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Abstract
For human immunodeficiency virus (HIV)-infected 
patients, the 1990s were marked by the introduction 
of highly active antiretroviral therapy (HAART) 
representing a new perspective of life for these 
patients. The use of HAART was shown to effectively 
suppress the replication of HIV-1 and dramatically 
reduce mortality and morbidity, which led to a better 
and longer quality of life for HIV-1-infected patients. 
Apart from the substantial benefits that result from the 
use of various HAART regimens, laboratory and clinical 
experience has shown that HAART can induce severe 
and considerable adverse effects related to metabolic 
complications of lipid metabolism, characterized by signs 
of lipodystrophy, insulin resistance, central adiposity, 
dyslipidemia, increased risk of cardiovascular disease 
and even an increased risk of atherosclerosis. New 
drugs are being studied, new therapeutic strategies are 
being implemented, and the use of statins, fibrates, and 
inhibitors of intestinal cholesterol absorption have been 
effective alternatives. Changes in diet and lifestyle have 
also shown satisfactory results.
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Core tip: Antiretroviral therapy inhibits human im-
munodeficiency virus (HIV)-1 replication, reduces 
mortality and increases survival. On the other hand, 
HIV-1 infection and antiretroviral therapy affect lipid 
metabolism. In fact, lipodystrophy is a well-documented 
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side effect of highly active antiretroviral therapy (HAART). 
Switching to a less metabolically active drug improve 
HAART-associated dyslipidemia. Other therapies may 
include statins, fibrates, inhibitors cholesterol absorption, 
fish oils, niacin. Moreover, changes in diet and lifestyle 
are needed to revert the dyslipidemia.
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INTRODUCTION
The introduction of highly active antiretroviral therapy 
(HAART) for human immunodeficiency virus (HIV)-
infected patients in the early nineties (1990) represented 
a new perspective on life for these patients[1]. The use of 
HAART was shown to effectively suppress the replication 
of HIV-1 and dramatically reduce mortality and 
morbidity, which has led to a better and longer quality of 
life for HIV-1 patients[2]. The different HAART regimens, 
all composed of at least three different antiretroviral 
drugs, are effective in reducing viral load (HIV-1-RNA) to 
undetectable levels after its inception[3]. HAART regimes 
inhibit viral replication by acting at different stages with 
their different combinations of drugs[4]. This allows them 
to reach the viral cycle and/or viral enzymes and causes 
them to be classified in different therapeutic groups 
according to their mechanisms of action: nucleoside 
reverse transcriptase inhibitors (NRTIs)[5], non-
nucleoside reverse transcriptase inhibitors (NNRTIs)[6], 
protease inhibitors (PIs)[7], fusion inhibitors[8], entry 
inhibitors [CC chemokine receptor-5 antagonists][9] and 
integrase strand transfer inhibitors (InSTIs)[10] (Table 
1). Apart from the substantial benefits that result from 
the use of various HAART regimens, laboratory and 
clinical experience has shown that HAART can induce 
severe and considerable adverse effects on metabolic 
complications of lipid metabolism, characterized by signs 
of lipodystrophy, insulin resistance, central adiposity, 
dyslipidemia, increased risk of cardiovascular disease 
and even an increased risk of atherosclerosis[11-14]. 
However, other factors, such as virological, genetic, and 
individual immunological features, may be involved in 
the metabolic and lipid alterations observed because 
not all of the patients exposed to the same HAART 
regimens are similarly affected[15-17]. All of these 
changes in the aspects of lipid metabolism during HIV-1 
infection, specifically changes in high-density lipoprotein 
cholesterol (HDL), low-density lipoprotein cholesterol 
(LDL), very low-density lipoprotein cholesterol 
(VLDL), triglycerides (TG), lipid peroxidation, and their 
relationship with atherosclerosis in HIV-1 patients, are a 

result of the critical role of cholesterol in the mechanism 
of HIV-1 replication[11,12,18,19]. HIV-1 decreases plasma 
HDL by impairing the cholesterol-dependent efflux 
transporter ATP-binding cassette protein A1 in human 
macrophages, which is a condition that has a high 
atherogenic risk[20,21]. The use of PI-based HAART 
currently constitutes a more potent option against HIV-1 
infection, preventing the maturation of viral particles 
and effectively controlling the infection of new cells by 
HIV-1. However, observed changes in lipid metabolism 
in HIV-1 patients have been associated with this class of 
antiretroviral drugs[13,14,22,23]. There is significant support 
in the literature showing that the PIs are associated with 
increased hepatic triglycerides-synthesis, VLDL, and to 
a lesser extent, total cholesterol (TC)[11-14]. Moreover, it 
was observed that these drugs impair the hydrolysis of 
triglyceride-rich lipoproteins by lipase, which reduces the 
storage of free fatty acids and interferes with the normal 
postprandial metabolism of free fatty acids[23,24]. The 
PIs are analogous substrates of the aspartyl protease 
enzyme of HIV-1 that are involved in the cleavage 
process of viral proteins and form smaller functional 
viral particles with infective capacity. After the cleavage 
process, the newly formed infectious viral particles are 
released from infected cells in a mature form[7,25,26]. 
Once the PIs bind to the active site of the protease 
enzyme, and this process of cleavage is blocked, there 
is interference in the enzyme activity and inhibition in 
the process of viral maturation and the formation of 
infectious viral particles[25,26]. The different mechanisms 
by which PIs promote these changes remain unknown. 
However, the main effect of PIs seems to be suppressing 
the breakdown of the nuclear form of sterol-regulatory 
element binding protein-1 in the liver and adipose 
tissue. This regulator is a key element in the proteolytic 
pathway responsible for regulating cellular and plasma 
levels of fat and cholesterol[27]. Finally, other classes of 
antiretroviral drugs are available, including those with 
excellent activity against viral replication without having 
any apparent effect on lipid metabolism[12,23,28]. However, 
it is clear that the use and recommendation of PIs 
occurs in situations where other drugs and/or regimens 
have not achieved the desired effect, either by non-
adherence to treatment, viral resistance or lack of an 
immune response[29,30]. Moreover, once the therapy with 
PIs is initiated, a change to a more conservative therapy 
without their use is not recommended nor used in clinical 
practice[31,32]. Thus, a continuous search that considers 
the individual characteristics of each PI available as a 
current therapy is needed to achieve alternative HAART 
regimens that can maintain a suppression of viremia 
with minor effects on the lipid metabolism of HIV-1 
patients[32,33].

