality rate in humans. Here, we review the interferon 
antagonism strategies of paramyxoviruses, highlighting 
mechanistic differences observed between individual 
species and genera. We also discuss potential sources 
of this diversity, including biological differences in the 
host and/or tissue specificity of different paramyxovi-
ruses, and potential effects of experimental approaches 
that have largely relied on in vitro  systems.
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Abstract
The paramyxoviruses are a family of > 30 viruses that 
variously infect humans, other mammals and fish to 
cause diverse outcomes, ranging from asymptomatic 
to lethal disease, with the zoonotic paramyxoviruses 
Nipah and Hendra showing up to 70% case-fatality 
rate in humans. The capacity to evade host immunity 
is central to viral infection, and paramyxoviruses have 
evolved multiple strategies to overcome the host inter-
feron (IFN)-mediated innate immune response through 
the activity of their IFN-antagonist proteins. Although 
paramyxovirus IFN antagonists generally target com-
mon factors of the IFN system, including melanoma dif-
ferentiation associated factor 5, retinoic acid-inducible 
gene-I, signal transducers and activators of transcrip-
tion (STAT)1 and STAT2, and IFN regulatory factor 
3, the mechanisms of antagonism show remarkable 
diversity between different genera and even individual 
members of the same genus; the reasons for this di-
versity, however, are not currently understood. Here, 
we review the IFN antagonism strategies of paramyxo-
viruses, highlighting mechanistic differences observed 
between individual species and genera. We also discuss 
potential sources of this diversity, including biological 
differences in the host and/or tissue specificity of dif-
ferent paramyxoviruses, and potential effects of experi-
mental approaches that have largely relied on in vitro  

57 May 12, 2013|Volume 2|Issue 2|WJV|www.wjgnet.com

TOPIC HIGHLIGHT

Gualtiero Alvisi, PhD, Assistant Professor, Series Editor



interferons (IFNs) as the principal mediators of  mamma-
lian innate antiviral responses, it has become increasingly 
evident that infection by viruses depends on the capac-
ity to counteract host cell IFN responses. Viruses have 
evolved diverse strategies to antagonise IFN responses, 
often by hijacking and modifying cellular regulatory path-
ways through the activity of  specific viral IFN-antagonist 
proteins. Among the best-studied viruses in this respect 
are the paramyxoviruses, which include established hu-
man pathogens such as measles virus (MeV) and mumps 
virus (MuV), and emerging zoonotic viruses such as 
the henipaviruses Nipah virus (NiV) and Hendra virus 
(HeV). Although effective vaccines are available for MeV, 
it remains a leading cause of  fatalities in children, with 
almost 140000 human deaths globally in 2010[1], while the 
henipaviruses show remarkable pathogenicity, with case-
fatality rates between 40%-70% in humans[2-5].

The paramyxoviruses are a subfamily of  the Paramyxo-
viridae family [order Mononegavirales (MNV)] of  enveloped, 
non-segmented negative-strand RNA viruses (NNSV), 
which also includes the Pneumovirus subfamily[6,7]. Based 
largely on antigenic cross-reactivity and neuramidase ac-
tivity paramyxoviruses are currently classified into seven 
genera[6,7]: Rubulavirus, Avulavirus, Henipavirus, Morbillivirus, 
Respirovirus, Ferlavirus and Aquaparamyxovirus (Table 1). 
Members of  the paramyxovirus family show diverse tis-
sue tropism and infect a variety of  species in a fashion 
that does not appear to be specific to genus classification 
(Table 1). Because their relatively small genomes lack ded-
icated IFN-antagonist genes, paramyxoviruses generally 
encode IFN-antagonists as accessory protein isoforms 
encoded within their conserved P genes, another factor 
in genus classification[6]. These IFN antagonists broadly 
target several members of  a select group of  signalling 
molecules of  the IFN system, including melanoma differ-
entiation associated factor 5 (MDA5), retinoic acid-induc-
ible gene-Ⅰ (RIG)-Ⅰ, IFN regulatory factor (IRF)-3, and 
signal transducers and activators of  transcription (STAT)1 
and STAT2, but use diverse mechanisms including pro-
teosomal degradation, inhibition of  phosphorylation, and 
subcellular mis-localisation. Intriguingly, the mechanisms 
can vary significantly between different genera and, in 
some cases, different species of  the same genera.

Here we review the mechanistic data relating to para-
myxovirus IFN antagonism with a focus on common and 
distinct features within the family, before discussing pos-
sible origins of  the diversity within the family. Although 
much of  the available research on paramyxovirus IFN 
antagonism has been restricted to in vitro studies, recent 
findings using in vivo infection and recombinant virus 
systems point to a pivotal role in pathogenicity that may 
provide potent targets for the development of  new vac-
cines/antiviral therapeutics.

PARAMYXOVIRUS P GENE
While viruses with large genomes can encode dedicated 

IFN-antagonist proteins, the high error rates of  the RNA-
dependent RNA polymerase means that RNA viruses gen-
erally have restricted genome sizes, with the paramyxovirus 
genome containing only six principal genes to express es-
sential structural/replication factors, specifically M (matrix), 
G/HN/H (attachment), F (fusion), L (polymerase), N/NP 
(nucleocapsid) and P (phosphoprotein) (Figure 1A). Thus 
the IFN-antagonists of  RNA viruses are often encoded as 
“accessory” protein isoforms within one or more of  the 
conserved genes[8,9]; in paramyxoviruses up to 9 proteins 
are encoded in the P gene, including V, C, and P proteins 
and a protein variously named W, D or I, which have es-
tablished IFN antagonist functions. 

