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Abstract
Immunosenescence is marked by accelerated degradation 
of host immune responses leading to the onset of 
opportunistic infections, where senescent T cells show 
remarkably higher ontogenic defects as compared to 
healthy T cells. The mechanistic association between T-cell 
immunosenescence and human immunodeficiency virus 
(HIV) disease progression, and functional T-cell responses 
in HIV-tuberculosis (HIV-TB) co-infection remains to be 
elaborately discussed. Here, we discussed the association 
of immunosenescence and chronic immune activation 
in HIV-TB co-infection and reviewed the role played 
by mediators of immune deterioration in HIV-TB co-
infection necessitating the importance of designing 
therapeutic strategies against HIV disease progression 
and pathogenesis. 
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Core tip: The mechanistic aspects associated with 
increased expression of senescence and immune activa-
tion markers cluster of differentiation (CD) 38, CD69, 
CD57, human leukocyte antigen-DR, and the down-
regulation of functional molecules, viz. , CD28, CD27, 
CD40L and CD127 on human immunodeficiency 
virus-specific T cells appear to be crucial in the 
immunopathogenesis of HIV-tuberculosis (HIV-TB) co-
infection. Mycobacterium tuberculosis  appears to play 
a major role in accelerating HIV disease progression, 
by directly or indirectly facilitating factors associated 
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with immune senescence. Measures to ameliorate 
immunosenescence and immune activation appear to 
stem from identification of novel targets of downstream 
senescence signaling. Restoration of molecules 
associated with T-cell homeostasis, differentiation, cell 
survival and proliferation abilities of HIV-specific CD8+ T 
cells is key to foster functional immune responses.
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INTRODUCTION
The hallmark of  human immunodeficiency virus type 1 
(HIV-1) disease is the destruction of  cluster of  differentia-
tion (CD) 4+ T cells eventually leading to the failure of  
functional attributes of  the host immune system in 
containing viral establishment. The key target cells of  
HIV infection are CD4+ T cells, dendritic cells (DCs), 
monocytes/macrophages, thymocytes and microglial 
cells[1,2]. HIV enters these cells via binding primarily but not 
limited to target receptors/coreceptors CD4, chemokine 
coreceptor 5 (CCR5) and CC-chemokine receptor 4 
(CXCR4)[3-5]. The CCR5-tropic HIV (macrophage-tropic 
R5 strain) appears to predominate primarily during the 
onset of  infection, and eventually the CXCR4 HIV (T cell-
tropic X4 virus) takes over to establish a chronic phase 
leading to eventual destruction of  CD4+ T cells harnessed 
by the onset of  opportunistic infections and neoplasms[6]. 

HIV reportedly evades the immune system through 
several ways to effect direct or indirect killing of  
infected and uninfected cells[7]. HIV facilitates CD4+ 
T cell depletion primarily via accelerated destruction, 
chronic immune activation (CIA) and also by impairing 
the regeneration of  new T cells from existing T-cell 
precursors[8]. Evidence suggests that monocytes and 
macrophages although may not be significantly affected in 
HIV-infected individuals, their role as reservoirs for HIV-1 
provides homes for long-term survival following infection 
and can therefore be transmitted to bystander T cells[9,10]. 
DCs contribute even more to HIV-1 pathogenesis and 
studies have reported reduced levels of  peripheral blood 
DCs in HIV-1 patients and changes in their phenotypic 
and functional properties[11]. Evidence also suggests that 
HIV could alter the expression of  costimulatory molecules 
as well as chemokine receptors[11]. HIV-1 infected DC 
in contact with T cells fail to provide optimal feedback 
to T cells partly due to impaired release of  IL-12, which 
in turn fail to provide optimal survival signals for DCs 
owing to impairment in the expression of  CD40L on T 
cells. Furthermore, sustenance of  T-cell proliferation is 
also impaired due partly to decreased secretion of  IL-2 by 
activated T cells[12,13]. 

IMMUNOSENSESCENCE AND CHRONIC 
IMMUNE ACTIVATION - KEY CULPRITS 
OF HIV DISEASE PROGRESSION 
Immunosenescence is a common biological phenomenon 
occurring in elderly individuals, and represents gradual 
deterioration of  the immune system leading to attenuated 
responses to infections and vaccinations[14]. Roy Walford 
was the first to use the term “immunosenescence” in 1969. 
He believed that normal ageing in humans and animals is 
related to deficient immune functions[15]. Like any other 
cells in the body, immune cells undergo senescence. 
Immune senescence is characterized by changes in T-cell 
subsets, molecular alterations and often involves atrophy 
of  lymphoid organs, eventually culminating in the decline 
of  T- and B-cell functions[16]. Recent studies have shown 
that immunosenescence can occur involving both the 
adaptive and innate arms of  the immune systems[17]. 
However, the major immune cells severely affected by 
immunosenescence are the T cells, which ultimately result 
in compromised responses to antigens and increased 
rates of  differentiation of  naïve T cells to terminally-
differentiated T cells[18,19]. 