HIV-ASSOCIATED LIPID DISORDERS
Lipid disorders during the course of HIV-1 infection 
and acquired immunodeficiency syndrome (AIDS) 
were observed long before the advent of antiretroviral 
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regimens[34,35]. In the early phase of acute HIV-1 
infection, patients display several varied clinical signs of 
immunosuppression such as fever, intestinal infections, 
weight loss and depletion of protein reserves[35,36]. 
The possibility of HIV-1 infection, by itself, causing 
changes in lipid metabolism was already postulated, 
because it is evident that plasma viremia may promote 
a decrease in the plasma concentrations of TC, HDL 
and LDL and, in later stages of infection, an elevation in 
the concentration of TG[35,36]. Specifically, the reduction 
of HDL likely occurs as a result of an activation of the 
immune system in early HIV-1 infection, which promotes 
an increase in lipid peroxidation, inflammatory cytokine 
production, and alterations in the reverse cholesterol 
transport. This process promotes an imbalance in the 
antioxidant system, a decrease in the production of 
anti-inflammatory cytokines and an elevation of pro-
inflammatory cytokines, which increases the chance of 
developing atherosclerotic diseases[31-39]. As a result of 
the inflammatory process initiated by viral infection, the 
stimulation of endothelial lipase and phospholipase A2 
occurs, which in turn can reduce HDL concentration[38-40]. 
The inflammatory process may also be characterized 
by an elevation of interferon-γ levels (IFNγ) originating 
from lymphocytes and macrophages. IFNγ levels 
are elevated at early stages of infection and are also 
correlated with the presence of hypertriglyceridemia[41,42]. 
Tumor necrosis factor-α (TNFα) is another potent pro-
inflammatory mediator whose concentrations increase in 

HIV-1 infected ART-naïve patients. TNFα promotes lipid 
peroxidation and disturbances in the metabolism of free 
fatty acids and also acts on the suppression of lipolysis 
mediated by hormones[43] (Figure 1). 

HAART-ASSOCIATED LIPID DISORDERS
HAART-associated dyslipidemia is complex and involves 
immunological, hormonal, and genetic predisposition 
aspects, as well as effects induced by various antiretroviral 
drugs[13,44]. The observed dyslipidemia is characterized 
by hypertriglyceridemia, hypercholesterolemia, and 
decreased serum levels of HDL, either accompanied 
or not by increased levels of LDL (Table 2)[44,45]. Other 
metabolic and/or clinical common disorders include insulin 
resistance with hyperinsulinemia, increased C-peptide 
levels, diabetes mellitus and lipodystrophy syndrome[44-48]. 
HAART also affects the hydrolysis of triglyceride-rich 
lipoproteins and tissue lipase, disrupts normal post-
prandial free fatty acid and lipoprotein catabolism and 
interferes with peripheral fatty acid trapping; all of these 
effects could be due to the interaction of these fatty 
acids with the master transcriptional regulator sterol 
regulatory element binding protein 1[47-51]. Nevertheless, 
the presence of dyslipidemia in individuals who use 
HAART therapy is not necessarily accompanied by 
lipodystrophy and/or an evident insulin resistance, 
which suggests that the mechanisms involved in these 
disorders are independent[44,46,51,52]. The NNRTI-based 
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Antiretroviral class Generic name drug Trade name/manufacturer/approval (yr)

Nucleos(t)ide reverse transcriptase inhibitors Abacavir (ABC) Ziagen® ViiV Healthcare (1998)
Didanozine (ddl) Videx® Bristol-Myers Squibb Co. (1991)

Emtricitabine (FTC) Emtriva® Gilead Sci. (2003)
Lamivudine (3TC) Epivir® GlaxoSmithKline (1995)

Stavudine (d4T) Zerit® Bristol-Myers Squibb Co. (1994)
Tenofovir (TDF) Viread® Gilead Sci. (2001)

Zidovudine (AZT) Retrovir® ViiV Healthcare (1987) 
Zalcitabine (ddC) Hivid® Roche (1992)

Non-nucleoside reverse transcriptase inhibitors Delavirdine (DLV) Rescriptor® Pfizer (1997)
Efavirenz (EFV) Sustiva® Bristol-Myers Squibb Co. (1998)

Stocrin® Merck Sharp, Dohme (1998)
Nevirapine (NVP) Viramune® Boehringer Ingelheim (1996)
Etravirine (ETR) Intelence® Janssen-Cilag (2008)
Rilpivirine (RPV) Edurant® Janssen-Cilag (2011)

Protease inhibitors Amprenavir Agenerase® GlaxoSmithKline (1999)
Atazanavir Reyataz® Bristol-Myers Squibb Co. (2003)
Darunavir Prezista® Janssen-Cilag (2006)

Fosamprenavir Lexiva® ViiV Healthcare (2003)
Indinavir Crixivan® Merck and Co. (1996)
Lopinavir Kaletra® Abbott (2000)
Nelfinavir Viracept® ViiV Healthcare (1997)
Ritonavir Norvir® AbbVie Inc. (1996)

Saquinavir Invirase® Roche (1995)
Tipranavir Aptivus® Boehringer Ingelheim (2005)

Fusion inhibitors Enfuvirtide, T-20 Fuzeon® Hoffmann La Roche (2003)
Integrase strand transfer inhibitors Dolutegravir (DTG) Tivicay® GlaxoSmithKline (2013) 

Elvitegravir (EVG) Stribild® Gilead Sci. (2012) 
Raltegravir (RAL) Isentress® Merck and Co. (2007)

Entry inhibitors (CC chemokine receptor 5 antagonists) Selzentry Maraviroc® Pfizer (2007)

Table 1  Antiretroviral drugs class
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region of the HIV-1 protease. CRABP-1 usually binds 
intracellular retinoic acid and presents it to cytochrome 
P450 (CYP450) or 3A (CYP3A) enzymes, which convert 
retinoic acid to cis-9-retinoic acid and bind to the retinoid 
X receptor-peroxisome proliferator-activated receptor 
γ (RXR-PPARγ) heterodimer, stimulating adipocyte 
differentiation and inhibiting apoptosis[20,45,54]. The PIs 
likely bind to CRABP-1, which is homologous to the viral 
protease and erroneously inhibits the formation of cis-
9-retinoic acid, leading to reduced RXR-PPARy activity, 
increased apoptosis and diminished proliferation of 
peripheral adipocytes. Such events cause peripheral 
lipoatrophy syndrome and hyperlipidemia due to 
adipocyte loss, decreased lipid storage and lipid release 
into the bloodstream. The inhibition of CYP3A by 
ritonavir is another possible mechanism involved in lipid 

HAART, zidovudine, stavudine or lamivudine, have 
become associated with the occurrence of dyslipidemia; 
however, lipid metabolism disorders are most evident in 
individuals who make use of PI-based therapy[44,45,52,53]. 
The mechanisms involved in PI-associated dyslipidemia 
are not fully understood; however, the prevailing 
hypothesis is based on the structural similarity between 
the catalytic region of the HIV-1 protease and two 
homologous human proteins involved in the metabolism 
of lipids, called cytoplasmic retinoic acid-binding protein 
type 1 (CRABP-1) and low-density lipoprotein-receptor-
related protein type 1 (LRP1) (Figure 2).