Isoform expression from the paramyxovirus P gene is 
variously achieved by a conserved RNA-editing mecha-
nism, and through the use of  internal start codons and 
alternate open reading frames (ORFs). RNA editing is 
mediated by the viral RNA-dependent RNA polymerase 

58 May 12, 2013|Volume 2|Issue 2|WJV|www.wjgnet.com

Table 1  Genus classification and major host species of the 
Paramyxovirinae subfamily

Genus Virus Major host

Morbillivirus Measles virus1 Human
Canine distemper virus Canine
Rinderpest virus Bovine
Peste-des-petits-ruminants virus Caprine
Phocine distemper virus Phocine
Cetacean morbillivirus Cetacean

Rubulavirus Mumps virus1 Human
Parainfluenza virus 5 (previously, 
Simian virus 5)

Human

Human parainfluenza virus 2, 4a 
and 4b

Human

Mapuera virus Chiropteran2

Porcine rubulavirus Porcine
Respirovirus Sendai virus1 Murine

Human parainfluenza virus 1, 3 Human
Bovine parainfluenza virus 3 Bovine

Avulavirus Newcastle disease virus1 Avian
Avian paramyxoviruses 2-9 Avian

Henipavirus Hendra virus1 Chiropteran/
equine 
/human3

Nipah virus Chiropteran/
porcine/
human3

Cedar virus Chiropteran2

Aquaparamyxovirus Atlantic salmon paramyxovirus1 Piscine
Ferlavirus Fer-de-Lance virus1 Serpentine
Unassigned J-virus Murine

Beilong virus Murine
Tailam virus Murine
Menangle virus Porcine
Tioman virus Chiropteran2

Tupaia virus Chiropteran2

Salem virus Chiropteran2

Mossman virus Chiropteran2

Nariva virus Chiropteran2

Pigeon paramyxovirus 1 Avian

1Type species for each genus; 2Virus isolated from chiropteran hosts, but 
pathology and broader host range is unknown; 3Virus is highly pathogenic 
in humans, but humans are not a major host.
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through the insertion of  additional non-coded guanosine 
(G) nucleotides into P gene mRNA transcripts at a pre-
determined purine rich editing site. This causes a +1 or 
+2 frameshift in the downstream ORF[10-12] which results 
in the generation of  two or three distinct proteins (P, V 
and W/D/I), which have common N-terminal sequences 
but unique C-termini (Figure 1B). A comparable editing 
process is used by Ebolavirus of  the Filovirus family to 
produce isoforms from its G gene[13]. This mechanism is 
conserved among all paramyxoviruses examined except 
human parainfluenza virus (hPIV) 1 and the recently dis-
covered cedar virus[14,15]. 

P protein, the polymerase cofactor essential to genome 
transcription/replication processes, is usually generated 
from the unedited ORF as the principal P gene prod-
uct, with the production of  edited RNA varying in a 
broadly genus-specific fashion (Figure 1B), although the 
+1 frameshift commonly encodes V protein and the +2 
frameshift W/D/I[16,17]. Members of  the Rubulavirus ge-
nus uniquely encode V protein in the unedited transcript, 
with P protein expression requiring editing (Figure 1B)[9], 
with c. 63% of  the P gene mRNA transcribed unedited 
by the rubulavirus MuV, indicative of  a particular require-
ment for high levels of  V protein by these viruses[9]. The 
henipaviruses have the highest editing frequency of  the 

paramyxoviruses: 66% to 94% of  transcripts are edited, 
compared with c. 42% for MeV (Morbillivirus genus), and 
c. 31% for Sendai virus (SeV) (Respirovirus genus)[18-21]. 
Henipaviruses insert up to 11 additional G nucleotides[18], 
and in NiV-infected cells P transcripts are detected at the 
highest levels (c. 60%-100%) early in infection, with V and 
W transcripts peaking between 9.5-24 h post-infection (up 
to 59% and 37% respectively). This suggests that editing 
is regulated to enable particularly important roles for V 
and W late in infection[18], although other factors such as 
mRNA/protein stability are likely to affect the final levels 
of  protein.

Henipaviruses, morbilliviruses, and respiroviruses use 
a start codon within the P gene in an alternate ORF to 
produce a C protein (Figure 1B), while the SeV P gene 
encodes up to five proteins other than P, V and W: four 
C proteins encoded by overlapping sequences in the +1 
reading frame, and X protein, a truncated version of  P 
protein translated from an internal start site[11,22,23]. HeV, 
but not NiV, encodes a putative SB (short basic) protein, 
homologous to SB of  several viruses of  other MNV 
families[21]. These differences in P gene coding capacity in-
dicate different requirements of  specific viruses for acces-
sory proteins, possibly due to host/tissue specific aspects 
of  IFN signalling (see below).