Immunosenescence is marked by accelerated degra-
dation of  immune system with increased turn-over of  
senescent T cell phenotypes showing remarkable ontogenic 
defects[20]. The cells possess reduced life-span with 
shorter telomere lengths, reduced proliferation abilities, 
dysfunctional cytokine-secreting abilities, deficient anti-viral 
responses (exhausted effector T cells), and suppression 
of  T-cell responses due to expansion of  suppressor T 
cells and up-regulation of  multiple negative immune 
receptors[21-25]. Currently, there is increasing evidence of  the 
expansion of  senescent T cells expressing surface markers 
such as CD28, CD27, CD57 and CD127, especially in 
HIV and cytomegalovirus (CMV) infections[26-30]. This 
suggests that persistent viral infections (PVIs) can induce 
the expansion of  senescent T cells via a mechanism called 
“replication senescence” or “Hayflick phenomenon”, also 
defined as the decrease in the ability of  a cell to proliferate, 
with significant mark of  terminal differentiation[31,32].

Interestingly, immunosenescence also appears to 
occur in younger individuals with underlying malignancies 
and autoimmune conditions. An overwhelming body of  
evidence shows that persistent microbial infections with 
highly sustained levels of  chronic antigenic stimulation, 
especially with HIV and CMV, could lead to functional 
impairment of  Ag-specific T cells including proliferative 
abilities[33]. Furthermore, premature senescence of  CD4+ 
and CD8+ T cells is well-characterized in chronic HIV 
infection with evidence of  up-regulated surface markers 
and functions similar to that seen in elderly HIV-uninfected 
individuals[34,35]. Chronic HIV-infected patients have also 
shared some similarities in T-cell dysfunction with that of  
‘healthy’ aging elderly[36,37]. Interestingly, the persistence 
of  immune activation is exceptionally notable in chronic 
HIV disease both in mono-infected and co-infected with 
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other infectious agents such as HCV, HBV and MTB, 
despite that highly-active antiretroviral therapy suppressed 
viral replication in these subjects[38-40]. This phenomenon 
appears to be attributed to the up-regulation of  immune 
activation markers namely ki-67, CD38, human leukocyte 
antigen - DR (HLA-DR), and CD69 on HIV-specific 
CD4+ and CD8+ T cells[41,42]. Of  these, CD38 expression 
has been reported to serve as a reliable marker of  disease 
progression and acquired immunodeficiency syndrome 
(AIDS)-associated mortality[43]. 

Markers of  CIA apart from T cells, are also expressed 
in a plethora of  other immune cells such as monocytes, 
DCs, and natural killer (NK) cells[44]. Elevated immune 
activation of  T cell appears to be one of  the potent 
predictors of  HIV disease progression[45,46] as highly 
sustained immune activation may contribute to rapid 
disease progression by impairing the ability of  the immune 
system to respond to antigens[47], suggesting that CIA 
could be a key player in HIV pathogenesis and indirectly 
predicts progression to non-AIDS related morbidity and 
mortality[34]. Accumulating line of  evidence also suggests 
that increased expression of  CD57 and reduced levels 
of  CD127 in patients with CIA highly correlated with 
T-cell dysfunction and senescence[26,27,48,49] supporting 
the notion of  potential association between CIA and 
immunosenescence, especially in T cells.

IMMUNOSENESCENCE AND HIV-TB 
CO-INFECTION
Current investigations in human HIV/TB co-infection have 
provided several fundamental principles to understand how 
these distinct pathogens additively interact to accelerate 
the rates of  disease progression. Although the precise 
mechanism of  co-pathogenesis still remains elusive, it 
has widely been shown that both TB and HIV exert 
substantial influence on the host immune system. Hence, 
investigations underpinning the influence of  TB in HIV/
TB co-infection, and the importance of  T-cell responses 
to elucidate the mechanisms underlying the failure of  the 
immune system resulting from the dreadful interaction 
between HIV and TB are urgently required.

While it is increasingly becoming clear that persistent 
HIV disease facilitates the onset of  CIA and consequently 
to premature senescence[20,24,28,45,47,50], existing hypotheses 
suggest that MTB exacerbates HIV disease by enhancing 
viral transmission and entry into immune cell by causing 
alternations in signal transduction, cytokine modulation; 
overcoming anti-viral responses with overwhelming HIV 
promoting responses; and facilitating HIV amplification 
by rendering the formation of  granuloma[51-54]. The up-
regulation of  immunosenescence markers on T cells 
appears to accelerate the depletion of  functional T cells, 
hastening a shift to terminally-differentiated T cells with 
altered immune functions[55], and hence we speculate 
that this potentially might facilitate the onset of  AIDS, 
and disseminated and extra-pulmonary TB infections. 
Based on this mechanistic viewpoint it is also possible to 

correlate immunosenescence with CIA in HIV-TB co-
infection. 