CRABP-1
CRABP-1 exhibits 58% homology in its amino acid 
sequence of the C-terminal region of the catalytic 
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Figure 1  The human immunodeficiency virus type 1, upon entering peripheral circulation, will infect lymphocytes and macrophages. The viral proteins 
gp120 and gp41 of HIV-1 bind to the CD4+ receptor and coreceptors, C-C chemokine receptor type 5 and C-X-C chemokine receptor type 4, on the surface of these 
cells. The lymphocytes T-CD4 that are infected with HIV-1 produce viral particles and may remain in a latent form within circulation. Infected monocytes can directly 
present antigen to lymphocytes T-CD4, or transform into tissue macrophages. This process stimulates the host inflammatory response and amplifies the production of 
proinflammatory cytokines and promotes increased cellular oxidative stress. The production of proinflammatory cytokines by macrophages and lymphocytes promotes 
a decrease in plasma high-density lipoprotein cholesterol by impairing the cholesterol dependent efflux transporter ATP-binding cassette protein A1 in human 
macrophages. Additionally, viral proteins and proinflammatory cytokines including interleukin-1, interleukin-6, tumor necrosis factor α and interferon gamma stimulate 
endothelial lipase enzyme and different acute phase proteins, such as serum amyloid A. Viral proteins also exert effects on adipocytes resulting in mitochondrial 
dysfunction, production of reactive oxygen species, increased insulin resistance, decreased adiponectin, and change the clearance of triglyceride-rich lipoproteins 
and insulin resistance. Finally, all of the different cellular mechanisms involved and affected by HIV-1 infection promote an increased risk of cardiovascular disease. 
Source: de Almeida et al[211]. Gp120: Glycoprotein 120; gp41: Glycoprotein 41; CCR5: C-C chemokine receptor type 5; CXCR4: C-X-C chemokine receptor type 4; 
LT-CD4: Lymphocytes T-CD4; HDL: High-density lipoprotein; ABCA1: ATP-binding cassette protein A1; IL-1: Interleukin-1; IL-6: Interleukin-6; TNFα: Tumor necrosis 
factor α; IFN-γ: Interferon gamma; TG-RLP: Triglyceride-rich lipoproteins; ROS: Reactive oxygen species; HIV-1: Human immunodeficiency virus type 1.
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abnormalities in HIV-1-infected patients and associated 
PI-based therapy and would promote a reduction in the 
formation of cis-9-retinoic acid and reduced enzymatic 
activity of RXR-PPARy. The decrease in RXR-PPARγ 
activity results in apoptosis within peripheral adipose 
stores, decreased adiponectin, and insulin resistance. 
However, central and visceral adipose stores are spared 
and expand with weight gain, contributing to insulin 
resistance[20,45,54]. 

LRP
LRP shares 63% homology with the catalytic region of 
HIV-1 protease. LRP binds to lipoprotein lipase (LPL) 
on the capillary endothelium, and the formation of this 
LRP-LPL complex promotes cleavage of fatty acids from 
TG, thereby promoting free fatty acid accumulation 
in peripheral adipocytes. A possible hypothesis is that 
the binding of PIs to LRP may inhibit the complex 
normal function of LRP-LPL and interfere with fatty acid 
storage, leading to hyperlipidemia. This hyperlipidemia 
is characterized by elevations in cholesterol levels, 
principally in the LDL and VLDL cholesterol fractions, 
because fatty acids released into the bloodstream 
subsequently reach the liver and promote a secondary 
hepatic synthesis of TG and VLDL[4,55]. 

Mitochondrial alterations
Another proposed mechanism for HAART-associated 
dyslipidemia is the mitochondrial alterations induced by 
HAART, especially with PI-based therapy. The hypothesis 

is that the HAART regimen will cause mitochondrial 
disturbances by inhibiting the mitochondrial DNA 
(mtDNA)-polymerase γ, leading to mitochondrial DNA 
depletion, respiratory chain dysfunction and reduced 
energy production by cells[56,57]. This disturbance in the 
mitochondrial respiratory chain may promote metabolic 
disorders in adipocytes, promote lipodystrophy 
syndrome and increase plasma lipid levels. Moreover, 
interference between PIs and cellular proteases could 
also trigger the development of metabolic alterations 
because some proteases are essential for mitochondrial 
biogenesis and metabolic function. Furthermore, 
functional changes of mitochondria in skeletal tissue 
promote insulin resistance and consequent dyslipide-
mia[56-58].

Genetic factors
HAART-associated lipodystrophy and dyslipidemia may 
be related to genetic predisposition, and studies with 
HIV-1 patients with hypertriglyceridemia and low HDL 
subjects were associated with different polymorphisms 
in the APOCIII gene. Promoter polymorphisms -455T 
> C and -482C > T in the APOCIII gene are both 
associated with increased levels of TG containing 
lipoproteins (VLDL) and low HDL values. Carriers of 
the -455T > C genetic variant had 30% lower levels 
of HDL cholesterol compared to those without this 
polymorphism, and plasma lipid concentrations increase 
according to the number of these variant alleles. 
Another variant nucleoside, the -1131T > C promoter 
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Antiretroviral class Drug Effects on lipids Effects on glucose

NRTIs Abacavir (ABC) ↑   Dyslipidemia No effect
Didanozine (ddl) ↑↑ Dyslipidemia Insulin resistance

Emtricitabine (FTC) ↑   Dyslipidemia No effect
Lamivudine (3TC) ↑   Dyslipidemia No effect

Stavudine (d4T) ↑↑ Dyslipidemia Insulin resistance
Tenofovir (TDF) ↑   Dyslipidemia No effect

Zidovudine (AZT) ↑↑ Dyslipidemia Insulin resistance
NNRTIs Efavirenz (EFV) ↑↑ HDL, ↑ Dyslipidemia No effect 

Etravirine (ETR) Neutral effects No effect
Nevirapine (NVP) ↑↑ HDL, ↑LDL
Rilpivirine (RPV) Neutral effect

PIs Amprenavir/ritonavir ↑↑↑ Dyslipidemia Insulin resistance
Atazanavir/ritonavir ↑    Dyslipidemia Insulin resistance
Darunavir/ritonavir ↑    Dyslipidemia Insulin resistance