The V proteins are generally considered the principal 
IFN-antagonists of  paramyxoviruses, and are the best 
studied of  the P gene accessory proteins. However, there 
is increasing evidence that P, W, or C proteins of  para-
myxoviruses including NiV, MeV, and SeV play important 
roles in IFN antagonism by distinct mechanisms. Thus, it 
seems that most if  not all P gene accessory proteins have 
evolved for roles in immune evasion as important patho-
genicity factors[24-28]. Consistent with important roles in in-
fection, V proteins show high conservation in the unique 
C-terminal region (Figure 2)[29-31], including absolute 
conservation of  seven conserved cysteine residues and a 
histidine, which form a zinc-finger domain (highlighted in 
Figure 2). In the parainfluenza virus 5 (PIV5) V protein 
(Rubulavirus genus), two zinc atoms are coordinated by 
two loops, incorporating V residues H171, C190, C215, 
C218, and C194, C206, C208, C211 respectively[31,32], and 
mutations of  these residues disrupt certain IFN inhibi-
tory functions (see below), although the role of  zinc-
binding is not known. The C-terminal region is also im-
portant to the formation of  oligomeric structures of  V 
proteins and certain innate immune factors important to 
IFN antagonism[33]. 

TYPE Ⅰ IFN SYSTEM
Mammalian cell responses to infection depend on the 
detection of  pathogen-associated molecular patterns 
(PAMPs) produced during microbial infection and rep-
lication, such as single-stranded RNA (ssRNA), double-
stranded RNA (dsRNA) and RNA with exposed/un-
capped 5’ triphosphates that are generated by RNA 
viruses[34,35]. Detection of  virus components is principally 
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Respirovirus P/V/C  gene

+0 P
+1 V

Morbillivirus P/V/C  gene
C

+0 P
+1 V

C (1-4)

+2 W/D

Avulavirus P/V  gene
+0 P
+1 V
+2 W

Avulavirus P/V  gene
+0 V
+1 W/I
+2 P

Henipavirus P/V/C gene
+0 P
+1 V

C

+2 W

RNA editing site

B

A
N or NP P/V/C M F G, HN or H L

Figure 1  Coding strategies of paramyxovirus P genes. A: Genome organi-
sation of the Paramyxovirinae subfamily; B: Paramyxoviruses express multiple 
proteins from the P gene through RNA editing to insert additional non-coded 
G nucleotides into P gene transcripts at the editing site (indicated), causing a 
frameshift in the downstream open reading frame (ORF) to generate distinct 
C-termini. Editing strategies of the 5 best-studied genera are shown, with pro-
teins produced from unedited (+0), or edited (+1 or +2 frameshift) mRNA indi-
cated below the P gene. Several members of the henipavirus, respirovirus and 
morbillivirus genera, but not the rubulaviruses or avulaviruses, produce one or 
more C proteins by translation from internal start codon(s) in alternate ORF(s) 
(indicated as a white bar above the P gene). 



mediated by three types of  PAMP-recognition-receptors 
(PRRs): Toll-like receptors (TLRs) and RIG-Ⅰ-like recep-
tors (RLRs), thought to be the main receptors responsible 
for type Ⅰ IFN (IFNα/β) induction, and nucleotide-
oligomerisation domain-like receptors[36].

TLRs are trans-membrane proteins expressed at the 
plasma membrane or on intracellular structures such as 
endosomes and the endoplasmic reticulum[37,38] to detect 
extracellular viral nucleic acids such as dsRNA (TLR3)[37-40] 
and G/U-rich ssRNAs (TLR7)[38]. By contrast, the almost 
ubiquitously expressed RLR helicases RIG-Ⅰ and MDA5 
detect viral dsRNA in the cytoplasm of  infected cells[36,41-47]; 
RIG-Ⅰ also recognises cytoplasmic 5’ tri-phosphorylated 
and uncapped viral ssRNA[48-50]. RNA-activated MDA5 
and RIG-Ⅰ interact with the mitochondrial membrane-
associated adaptor protein IFNβ promoter stimulator 1 
(IPS-1, also known as MAVS, VISA, or CARDIF) via their 
caspase activation and recruitment domains (CARDs) to 
trigger downstream signalling (Figure 3). TLRs activate 
distinct pathways (Figure 3), but RLR and TLR signalling 
converges with the phosphorylation of  the constitutively 
expressed cytoplasmic transcription factors IRF-3, as well 
as nuclear factor κB (NF-κB), causing their transloca-
tion into the nucleus to activate the transcription of  early 
type Ⅰ IFNs (IFNβ and IFNα4)[36,51-56]. Most human cell 
types can produce type Ⅰ IFNs in response to infection, 
with “professional” IFN-producing immune cells includ-
ing plasmacytoid DCs and macrophages being major pro-
ducers during infection, due to constitutive expression of  
IRF-7 (which requires induction in other cell types) and the 
use of  alternative TLR-9 pathways[57]. Importantly, para-
myxoviruses can induce type Ⅰ IFN expression through 

RIG-Ⅰ, MDA5 and TLR pathways (Figure 3)[42,58,59]. 
Type Ⅰ IFNs signal in autocrine and paracrine fashion, 

binding to the ubiquitously expressed IFNα/β receptor 
(IFNAR) to activate the Janus kinase (JAK)/STAT signal-
ling pathway (Figure 4), resulting in the phosphorylation 
and nuclear translocation of  STAT1 and STAT2 proteins. 
In the form of  a heterotrimeric complex [IFN-stimulated 
gene factor 3 (ISGF3)] which incorporates IRF-9, STAT1 
and STAT2 trans-activate hundreds of  IFN-stimulated 
genes, many of  which encode known antiviral proteins 
including protein kinase R, which inhibits translation of  
mRNAs[60]; 2’5’-oligoadenylate synthetase, which activates 
RNase L to effect degradation of  ssRNA[60]; Mx GTPase 
proteins that interfere with the growth of  certain viruses 
including the paramyxoviruses[52]; and PML, which has 
antiviral properties but with unresolved mechanisms[52]. 
IRF-7 is also up regulated to activate a positive feedback 
loop by forming heterodimers with IRF-3 (Figure 3) in-
ducing “late” IFNα subtypes for prolonged responses to 
infection[61]. 