CD38 AND HLA-DR - IMMUNE 
ACTIVATION MARKERS IN HIV-TB 
CO-INFECTION
CD38 and HLA-DR have been widely used to deduce 
the activation status of  various immune cells, apart from 
other markers such as CD27, CD28, Ki-67 and CD69[41,42]. 
CD38 is a glycoprotein receptor found on the surface 
of  T cells, B cells and NK cells with key roles in signal 
transduction and calcium mobilization associated with their 
activation[56]. On the other hand, HLA-DR is an major 
histocompatibility complex class II molecule that presents 
antigens to APCs and acts as a marker of  T-cell stimulation 
and activation[56-58]. Numerous literatures have established 
that immune activation is a direct measure of  HIV disease 
progression[45,59-61], which has previously been shown with 
CD38 expression on CD8+ T cells[43,46,62]. Multiple studies 
have also shown that concomitant with HCV, HBV, and 
MTB can directly impact HIV disease progression with 
excessive T-cell activation in the peripheral blood[40,63-65]. 
Increased expression of  CD38 on both CD4+ and 
CD8+ T-cells of  HIV-TB co-infected subjects has been 
described relative to HIV mono-infection[63,66,67]. This was 
also consistent with existing evidences that explain the 
association of  HIV/TB co-infection with sustained levels 
of  peripheral activation in immune compartment following 
pathogenic persistence[67-69]. Indeed, TB infection fosters 
immune activation as evident from up-regulated CD38 
expression on T-cell subsets as compared to uninfected 
subjects[66,70]. Besides this, CD38 expressions in both 
the CD4+ and CD8+ T-cell subsets have been inversely 
correlated with CD8+ T-cell counts and HIV plasma viral 
load, and that enhanced CD38 expression could lead 
to rapid HIV disease progression[66,70]. The mechanism 
whereby MTB appears to attenuate the expression of  
HLA-DR, particularly on innate cells such as macrophages 
and DCs, is via the synthesis of  bacterial proteins (such as 
19kD lipoprotein and lipoprotein rG), which subsequently 
cause impaired antigen presentation and processing, 
potentially affecting the downstream signaling for HLA-
DR expression on T cells[71-74]. In addition, MTB can evade 
phagocytosis by macrophages and eventually delay the 
onset of  adaptive immune responses[75,76]. Active MTB 
infection can suppress the expression of  HLA-DR via 
innate receptors (i.e., TLR2), gene repression (i.e., histone 
deacetylation), and cytokine-mediated inhibition (i.e., 
IFN-γ) in infected individuals. 

HOW DOES HIV-TB CO-INFECTION 
ENGINEER THE DIFFERENTIATION OF 
SENESCENT PHENOTYPES?
Cellular differentiation is the process by which a less 
specialized cell becomes a more specific phenotype with 
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progression[48,90]. Furthermore, expansion of  CD57+CD8+ 
T cells upon stimulation by MTB have more extensive 
cytokine and cytolytic potential with secretion of  TNF-α 
and IL-6[53], and this abnormality of  modulation may 
eventually promote HIV manifestation in co-infected 
individuals.

Based on our understanding, immunosenescence is 
best characterized by T cells showing increased CD57 
and decreased CD28 expressions, also known as “late-
differentiated” or senescent cells, despite several studies 
have proposed that co-expression of  CD57 and CD27 may 
be a better correlate compared to CD28 as an indicator of  
replicative senescence[55,87]. It is also evident that loss of  
CD27 and CD28 with concurrent up-regulation of  CD57 
descriptively represents increase of  replicative inability 
when T cells differentiate further[24,91]. Co-infection appears 
to foster the expansion of  late “senescent” CD8+ T cells 
(CD57+ CD28/CD27-) compared to early “senescent” 
CD8+ T cells (CD57-CD28/CD27+), whereas HIV mono-
infection has over-presentation of  intermediate “senescent” 
CD8+ T cells (CD57-CD28-/CD27-). Hence, given that 
late “senescent” CD8+ T cell is associated with decreased 
telomerase activity with the shortest telomere length, and a 
reduction in activation-induced activation[92], there appears 
to be more turnover of  late-differentiated CD8+ T cells 
in co-infected individuals with expanded expression of  
CD57, which suggests that more T cells have reached the 
stage of  true senescence[93].