Fosamprenavir/ritonavir ↑↑↑ Dyslipidemia Insulin resistance
Indinavir ↑↑  Dyslipidemia Insulin resistance

Lopinavir/ritonavir ↑↑↑ Dyslipidemia Insulin resistance
Nelfinavir ↑↑  Dyslipidemia Insulin resistance
Saquinavir ↑    Dyslipidemia Insulin resistance

Tipranavir/ritonavir ↑↑↑ Dyslipidemia Insulin resistance
Fusion inhibitors Enfuvirtide, T-20 Neutral effect No effect
InSTIs Dolutegravir (DTG) Neutral effect No effect

Elvitegravir (EVG) Neutral effect No effect 
Raltegravir (RAL) Neutral effect No effect

Entry inhibitors Selzentry Neutral effect No effect

Table 2  Antiretroviral drugs: Impact on lipid and glucose metabolism

NRTIs: Nucleos(t)ide reverse transcriptase inhibitors; NNRTIs: Non-nucleoside reverse transcriptase inhibitors; PIs: Protease inhibitors; InSTIs: Integrase 
strand transfer inhibitors.



polymorphism in the APOA5 gene, was associated with 
hypertriglyceridemia in PI-based patients[59-62].

Paraoxonases
Changes in antioxidant enzymes, such as the family 
of paraoxonases (PONs), may partially explain some 
of the mechanisms involved in HAART-associated 
dyslipidemia and consequently characterize a higher risk 
for cardiovascular diseases and atherosclerosis[63]. The 
hypothesis that the PIs can promote reductions in the 
activity of PONs and an increased risk for atherosclerotic 
disease in HIV-1 patients has been shown through 
previous evidence. PON1 is an antioxidant enzyme 

present in serum that is strongly associated with 
apolipoprotein-A1 (apoAl) from HDL and protects LDL 
against oxidative modifications[63,64]. The action of serum 
PON1 most likely occurs through the involvement of 
the enzyme in reverse cholesterol transport, a well-
established anti-atherogenic propriety of HDL[65]. PON1 
has the ability to inhibit LDL oxidation (oxLDL) and 
significantly reduce the lipid peroxidase enzyme, which 
decreases the accumulation of cholesterol in peripheral 
tissues[66]. The oxidative modification of LDL in the 
arterial wall plays a central role in the pathogenesis of 
atherosclerosis, which is characterized by the deposition 
of lipids and the formation of atherosclerotic plaques 
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that cause narrowing of the blood vessels[67]. The 
inhibition of LDL oxidation by HDL is attributed to the 
high antioxidant content of this lipoprotein due to the 
antioxidant properties of apoA1 and by the presence of 
other different antioxidant enzymes, such as glutathione 
peroxidase and PON itself, which prevent the formation 
of or degrade bioactive products of LDL oxidation[68]. 
Some studies have shown that the activity of PON1 
may be affected and/or inactivated by oxidative stress, 
which could explain its reduced activity during HIV-1 
infection[63-65]. In HIV-1 patients and those who undergo 
HAART, there is a significant increase in oxidative 
stress. In turn, in asymptomatic individuals infected 
with HIV-1 and/or with AIDS, there is an increase in 
oxidative stress characterized by increased plasma 
metabolites of lipid peroxidation and/or a quantitative 
decrease in antioxidants compared to seronegative 
controls that are considered to be in a healthy 
condition. Therefore, possible reductions in the activity 
of PON1 and HDL concentrations may characterize an 
increased cardiovascular risk in individuals infected with 
HIV-1[64,65,69]. The PON1 activity that was reduced in 
ART-naïve patients, and restored in patients treated with 
HAART, suggested that the activity of PON1 is associated 
with the immune status in HIV-1 patients. However, in 
individuals treated with lopinavir/ritonavir, even with 
low plasma viremia, PON1 activity was reduced and a 
higher atherogenic risk was shown by the high TC:HDL 
ratio, suggesting that a PI-based regimen affects the 
mechanisms involved in the oxidation of LDL, thereby 
promoting greater atherogenic risk[63-68].

LDL oxidation
Oxidation is a common feature in lipid metabolism[70-72]. 
Oxidative modifications to LDL, which are considered 
the initial event in the pathogenesis of atherosclerosis, 
are attributed to oxidative stress mechanisms initiated 
by agents such as superoxide, nitric oxide and hydrogen 
peroxide that transform LDL into oxLDL[73,74]. The 
deposition of oxLDL in the arterial intimal layer promotes 
a cytotoxic effect on the vascular endothelium, followed 
by inflammation and modification of monocytes into 
macrophages that phagocytose oxLDL particles to form 
the foam cells that accumulate in the intima and lead 
to the development of atheromatous plaques[75]. The 

oxLDL particles are immunogenic, and serum levels of 
anti-oxLDL antibodies (Abs) can be used as indicators of 
oxidative stress[73-75]. The IgG anti-oxLDL Abs are pro-
atherogenic and can predict the progression of coronary 
and carotid atherosclerosis, whereas IgM anti-oxLDL 
Abs appear to be associated with a possible protective 
role against the development of atheromatous 
plaques[76]. During the process of infection by HIV-1, the 
increase in atherogenic risk results from changes in lipid 
metabolism associated with the severity, duration, and 
stages of infection. Different degrees of lipodystrophy 
occur in patients along with a decrease in LDL receptor 
expression, which could lead to increased oxidation 
of LDL particles and the consequent development of 
atherosclerosis[77]. HIV-1 patients treated with lopinavir/
ritonavir have shown higher levels of IgG anti-oxLDL 
Abs compared to patients treated with efavirenz or 
nevirapine regimens, and these levels were associated 
with an increase in the atherogenic indices[75-77].