Although signalling through STAT1/2 heterodimers 
is essential to type Ⅰ IFN responses, type Ⅰ IFN activates 
other complexes including homodimers of  STAT1 and 
STAT3 and STAT1-STAT3 heterodimers, which have dif-
ferent gene specificity or regulatory roles[62], and recent 
data suggest that STAT2 can also effect STAT1-indepen-
dent antiviral functions[63]. Thus, type Ⅰ IFN activation can 
affect diverse gene expression through distinct pathways. 
STATs are also critical to signalling by type Ⅱ and Ⅲ 
IFNs and various other cytokines[54,64] such as interleukin 
(IL)-6[65,66], presenting potential targets for viral inhibition 
of  several immune signalling systems.
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Figure 2  Conserved residues in the paramyxovirus V C-terminal domain. Paramyxovirus V protein C-terminal sequences are aligned with identical and similar 
residues highlighted. Asterisks indicate absolutely conserved histidine and cysteine residues involved in zinc-binding (see text for details). Residue numbers are 
indicated in the sequence titles. MuV: Mumps virus; PIV5: Parainfluenza virus 5; hPIV: Human PIV; MPRV: Mapuera virus; PoRV: Porcine rubulavirus; SeV: Sendai 
virus; MeV: Measles virus; CDV: Canine distemper virus; RPV: Rinderpest virus; PDV: Phocine distemper virus; NDV: Newcastle disease virus; APMV2: Avian para-
myxovirus 2; HeV: Hendra virus; NiV: Nipah virus; ASPV: Atlantic Salmon Paramyxovirus; FDLV: Fer-de-Lance virus; SalV: Salem virus; MoV: Mossman virus; MenV: 
Menangle virus; PPV-1: Pigeon paramyxovirus 1; BeV: Beilong virus; J-V: J-virus; TioV: Tioman virus; NarPV: Nariva virus.
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CELLULAR TARGETS OF 
PARAMYXOVIRUS IFN ANTAGONISTS
A large body of  evidence indicates that viruses/IFN-an-
tagonist proteins generally target multiple steps in the IFN 
system[52,67,68]. The requirement for this broad targeting 
probably relates to factors such as differences in the kinet-
ics of  viral IFN-antagonist expression compared with the 
mounting of  IFN responses, the contribution of  infected 
cells and non-infected professional IFN producing cells, 
and the overall antiviral potency of  the IFN system. Most 
paramyxoviruses can inhibit both IFN induction and sig-
nalling by targeting several cellular proteins. Intriguingly, 

although paramyxoviruses generally target common fac-
tors including MDA5, IRF-3 and STATs, the mechanisms 
of  inhibition show significant divergence between differ-
ent viruses.

Targeting of MDA5
The V proteins of  at least 13 paramyxoviruses tested bind 
to MDA5 to inhibit IFN induction[32,69-71]. Rinderpest vi-
rus (RPV) may differ, as it appears to use the C protein 
rather than V to inhibit MDA5 signalling, although the 
binding of  RPV V to MDA5 has not been examined[72]. 
The V proteins of  PIV5, hPIV2, MuV, MeV, NiV, HeV, 
SeV, Mapuera virus (MPRV), Menangle virus (MenV) 
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Figure 3  Type Ⅰ interferon induction is inhibited by paramyxovirus interferon-antagonist proteins at multiple stages. Pathogen-associated molecular pat-
terns (PAMPs) generated during virus infection, such as dsRNA, are recognised by PRRs including endosomal/surface expressed Toll-like receptor 3 (TLR3) and cy-
toplasmic retinoic acid-inducible gene-Ⅰ (RIG-Ⅰ)/melanoma differentiation associated protein 5 (MDA5). TLR3 signals through the adaptor molecule Toll/interleukin-1 
receptor domain-containing adaptor inducing interferon (IFN)β (TRIF), which recruits tumor necrosis factor receptor-associated factor (TRAF)2 to activate the inhibitor 
of nuclear factor κB (NF-κB) kinase (IKK)α/β kinases to phosphorylate inhibitory inhibitor of NF-κB (IκB), triggering its degradation and activation/nuclear transloca-
tion of NF-κB. TLR3 signalling via TRAF3 results in phosphorylation/activation of IFN regulatory factor (IRF)-3, causing its homodimerisation, or heterodimerisation 
with IRF-7 in professional IFN producing/IFN-primed cells, and translocation into the nucleus where, with NF-κB and activating transcription factor 2 (ATF2)/c-jun (not 
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cific examples of the paramyxovirus proteins responsible (see text for details). DC: Dendritic cell; PIV5: Parainfluenza virus 5; MeV: Measles virus; MuV: Mumps virus; 
SeV: Sendai virus; hPIV: Human PIV; HeV: Hendra virus; NiV: Nipah virus; SalV: Salem virus; TioV: Tioman virus; NDV: Newcastle disease virus; MPRV: Mapuera 
virus; MenV: Menangle virus; PoRV: Porcine rubulavirus; LGP2: Laboratory of genetics and physiology 2.
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and Salem virus (SalV) were shown to bind a specific re-
gion within/proximal to residues 701-816 of  the MDA5 
helicase domain, independently of  the MDA5 ligand 
dsRNA[70,71,73], thereby blocking dsRNA-MDA5 interac-
tion[70]. Although a recent study of  PIV5 V identified a 
change in the dsRNA-binding properties of  MDA5 when 
V was co-expressed, rather than a complete inhibition, 
suggesting that V may still allow non-cooperative dsRNA 
binding[74]. In addition, the V proteins of  PIV5, MenV, 
and SalV might have further specialist antagonistic func-
tions, as yeast two-hybrid assays indicated that they inter-
acted with multiple distinct regions of  MDA5[70]. A crystal 
structure of  PIV5 V in complex with MDA5 has dem-
onstrated that V unfolds the ATPase domain of  MDA5, 
which allows it to bind a region normally hidden beneath 
the helicase fold[74]. This unfolding disturbs the ATPase 
hydrolysis site, and it was shown using MeV V that in-
creasing concentrations of  V correlate with decreasing 
ATPase activity[74]. 