CD127 has been indicated in activation, homeostasis, 
differentiation, and cell survival of  different T cell popula-
tions[94,95]. Decrease of  CD127 expression has been associated 
with HIV disease progression[49,96]. The importance of  
maintenance CD127 for T-cell survival, especially during 
chronic HIV infection has also been suggested[27]. The 
down-regulation of  CD127 may ensue due to several 
mechanisms, one involving HIV infection where there is a 
dysfunctional cytokine response when excessive IL-7 may 
cause an inhibitory effect on CD127 expression; while 
the other may be due to imbalance of  IL-7 levels in the 
peripheral circulation[97,98]. 

CONCLUSION
Despite the disparity in pathogenesis and natural history 
HIV-TB disease, current literature suggest that both the 
pathogens harness a higher quantum of  symbiotic impact 
on each other leading to accelerated rates of  deterioration 
of  host’s immune responses. Existing understanding of  
pathogen interaction based on immunology research has 
contributed to genesis of  several novel hypotheses to 
precisely address how contemporaneous manifestations 
of  HIV aggravate TB disease progression and vice versa[51]. 
However, these evidences have not been conclusively 
successful in deciphering the mechanism underlying the role 
of  MTB and HIV in accelerating immune deterioration. 
A better understanding of  immunosenescence, and the 
development of  strategies aimed to rejuvenate T cells, 
especially in PVIs will direct to improved quality of  life of  
infected individuals. In addition, extension of  knowledge 

unique functions. Upon antigenic stimulation, naïve T 
cells are activated and undergo differentiation into various 
subsets that possess distinct functionalities. CCR7 and 
CD45RA are two markers of  T-cell differentiation but 
many others do exist, with two intriguing co-stimulatory 
molecules, CD27 and CD28[16]. Others have proposed a 
model of  differentiation using co-expression of  CD27 
and CD28 to subdivide CD8+ T cells into three distinct 
subsets based on their proliferation history, viz., early 
(CD28+CD27+), intermediate (CD28-CD27+), and late 
(CD28-CD27-) T-cell subsets[77]. Subsequent research 
also showed that intermediate-differentiated CD4+ T-cell 
subsets  lose CD27 prior to CD28 ( CD28+CD27-)[36,78]. 
CD27 and CD28 has also been reported to indicate the 
stage of  T-cell activation and proliferation[79,80]. Lowered 
expression of  CD28 indicates immunosenescence, 
marked by shortened telomeres and diminished replicative 
abilities[81], whereas CD27 has been recently characterized 
as a modulator of  T-cell functions, and has been suggested 
as a better correlate of  proliferative potentials[55]. Late-
differentiated subsets have been associated with strong 
cytotoxic potentials, and gradual up-regulation of  CD57 
expression suggesting a closer relationship between 
senescence and differentiation[77]. It has also been established 
that persistent infections might lead to loss of  CD27 and 
CD28, which reflects that more proliferation cycles have 
taken place in response to pathogens, eventually leading 
to increased T-cell activation and advanced stages of  
differentiation[82,83]. Hence, HIV-TB co-infection appears 
to have a synergistic effect in down-regulating CD27 and 
CD28 in accelerated rate as in HIV mono-infection. 

Research also shows that persistent HIV infection 
impacts the differentiation of  CD8+ T-cell subsets resulting 
in the over-presentation of  intermediate-differentiation 
stage[84,85]. This could largely be due to a block in maturation 
of  CD8+ T cells engineered by HIV to maintain chronicity 
leading to ineffective cytokine and cytotoxic responses 
following antigenic stimulation[85-87]. Hence it is speculated 
that MTB may be involved in accelerating T-cell differen-
tiation despite the blockade of  maturation exerted by 
HIV, leading to biased distribution of  advanced stage of  
differentiation. 

ROLE OF CD57 AND CD127 IN IMMUNE 
CELLULAR SENESCENCE
CD57 is a marker of  senescence that has been associated 
with in vitro replicative senescence, or proliferation 
incompetence in both CD4+ and CD8+ T cells of  healthy 
elders as well as PVIs[48,88,89]. Extensive investigations have 
also been carried to decipher the functional role of  CD57 
in apoptosis, activation-induced cell death, senescence and 
overwhelming cytokine and cytolysin responses. Outside 
HIV infection, CD57 has also been associated with various 
diseases and cancers[88]. Both HIV and MTB alone have 
been shown to facilitate the expansion of  CD57+CD8+ 
T cells with wide range of  functionality changes and 
contributing to the immunpathogenesis of  each disease 
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on immunosenescence to precisely identify therapeutic 
targets and surrogate biomarkers to validate senescence 
phenomena as clinical endpoints may be key to better 
healthcare requirements.
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