HAART-ASSOCIATED LIPODYSTROPHY
Lipodystrophy is a syndrome that includes peripheral fat 
wasting and central obesity and is a well-documented 
side effect of HAART (Table 3)[16,48,78]. In addition to 
the decrease in the expression of LDL receptors, and a 
consequent increase in serum concentrations of LDL, the 
most obvious mechanisms involved in HAART-associated 
lipodystrophy and dyslipidemia are the mitochondrial 
changes induced by HAART[13,56-58]. The inhibition of 
mtDNA-polymerase γ, which leads to mitochondrial 
DNA depletion in respiratory chain dysfunction and 
a reduced energy production in cells, may promote 
metabolic disorders in adipocytes and promote increased 
lipodystrophy syndrome and plasma lipid levels[56-58,79,80]. 
Both therapies, PIs- and NRTIs-based, are associated 
with the inhibition of mtDNA-polymerase γ[79-81]. The 
abnormalities observed in lipodystrophy syndrome 
include lipoatrophy, lipohypertrophy, and metabolic 
disturbances. Lipoatrophy is associated with the loss 
of subcutaneous fat, usually in the lower limbs, face 
and buttocks. The observation of lipoatrophy in HIV 
patients has been demonstrated in therapy with both 
PIs- and NRTIs-based therapies. Several studies initially 
suggested that lipoatrophy in HIV-1 patients is primarily 
associated with the use of PI-based therapies; however, 
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Clinical diagnosis Treatment  options

Lipoatrophy
  Sunken eyes, sunken cheeks, prominent  zygomatic arch, prominent veins, 
skinny or muscular appearance, loose skin folds loss of contour 

Switching antiviral therapies: stavudine or  zidovudineto abacavir or 
tenofovir, other switch, and/or reconstructive procedures

Lipohypertrophy
  Increased abdominal girth with visceral fat accumulation, dorsocervical or 
supraclavicular fat pad

Diet, exercise, liposuction

Related findings
  Hypertriglyceridemia, usually with depressed HDL, hypercholesterolemia, 
insulin resistance, glucose intolerance

Statins, fibrates, inhibits intestinal cholesterol absorption, fish oils, diet, 
exercise, drugs (metformin, acarbose, sulfonylureas, glinides or leptin)

Table 3  Clinical diagnosis and treatment to human immunodeficiency virus-associated lipodystrophy syndrome
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more recent reports show that the incidence of 
lipoatrophy was significantly higher in the efavirenz plus 
two NRTIs group than in the lopinavir or efavirenz plus 
two NRTIs plus lopinavir groups[82-84]. The association 
of lipoatrophy with efavirenz use was mainly in 
combination with either stavudine or zidovudine but not 
with tenofovir/lamivudine. 

Lipohypertrophy is the result of a metabolic disorder 
in which there is excess fat accumulation in the adipose 
tissue, resulting in a central obesity process. The 
most affected regions are the intra-abdominal, trunk 
and/or breast, anterior neck, and dorsocervical region 
(i.e., buffalo hump)[14,85]. There may be co-existing 
fat deposition in the liver, muscle, myocardium, and 
epicardium[86,87]. The most accepted hypothesis regarding 
the development of lipohypertrophy suggests that a 
defect in peripheral adipocytes promotes increased 
availability of fatty acids in the general circulation. The 
available fatty acids are then selectively deposited in 
visceral adipose tissue owing to the higher rate of lipid 
turnover and uptake in visceral adipocytes[88]. This 
disruption in the metabolism of fatty acids characterized 
by increased uptake in the visceral adipose tissue could 
be related to the effects of HIV itself via the HIV-1 
accessory protein Vpr or to the effects of HAART[89]. 
In patients infected with HIV and treated with HAART, 
especially with PIs, there seems to be an association 
between HIV treatment and the development of 
lipohypertrophy[84,90,91]. However, various longitudinal 
studies have failed to demonstrate that HAART is the 
main cause of lipohypertrophy in HIV-1 patients[92-95]. 
The contribution of PIs to lipohypertrophy is based 
on several hypothetical mechanisms. PIs impair 
adipocyte differentiation through interactions with 
adipocyte proteasomal gene expression systems, 
down-regulation of cellular retinoic acid binding protein 
(CRABP), sterol regulatory binding protein levels with 
resultant dysregulation of gene expression stimulated 
by cortisol, activation of the adipocyte renin-angiotensin 
system and adipokine effects (including adiponectin 
and leptin), and decrease in peroxisomal proliferator-
activator receptors α and γ[96-98]. This metabolic disorder 
results in the hypertrophy of adipose tissue, particularly 
in visceral tissues, resulting in increased TG levels, 
lowered HDL cholesterol levels, hypertension, increased 
propensity for type 2 diabetes, and increased insulin 
resistance[98-100]. This metabolic disorder results in 
hypertrophy of adipose tissue, particularly in visceral 
tissues, with the consequent increase of TG and reduced 
HDL cholesterol, and hypertension, increased propensity 
for type 2 diabetes, and an increased insulin resistance 
in adipocytes[98-100]. Insulin resistance is a common 
metabolic disorder that can accompany lipodystrophy 
(i.e., lipohypertrophy) and is associated with an 
increased cardiovascular risk, especially among HIV-
infected individuals with lipodystrophy[101]. As described 
in the literature, HIV-infected individuals exhibit a 
higher prevalence of dyslipidemia, including both 

abnormal distribution of fatty acids and altered glucose 
homeostasis, compared to HIV seronegative individuals 
after adjustment for age and body mass index[102]. 
The disturbance in glucose metabolism appears to be 
closely linked to abnormal fat distribution, particularly 
visceral adiposity and lower extremity lipoatrophy. 
Lipodystrophy promotes accumulation of intramuscular 
lipids, which is associated with a reduction of insulin 
action in this tissue[103]. Importantly, in addition to the 
lipohypertrophy observed in HIV-infected individuals 
taking HAART, there appears to be an increase in fat 
distribution and deposition in places such as the liver 
and muscles regardless of the use of HAART[86,104]. The 
mechanisms involved in HIV-associated lipodystrophy 
are diverse, but it is suggested that HAART plays an 
important role[105], as well as the endothelial dysfunction 
associated with the HIV infection itself[106], vascular 
endothelial injury[107], and inflammation with elevated 
serum levels of C-reactive protein[108], TNF-α, IL-6, and 
adiponectin[102,109-111]. 