The MDA5 binding site has been mapped to the C-ter-
minal region of  the V proteins of  PIV5, MeV, MuV, New-
castle disease virus (NDV), NiV, HeV and SeV[32,69-71,75,76], 
with conserved residues of  the zinc-finger critical to the 
interaction. However, the precise molecular details dif-
fer between specific paramyxoviruses, with conserved 
cysteine residues in the large zinc finger loop, but not the 
smaller loop, of  PIV5 V and NiV V dispensable for an-
tagonism of  IFN induction[32], whereas MuV V and MeV 
V required all conserved cysteine residues[32]. A crystal 
structure of  MDA5:PIV5 has shown PIV5 V to have six 
residues (174, 175, 177, 179, 184 and 197) involved in 
forming the interface with MDA5, only some of  which 
are conserved with other paramyxovirus V proteins[74]. 

Targeting of RIG-Ⅰ via laboratory of genetics and 
physiology 2 protein
In contrast to MDA5, V proteins do not bind directly to 
RIG-Ⅰ, nor inhibit RIG-Ⅰ oligomersation or dsRNA-

62 May 12, 2013|Volume 2|Issue 2|WJV|www.wjgnet.com

IFN
α/β

Tyk2 JAK1
P P

STAT
1

STAT
2

PP

STAT
1

STAT
2

PP

STAT
1

STAT
2

STAT
1

STAT
2

P PIRF9

ISG

ISRE

ISGF3

IFNAR
Cell membrane

Cytoplasm

Nuclear membrane

Nucleus

MeVN

Sequesters STAT1 in 

cytoplasmic aggregates

MuVV, PIV5V, NDV

Target STAT1 for 

proteosomal degradation

HeVP/V, NiVP/V, MuVV, RPVP/V/W

Direct binding to STAT1 prevents phosphorylation

HeVP/V, NiVP/V, MuVV, RPV

Direct binding to STAT2 prevents phosphorylation

MeVV N-terminal

Interacts with JAK1 to prevent STAT1/2 phosphorylation

HPIV2

Target STAT2 for 

proteosomal degradation

MuVNP

Sequesters STAT2 in 

cytoplasmic aggregates

CDVV, MPRV, MeVV

Direct binding prevents STAT1/2 

nuclear translocation

NiVW

Prevents STAT1/2 

phosphorylation and 

DNA-binding

Figure 4  Interferon signalling pathways are targeted by paramyxovirus interferon-antagonist proteins through diverse mechanisms. Interferon (IFN)β binds 
to type Ⅰ IFN receptor subunits IFNα/β receptor (IFNAR)1 and IFNAR2, causing dimerization, activation and phosphorylation of the receptor-associated kinases 
Janus kinase 1 (JAK1) and tyrosine kinase 2 (Tyk2), to create docking sites for the SH2 domains of signal transducers and activators of transcription (STAT)1 and 2. 
STAT1 and 2 are phosphorylated by Tyk2 and JAK1 respectively, and form a heterodimer that translocates into the nucleus, forming the heterotrimeric transcription 
factor complex IFN-stimulated gene factor 3 (ISGF3) with IFN regulatory factor (IRF)-9. ISGF3 binding to IFN stimulatory response element (ISRE) sequences in the 
promoters of hundreds of IFN-stimulated genes (ISGs) activates the transcription of antiviral and immune-modulatory proteins to establish an antiviral state in infected 
and neighbouring cells, and contribute to shaping the adaptive immune response. STAT1 and/or STAT2 are targeted by almost all paramyxoviruses through the activ-
ity of several IFN antagonists by mechanisms that are reported to differ significantly; mechanisms and specific viral proteins responsible are indicated (see text for 
details). HeV: Hendra virus; NiV: Nipah virus; MuV: Mumps virus; RPV: Rinderpest virus; MeV: Measles virus; PIV5: Parainfluenza virus 5; NDV: Newcastle disease 
virus; hPIV: Human PIV; CDV: Canine distemper virus; MPRV: Mapuera virus.