SWITCHING ANTIVIRAL THERAPIES
The search for different therapeutic strategies to reverse 
HAART-associated dyslipidemia has led to the use of 
less metabolically active antiretroviral drugs without 
compromising antiretroviral efficacy. Ritonavir is the most 
representative drug in HAART-associated dyslipidemia, 
and in combination with lopinavir confers higher risks 
for cardiovascular disease in HIV-1 patients. Amprenavir 
and nelfinavir promote lower impacts compared to the 
therapy with lopinavir/ritonavir[29,45,64,77,112]. In turn, the 
use of indinavir and saquinavir shows even less of an 
effect on lipid metabolism in HIV-1 patients receiving 
HAART. Currently, atazanavir has the least impact on 
lipid metabolism[113,114]. In contrast, nelfinavir promotes 
the elevation of TC, TG and LDL levels, and its replace-
ment by atazanavir permits the reduction of the 
concentrations of these parameters without affecting 
antiretroviral activity[115]. A more recent alternative is 
tipranavir, a non-peptide PI prescribed for patients with 
multidrug resistance. However, it has shown deleterious 
effects that promote atherogenic risk by increasing 
the levels of TC and TG[116]. Another strategy to control 
dyslipidemia has been the discontinuation of the PI-
based regimens and a switch to a NRTI- or NNRTI-based 
protocol. For ART-naïve patients, HAART regimens that 
include at least one NNRTI, or abacavir and two NRTIs, 
might be as efficient as PI-based therapy, although 
they are not the standard choice. This exchange of 
HAART in patients with viral suppression did not reduce 
antiretroviral efficacy during long-term use[116,117]. A 
strategy that must be better evaluated is the long-
term use of the NRTI/NNRTI class of drugs before the 
use of PI-based therapy. The use of NRTI-associated 
nevirapine reduces levels of TC and TG promotes an 
increase in HDL and a decrease in atherogenic risk. 
The use of NNRTIs may also alter the lipid profile due 
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mostly to the use of efavirenz. Using this medication, 
TG levels were higher in comparison to the use of 
nevirapine. However, in studies with a large number of 
HIV-1 patients, accompanied at intervals of ninety days 
and with undetectable HIV-1-RNA, the levels of TC, 
LDL and TG were kept within the desirable limit in the 
groups treated with nevirapine and efavirenz, including 
HDL levels within the reference values[116-118]. Only the 
HIV-1 patients treated with a PI-based regimen showed 
lipid abnormalities and increased risks for cardiovascular 
disease[13,22,117]. In addition, possible alterations in lipid 
metabolism resulting from the use of NNRTI-based 
therapy are easier and faster to reverse with the use 
of statins, fibrates, diet and lifestyle. Although the 
individual effects of NRTIs remain unclear, stavudine 
was associated with TC and TG elevations greater 
than zidovudine and tenofovir. The addition of fusion 
inhibitors to the existing therapies, such as enfuvirtide/
T-20, had little effect on plasma lipids. The possibility of 
different HAART strategies eliminating or reducing the 
dyslipidemia in HIV-1 patients must be evaluated, and 
the risk of development of variants of the virus with 
multi-drug resistance must be taken into account[119]. 
In HIV-1 patients with favorable historical responses to 
HAART and accompanied by a physician experienced 
in HIV-infection, the transition from a PI-based to a 
therapy with nevirapine, abacavir, or even atazanavir 
may be preferable to the use of a hypolipidemic. In 
practice, many patients will show pre-existing resistance 
to the drugs, limiting options for the exchange of the 
treatment[77,113-115]. Experts must assess the risks of 
toxicity of the new treatment and the possibility of 
virologic relapse when switching HAART regimens.

OTHER THERAPIES FOR HAART-
ASSOCIATED DYSLIPIDEMIA
The use of hypolipidemic drug therapy becomes 
necessary when HAART-associated dyslipidemia occurs 
or persists for a long period and when alterations 
in diet, exercise and other HAART strategies are 

ineffective. Difficulties in the treatment of dyslipidemia 
in HIV-1 patients involve potential interaction between 
drugs, toxicity, intolerance, and low patient adherence 
to multiple drug regimens. Several alternatives are 
available, which, when adequately monitored, may be 
beneficial in reducing HAART-associated dyslipidemia. 

Statins
Statins are a group of drugs that inhibit the enzyme HMG-
CoA reductase (3-hydroxy-3-methylglutaryl coenzyme 
A reductase) and are considered the primary drugs 
for the treatment of primary hypercholesterolemia[120] 
in addition to others effects[121,122]. In clinical practice, 
the use of statins has achieved excellent results in 
reducing TC and LDL, leading to a decreased risk of 
coronary artery events and in the primary and secondary 
prevention of heart diseases[123,124]. Statins inhibit the 
key rate-controlling enzyme in the de novo synthesis 
of cholesterol, which is responsible for production of 
> 50% of total body cholesterol. Inhibition of HMG-
CoA reductase also promotes an increase in the 
synthesis of hepatic LDL receptors and reduced VLDL 
production[123-125]. The most important drugs of this class 
are simvastatin, fluvastatin, atorvastatin, lovastatin, 
pravastatin and rosuvastatin. All of these drugs reduce 
LDL concentrations, although the use of simvastatin 
and atorvastatin has shown superior effects in HIV-1 
seronegative patients[123-125]. In HIV-1-infected patients 
affected with dyslipidemia, the use of simvastatin, 
pravastatin, fluvastatin and rosuvastatin promotes 
reduction of dyslipidemia, but not is complete remission 
once other factors and elements are associated with 
the dyslipidemia in these patients[123-126]. The different 
drugs that compose HAART have metabolizing effects 
similar to statin (Table 4). Most of these compounds are 
metabolized by CYP3A4 and may cause clinically relevant 
interactions with other agents that are changed by this 
enzymatic complex, such as cyclosporine, erythromycin, 
itaconazole, ketoconazole, oral anticoagulants, PIs and 
NNRTIs[126-128]. An additional complicating feature is that 
individual statins are metabolized at differing degrees, 
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Drug Metabolism and interactions

Simvastatin Considerable CYP3A4 metabolism. ↑ simvastatin levels with PIs and ↓↓ levels with efavirenz. Not recommended with atazanavir, 
atazanavir/ritonavir, fosamprenavir/ritonavir, saquinavir/ritonavir, tipranavir/ritonavir, lopinavir/ritonavir, indinavir/ritonavir, 

darunavir/ritonavir and nelfinavir. Doses of 80 mg/d with NNRTIs, raltegravir and selzentry
Lovastatin Not recommended with atazanavir, atazanavir/ritonavir, fosamprenavir/ritonavir, saquinavir/ritonavir, tipranavir/ritonavir, 

lopinavir/ritonavir, indinavir/ritonavir, darunavir/ritonavir and nelfinavir. Doses of 80 mg/d with NNRTIs, raltegravir and selzentry
Atorvastatin Somewhat CYP3A4 metabolism, ↑ levels with PIs darunavir, lopinavir, saquinavir/ritonavir, fosamprenavir. ↓levels with efavirenz. 

Doses of 20 mg/d with PIs, 80 mg/d with NNRTIs, raltegravir and selzentry
Pravastatin Reduced interaction with CYP450 metabolism, primarily renal excretion but 50% ↓ with lopinavir/ritonavir, 45% ↓with nelfinavir, 80% ↑

with darunavir/ritonavir, and 40% ↓ with efavirenz. Doses of 80 mg/d with PIs, NNRTIs, raltegravir and selzentry
Fluvastatin Metabolized by CYP2C9, and occasional interactions with nelfinavir and efavirenz. Doses of 80 mg/d with PIs, NNRTIs, raltegravir and 

selzentry
Rosuvastatin Not CYP3A4 metabolized but 5 × ↑ levels with lopinavir/ritonavir and darunavir/ritonavir (uncertain). Low starting doses (5-10 mg) 

recommended with PIs. Doses of 20 mg/d with PIs, 40 mg/d with NNRTIs, raltegravir and selzentry

Table 4  Statins to highly active antiretroviral therapy-associated dyslipidemia
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NNRTIs: Non-nucleoside reverse transcriptase inhibitors.



in some cases producing active metabolites. They are 
also substrates for P-glycoprotein, a drug transporter 
present in the small intestine, which may influence 
their oral bioavailability[127-129]. The presence of elevated 
statin levels in plasma increases the risk of liver 
toxicity, promoting elevations of serum transaminases 
and possible toxic hepatitis as well as skeletal muscle 
toxicity and myalgia with elevations of serum creatine 
kinase elevations, especially in the case simvastatin 
and atorvastatin[127-131]. Fluvastatin is metabolized by 
CYP2C9 enzyme; pravastatin and rosuvastatin are not 
significantly metabolized by the CYP450 system and 
have a very low risk of drug interactions. Reductions in 
the levels of TC and TG were observed in patients with 
dyslipidemia associated with HIV-1 and treated with a 
PI and the use of rosuvastatin. Simvastatin, lovastatin 
and atorvastatin should be avoided because they 
present a high risk of pharmacological interactions with 
PIs. Moreover, in a recent study, pravastatin had the 
lowest binding to plasma proteins of the statin agents 
and dietary advice associated with this statin compound 
significantly reduced total cholesterol levels in HIV 
patients treated with HAART, without significant adverse 
events[126-130]. It is reasonable to recommend the use of 
pravastatin and/or rosuvastatin as a first-line treatment 
for hypercholesterolemia in PI-treated patients and 
the use of fluvastatin, characterized by a slightly 
lower efficacy, as a second-line regimen. Additional 
benefits are obtained in patients treated with indinavir 
or pravastatin and fluvastatin, which significantly 
reduces the levels of TC and LDL, while maintaining 
good tolerability. Different associations between statins 
and antiretrovirals present considerable tolerability but 
always require monitoring of serum transaminases and 
creatine kinase. Different clinical studies and the routine 
use of fluvastatin, pravastatin, or rosuvastatin have 
shown that they are most suitable and safe to reduce 
LDL cholesterol levels in HIV patients[126-132].

Fibrates
Fibrates represent the cornerstone of drug therapy for 
hypertriglyceridemia and mixed hyperlipidemia. These 
compounds are characterized by an extended activity 
on the hepatic synthesis of both TC and TG, LPL and 
acetyl-CoA-carboxylase, and the favorable effects on 
peripheral lipolysis inhibition and glycemic control[133]. 
Fibrates are also metabolized by CYP450 system, but 
they appear to affect only CYP4A enzymes and do not 
show clinically relevant interactions with PIs. However, 
concomitant use of both fibrates and statins can 
increase the risk of skeletal muscle toxicity and should 
be avoided[134-136]. In HIV-1 seronegative individuals, 
the use of a fibrate and a statin in a monotherapy 
regimen exhibits moderate lipid-lowering effects and 
good tolerability[136-138]. In HIV-1 patients, fibrates do 
not have the same efficacy of statins in preventing 
cardiovascular disease. Studies with HIV-1 patients 
treated with PI-based therapy and fibrates, including 

gemfibrozil, bezafibrate or fenofibrate, showed a 
significant reduction in the concentration of TC, TG 
and hypertriglyceridemia[135,137,138]. Fibrates appear as 
a suitable alternative for the treatment of dyslipidemia 
associated with HIV, especially in the presence of 
hypertriglyceridemia. Periodic monitoring of serum 
creatinine, creatine kinase, and transaminases should be 
performed for the use of fibrates[137-139]. The association 
between fibrates and statins has been used with relative 
safety and demonstrated in different studies with large 
numbers of HIV-1 seronegative volunteers, except for 
the use of the combination of statins and gemfibrozil, 
which is not recommended[138-140]. The use of statins, 
fibrates, or associates has shown positive results in HIV-
associated dyslipidemia, and the pravastatin/fenofibrate 
combination has promoted an improvement in lipid 
parameters and is safe and efficacious[141,142]. However, 
as already described, there is a need for clinical and 
laboratory monitoring, with careful evaluations of possible 
clinical symptoms, such as myalgia, and laboratory 
symptoms such as serum transaminases, creatine kinase 
and creatinine.

Inhibitors of intestinal cholesterol absorption
Ezetimibe is effective at lowering lipid levels because it has 
the ability to inhibit the intestinal cholesterol absorption, 
and it shows good tolerability because it does not interact 
with the metabolism of CYPA4 enzymes[143,144]. In non-
HIV-1-infected patients who have dyslipidemia, the 
monotherapy with ezetimibe or when combined with 
statins or fenofibrate has shown considerable efficacy and 
safety[145,146]. In HIV-1 patients with high serum levels of 
LDL, the use of ezetimibe has also been considered an 
effective alternative[144]. Monotherapy using 10 mg/d of 
ezetimibe has promoted reductions of more than 20% of 
serum LDL and, in addition, reduces the concentrations 
of TC and TG and increases HDL concentrations[143-146]. 
Studies have shown that in individuals with HIV that is 
beyond effective treatments, ezetimibe has no interaction 
with HAART, and those receiving a PI-based association 
of fenofibrate/ezetimibe showed greater efficacy 
compared with pravastatin in monotherapy resolution of 
dyslipidemia[147-149].

Fish oil
The ability of fish oil, commonly known as omega-3 
fatty acids [namely, eicosapentaenoic acid (EPA) and 
docosahexaenoic acid (DHA)], to reduce elevated 
TG concentrations has been observed in different 
studies[150,151]. HIV-1 patients using both HAART and fish 
oil showed an effective reduction in the concentration of 
TG[152]. This ability to reduce TG levels promotes a direct 
benefit in risk reduction of atherogenic cardiovascular 
disease through a combination of anti-inflammatory 
and anti-platelet actions[152-154]. For HIV-1 patients, 
the use of fish oil associated with fenofibrate showed 
additive effects in reducing TG. Given these considerable 
results, the American Heart Association’s (AHA) dietary 
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guidelines, recommends that healthy adults have a 
minimum of two portions of fish per week, and those 
who have elevated TG should consume 2-4 g of EPA 
and DHA daily as a dietary supplement[152-155].