Audsley MD et al . Paramyxovirus innate immune evasion



63 May 12, 2013|Volume 2|Issue 2|WJV|www.wjgnet.com

binding[70], which has been assumed to indicate that they 
have no direct role in inhibiting RIG-Ⅰ activation, but 
rather target downstream signalling components such as 
IRF-3 (see below). However, recent data has indicated that 
V proteins can inhibit RIG-Ⅰ by interaction with another 
cellular helicase, the laboratory of  genetics and physiology 
2 (LGP2)[73], via a region of  LGP2 homologous to the V 
protein binding region in MDA5[71,73]. The interaction ap-
pears to be dependent on the unique C-terminal domain 
of  V protein, as PIV5 P protein did not bind to LGP2, 
but the C-terminal domains of  MeV and MuV V proteins 
were necessary and sufficient for the interaction[71,73]. Im-
portantly, V proteins were able to inhibit RIG-Ⅰ signalling 
only in cells where LGP2 was coexpressed[73], and RIG-Ⅰ- 
LGP2 interaction was detected only in cells expressing V 
protein, suggesting that V facilitates or mediates this inter-
action to shutdown RIG-Ⅰ activation[73]. Because LGP2 is 
homologous to RIG-Ⅰ and MDA5, but lacks the CARD 
domain to activate downstream signalling, it is thought 
to be a negative regulator of  IFN induction, consistent 
with the inhibitory effects of  V protein expression. How-
ever, there is evidence that LGP2 can positively regulate 
IFN induction under some conditions[77-80], so the precise 
mechanisms of  V protein/LGP2 antagonism of  RIG-Ⅰ  
remain to be determined. 

Inhibition of IRF-3 activation
In addition to inhibition of  PRRs, paramyxoviruses target 
downstream signalling components to prevent activation 
of  IRF-3, potentially as a mechanism to inhibit signal-
ling by both RLRs and TLRs (Figure 3). Rubulaviruses 
including MuV, hPIV2, and PIV5 use V protein as a decoy 
substrate for the IRF-3 kinases TANK-binding kinase 1 
(TBK-1) and inhibitor of  NF-κB kinase (IKK)e (Figure 3), 
both inhibiting phosphorylation of  IRF-3 and facilitating 
IKKe/TBK-1 polyubiquitination and degradation to pre-
vent further signalling[81]. 

Henipavirus V proteins do not cause IKKe/TBK-1 
degradation[81] or block TLR-3/IRF-3 dependent signal-
ling[76,81]. For henipaviruses, this appears to be a function 
of  the W protein, as NiV W, although having no effect 
on MDA5 signalling, inhibited TLR-3-dependent phos-
phorylation of  IRF-3[82]. It is possible this is due to bind-
ing and sequestration of  inactive IRF-3 in the nucleus 
where NiV W localises, to prevent interaction with 
cytoplasmic IKKe/TBK-1[82]. This model is consistent 
with the reported importance of  NiV W protein nuclear 
localisation to its inhibition of  TLR3-dependent IFN 
induction[82]. MeV C protein also inhibits IFN induction, 
correlating with its nuclear localisation[83], although MeV 
C does not affect IRF-3 directly, and appears to have an 
undetermined nuclear target[83]. By contrast, cytoplasmic 
NDV and SeV V protein bind directly to IRF-3, thereby 
preventing its nuclear translocation[76]. Thus, paramyxo-
virus targeting of  IRF-3-mediated signalling involves 
mechanisms that appear to differ significantly between 
species.

Targeting of STATs by rubulaviruses: degradation and 
mis-localisation
Almost all rubulavirus V proteins target STAT1 or STAT2 
for degradation by the host-cell proteosomal pathways[84-87] 
through assembly of  a V-degradation complex (VDC) 
containing V protein, STAT1, STAT2, and components 
of  an E3 ubiquitin ligase complex, specifically the UV 
damage-specific DNA binding protein 1 (DDB1), and 
Cul4A[88-92], which likely mediate the STAT1/2 polyu-
biquitination[93]. In vitro studies/crystallographic analysis 
of  the PIV5 V-DBB1 complex have indicated that both 
the N-terminal and unique C-terminal regions of  PIV5 
V are required for VDC assembly and STAT1 degrada-
tion[33,88,93,94]. Intriguingly, although some rubulaviruses 
target only STAT1 or STAT2 for degradation (see Figure 4  
for details)[95,96], both STATs are required, with the non-
degraded STAT acting as a “co-factor”[97,98]. 

The MuV V protein VDC polyubiquitinates and de-
grades not only STAT1, but also STAT3[84,99], such that 
MuV V protein can inhibit STAT3-dependent transcrip-
tional activation by IL-6 and v-Src[99]. MuV targeting of  
STAT3 is independent of  STAT1 targeting, as a point 
mutation abrogating targeting of  STAT3 did not affect 
STAT1[100], and STAT3 degradation does not require the 
STAT2 “cofactor”[99]. STAT3 targeting by the V protein 
of  MuV is also highly specific to this species, as the V 
proteins of  the rubulaviruses MPRV, hPIV2 and hPIV4 
do not reduce cellular levels of  STAT3[87,101,102].

Intriguingly, the V proteins of  hPIV4a and hPIV4b 
do not degrade STATs or measurably affect their localisa-
tion or phosphorylation, but still bind to STAT1, STAT2 
and other VDC components[101]. While these viruses 
appear to lack the ability to antagonise STAT signalling, 
the specific binding capacity of  the proteins is suggestive 
of  a previous role in STAT antagonism, which may have 
been lost due to changes in selective pressures[101].

MPRV V protein, by contrast with those of  other ru-
bulaviruses, binds to STAT1 and STAT2 to prevent their 
nuclear translocation without inducing degradation[102]. 
This is similar to reports for the V proteins of  the henipa-
viruses and morbilliviruses (see below), except in that 
MPRV V does not inhibit STAT1 phosphorylation and 
can bind to STAT1 and STAT2 independently[102]. A 
similar mechanism may be used by the MuV NP protein, 
which co-localises with STAT2 in punctate aggregates in 
the cytoplasm of  infected cells[99], indicating that NP pro-
tein, like P protein, can mediate both replication and IFN 
antagonist functions.

Targeting of STATs by avulaviruses
In common with rubulaviruses such as PIV5, the avula-
virus NDV targets STAT1, but not STAT2, for degrada-
tion. Deletion of  the C-terminal region of  V protein, or 
deletion of  both V and W C-termini by disruption of  
the RNA editing site, prevented STAT1 degradation by 
recombinant NDV[95]. As little difference was observed 
between virus deleted for both V and W, and virus deleted 
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for the V protein C-terminal domain alone, V protein 
appears to be the major player, and consistent with this, 
NDV V but not NDV W degraded STAT1 in transfected 
cells[95]. 

Targeting of STATs by morbilliviruses
MeV V binds STAT1 and STAT2 through distinct sites 
in its N-terminal and C-terminal regions[103], respectively, 
indicating that targeting of  STAT2 independently of  
STAT1 is important to this virus. MeV V protein does 
not degrade STATs[104], but has been reported by differ-
ent laboratories to use several distinct mechanisms, in-
cluding inhibition of  STAT nuclear translocation without 
affecting STAT phosphorylation[103-105], and inhibition 
of  STAT1 and STAT2 phosphorylation due to interac-
tion of  its N-terminal domain with JAK1[106,107]. Canine 
distemper virus (CDV) and RPV V proteins also inhibit 
IFN-activated STAT1/STAT2 nuclear import[108,109], with 
RPV V protein, but not that of  CDV, inhibiting STAT1/2 
phosphorylation. 

MeV V also interacts with IRF-9, which is likely to af-
fect ISGF3 formation (Figure 4)[104], and with STAT3[104], 
a property thus far restricted in the paramyxovirus family 
to MeV and MuV V proteins[99,100,104,110]. HeV V and PIV5 
V have been shown to lack STAT3 binding function, and 
while SeV infection can inhibit IFNα-dependent STAT3 
phosphorylation, this appears to relate to upstream ef-
fects on Tyk2 rather than STAT3 directly[111]. STAT3 
binding by other paramyxovirus V proteins, however, has 
not been investigated.

MeV N protein also inhibits STAT1/2 signalling[112], 
indicating a particular importance of  STAT inhibition 
to MeV, and co-localises with STAT1 in cytoplasmic ag-
gregates in infected cells, analogously to MuV NP[99,104]. 
STAT2 also co-localised with MeV N in aggregates, but 
with reduced frequency compared with STAT1[104].

STAT targeting by respiroviruses: the importance of C 
proteins
STAT targeting by respiroviruses differs significantly 
from other paramyxoviruses, due to the expression of  
additional proteins from the P gene (Figure 2), including 
four C proteins by hPIV1[14,113], which does not express 
V or W. The C’ protein of  hPIV1 binds and sequesters 
STAT1 in perinuclear aggregates, suggesting that the C 
proteins may be sufficient for IFN antagonism by this 
virus[114]. SeV C proteins (C’, C, Y1 and Y2), also bind to 
STAT1 and prevent signalling and, importantly, the func-
tions of  the individual C proteins appear non-redundant, 
as knockout of  all four proteins is required to completely 
prevent IFN antagonism in infected cells[115,116]. Data re-
garding the mechanisms of  SeV C proteins activity are 
conflicting[116-121], with some reports suggesting that C 
and C’, but not Y1 or Y2, cause STAT1 mono-ubiqui-
tination/degradation[116,117] dependent on the C protein 
N-termini[118,119], while others reported no reduction in 
STAT1 expression but indicated inhibition of  STAT1 

and STAT2 phosphorylation by the C proteins, indepen-
dently of  their N-termini[120,121]. 

STAT targeting by henipaviruses: the roles of P, V and W
The henipavirus P, V and W proteins can bind to STAT1 
and STAT2 through the shared N-terminal region[122,123] 
to prevent STAT1/2 phosphorylation and activation 
by holding them in high molecular weight complex-
es[110,123-125]. Transfection studies indicate that P, V and 
W have differing capacities to inhibit STAT signalling, 
with P protein the least effective[125]. This is consistent 
with the hypothesis that the V and W accessory proteins 
have evolved to enable specific, distinct roles as IFN-
antagonists, sequestering STATs in the cytoplasm and the 
nucleus, respectively[82,122,125], whereas P protein functions 
principally as the polymerase cofactor, but can arrest 
STATs in the cytoplasm. Mutation of  the shared G121 
residue was found to specifically ablate STAT1 binding by 
V, W and P, without affecting P protein polymerase co-
factor function, enabling the production of  recombinant 
NiV impaired for STAT antagonistic functions to con-
firm that inhibition of  STAT1 phosphorylation in NiV 
infected cells is due to P/V/W binding[122,126]. In wild-type 
NiV-infected cells, but not those infected with the mutant 
NiV, unphosphorylated STAT1 localised exclusively to 
the nucleus, similar to cells expressing W protein alone, 
suggesting NiV W has the predominant role in blocking 
STAT signalling in infected cells[122]. 

DIFFERENT MECHANISMS OF IMMUNE 
EVASION: EVOLUTION OR EXPERIMENT?
Although there is abundant evidence that paramyxovirus 
P gene-encoded proteins can antagonise IFN responses 
by diverse species-specific/genera-specific mechanisms, 
the source of  this diversity is currently unclear. A major 
caveat of  the available data is its heavy reliance on in vitro 
studies, particularly transfection studies of  single IFN-
antagonist proteins. Although these approaches enable 
highly specific analyses of  the properties of  particular 
IFN-antagonists, including mapping/mutagenesis stud-
ies, the potential to generate artefactual data due to the 
absence of  other viral factors and/or non-physiological 
expression levels is a significant concern. Indeed, several 
transfection studies in different laboratories have gener-
ated conflicting mechanistic data for the same viral pro-
tein, including SeV C and MeV V protein[103-107,116,117,120,121], 
suggesting that some reported differences between IFN 
antagonists of  different paramyxovirus species/genera 
might arise from experimental rather than biological dif-
ferences. Importantly, however, recent studies comparing 
in parallel the functions of  V proteins from panels of  
paramyxoviruses have confirmed clear divergence in spe-
cific mechanisms/interactions[70,71,76], indicating genuine 
divergence at the molecular level.

Recent studies have also directly compared IFN-an-
tagonist protein expression/functions in transfected and 
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infected cells, identifying clear differences. Notably, one 
study reported that while henipavirus V and W proteins 
profoundly inhibit IFN/STAT signalling in transfected 
cells, no inhibition was apparent in infected cells, which 
appeared to relate to the higher expression of  V/W pro-
teins in transfected cells[127]. This suggested that STAT 
inhibition by V and W does not have significant roles in 
infected cells, but it seems unlikely that viruses would 
evolve proteins that can specifically target factors of  the 
IFN response and impede their function by sophisticated 
mechanisms were this not important at some stage of  
infection. While in vitro infection approaches are clearly 
closer to natural infection than transfection, they also use 
controlled in vitro conditions including the inoculation of  
cultured monolayers of  specific cell types with precise 
multiplicities of  infection, and treatments with specific 
concentrations of  IFNs. By contrast, in natural infection 
the kinetics of  viral protein expression and induction of  
the IFN system is highly dynamic, involving both infect-
ed cells and professional IFN-producing cells, and fac-
tors such as the infectious dose, route of  infection, host 
species, and infectious spread to specific tissues can vary 
greatly, significantly affecting requirements for IFN an-
tagonism and the disease outcome[128]. Thus, the diverse 
mechanisms of  IFN antagonism identified in transfection 
studies may have vital roles in infection in vivo.

Importantly, IFN antagonism has been implicated 
as a key factor in host and tissue specificity, with PIV5 
showing limited host range dependent on the capacity 
of  the V protein to bind to STAT2 from different spe-
cies[129-132], whereas NiV V blocks IFN signalling in cells 
of  many species, consistent with its broad infectious 
range[82,110,124,126]. Tissue-specific antagonism of  IFN has 
also been reported for NiV, which induces an IFN re-
sponse in endothelial but not neuronal cells, correlating 
with differential subcellular localisation of  NiV W[133]. 

A genuine appreciation of  the importance of  specific 
IFN-antagonistic mechanisms to pathogenicity, however, 
requires the use of  recombinant virus systems and in vivo 
pathogenicity models. Recent advances in this area include 
reports that recombinant hPIV2 impaired for V protein 
antagonism of  MDA5 is attenuated in rhesus mon-
keys[134-136], and that the severity of  clinical signs in MeV-
infected monkeys was reduced by mutation of  the P/V 
proteins to prevent inhibition of  STAT1[137]. In addition, 
the deletion of  V or C proteins from MeV caused attenu-
ation in mice, but V deletion alone resulted in restricted 
spread in the brain[138], supporting the hypothesis that 
specific mechanisms of  IFN-antagonism are important to 
infection of  certain tissues. Deletion of  the V C-terminal 
domain in recombinant NiV also reduced pathogenicity in 
a hamster model[123-125,139], possibly due to IFN-antagonist 
functions of  the V C-terminal domain, such as the target-
ing of  MDA5.

Of  paramount importance to delineating the roles of  
specific mechanisms of  IFN antagonism in pathogenicity 
will be the extension of  in vivo studies to include geneti-

cally modified animals deficient in specific IFN signalling 
processes. For example, recent research indicated that SeV 
pathogenicity is increased in MDA5 knockout mice[140], 
suggesting that this might provide a useful model to in-
vestigate the importance of  MDA5 antagonism in in vivo 
infection. 

CONCLUSION
A substantial body of  data from the past c. 15 years has 
provided key insights into the immune evasion strategies 
of  paramyxovirus IFN-antagonists, indicating that they 
employ a remarkable array of  mechanisms to target es-
sential factors of  the IFN response, with the limited in vivo 
infection data indicating that these functions are essential 
to pathogenicity. However, as much of  the current mecha-
nistic data comes from in vitro transfection approaches, 
their importance to natural infection remains largely unre-
solved. Future studies employing in vivo infection models, 
recombinant virus systems and genetically modified ani-
mals should begin to unravel in detail the interactions of  
paramyxoviruses with the IFN system in vivo. This is likely 
to result in the identification of  new potential targets for 
the development of  vaccines and antivirals required for 
the treatment of  established prolific human pathogens 
such as MeV, as well as emerging zoonotic threats includ-
ing NiV and HeV.
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