Niacin
Niacin (water-soluble vitamin B3), or nicotinic acid, 
is a powerful reducing agent of serum lipids when 
administered at pharmacological doses. Its ability to 
reduce the levels of lipoproteins and apolipoprotein-
B-containing lipoproteins and to raise HDL levels has 
been shown, characterizing it as an atheroprotective 
drug[156,157]. Niacin has beneficial effects on other 
cardiovascular risk factors, including lipoprotein (a), 
C-reactive protein, platelet-activating factor acety 
lhydrolase, plasminogen activator inhibitor 1 and 
fibrinogen[158,159]. The molecular mechanisms involving 
the action of niacin are not fully understood, but its 
effect on hypertriglyceridemia in uninfected individuals 
is recognized[157-159]. In HIV-1 patients, the use of niacin 
in an extended release formulation significantly reduced 
the levels of TC, TG and HDL. However, the use of niacin 
in HIV-1 patients with dyslipidemia need to be carefully 
monitored because the presence of adverse events have 
been commonly shown, including headache, flushing, 
pruritus, rash, hyperuricemia, and exacerbation of insulin 
resistance[160,161].

OTHER AGENTS
Other agents may contribute to HIV-associated 
dyslipidemia. The use of recombinant methionyl human 
leptin was associated with reduced insulin resistance 
and increased HDL levels[162]. Tetradecylthio acetic 
acid, an agent whose mechanism is still unknown, 
promotes a reduction in levels of plasma lipoproteins[163]. 
Additionally, Acipimox, a drug with sustained action and 
a structure similar to niacin, has been associated with 
decreased insulin resistance and significantly reduced 
levels of TG in HIV-1 adults[164]. In a double-blind study, 
the use of cholestin was able to reduce the levels of TC 
and LDL cholesterol without modifying HDL and TG, 
and without showing adverse effects[165]. The use of 
L-carnitine (3 g/d) resulted in a significant reduction 
in serum triglycerides in patients with HIV-associated 
dyslipidemia[166]. These and other drugs studied aimed to 
revert the HIV-associated dyslipidemia but require more 
control to be considered appropriate for the treatment of 
dyslipidemia. 

NEW DRUGS TO TREATMENT HIV 
INFECTION
Since the introduction of zidovudine (1987) for the 
treatment of HIV-1 infection, followed by the emergence 
of fusion inhibitors, such as enfuvirtide/T-20 (2003), 
and more recently the approval by the Food and 
Drug Administration (FDA) of raltegravir (2007) and 

dolutegravir (2013), both InSTIs drugs, HIV-1 treatments 
have been adapting to new challenges. Once the 
inability of different HAART regimens to cure infection 
was recognized, new drugs, strategies and therapeutic 
regimens were developed with the goal of greater 
efficiency associated with safety and fewer adverse 
effects. The common adverse effects observed by the 
use of the first class of drugs such as zidovudine, and 
the dyslipidemia caused by the use of PIs, are obstacles 
that are being minimized in newer experimental drugs. 
Currently, more than 30 drugs are approved and available 
in various forms (the different classes of antiretroviral 
drugs), and many others are in experimental stages.

NRTIs
Festinavir (BMS986001) is a thymidine analogue 
drug, derived from stavudine, but with less potential 
toxicity[167]. It has been used in cases where there is 
HIV-1 resistance to abacavir and tenofovir and is an 
oral drug recommended for HIV-1 patients with multi-
drug resistance. The compound has a 50% effective 
concentration (EC50) for the inhibition of mtDNA-
polymerase γ and is 100 times less toxic to the mtDNA-
polymerase γ in renal proximal tubular cells, muscle 
cells, and adipocytes and on the cellular levels of 
adenosine triphosphate and/or lactate production 
(ATP) than stavudine. The mitochondrial toxic effects 
of stavudine are the main cause of the adverse effects 
associated with lipodystrophy and peripheral neuropathy, 
which has led to the decline in its use and indicated that 
festinavir has a minor impact on lipid metabolism[167-169]. 
Apricitabine (AVX754, formerly SPD754) is a drug for 
oral administration and is currently in the experimental 
phase (Phase IIB clinical trial). It is structurally related to 
lamivudine and emtricitabine and, as such, is an analog 
of cytidine[170]. This drug is well tolerated, and its most 
common side effects include headache, nausea, muscle 
aches and diarrhea. The use of apricitabine in HIV-1 
infected patients had no effect on bone marrow, liver 
or kidney toxicity, and lipase. However, its use caused 
changes in lipid metabolism, most noticeably elevated 
serum TG, indicating that its use should be evaluated in 
patients who initiated therapy with apricitabine or who 
already have a dyslipidemic profile[170-172]. GS-7340 is a 
prodrug of tenofovir called tenofovir disoproxil fumarate. 
Unlike tenofovir, GS-7340 is stable in plasma and is 
then converted to tenofovir inside of cells by the cellular 
enzyme cathepsin, which is highly expressed in lymphoid 
tissue[173]. Within the cell, the drug is transformed into 
the active metabolite tenofovir diphosphate, an inhibitor 
of HIV-1 reverse transcriptase. Phase III studies are 
underway to better define the safety profile and efficacy, 
and initially, the drug does not show effects on lipid 
metabolism. However, formulations containing 300 mg 
of the drug promoted adverse effects on the kidneys 
and bone marrow toxicity[173-175]. Other drugs of the 
NRTI class are in the experimental phase, such as racivir 
(an enantiomer of emtricitabine), elvucitabine (Phase 
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II clinical trial), and amdoxovir (AMDX or DAPD). For 
these drugs, current data about the adverse effects 
are insufficient to characterize their impact on lipid 
metabolism[174-178].

NNRTIs
Etravirine (ETR, Intelence®) is a drug from the second 
generation of NNRTIs and shows efficacy, safety and 
good tolerability in HIV-1 patients[179]. One of the primary 
advantages of etravirine is as a replacement for other 
NNRTIs to which the HIV-1 virus is resistant, mainly due 
to the presence of the K103N and Y181C mutations in 
the case of efavirenz and nevirapine, respectively. The 
FDA approved the drug in 2008 for use in patients 
with multiple drug resistance. However, the drug is a 
substrate and an inhibitor of different CYP3A4 enzymes, 
which in turn are contraindicated in the use with 
antimicrobial and anticonvulsant drugs metabolized by 
the CYP450 system. In patients receiving HAART who 
have alterations in lipid metabolism, the switch to a 
therapy containing etravirine has shown satisfactory 
results and a reversal of dyslipidemia[179-182]. Rilpivirine 
(Edurant®) is a second-generation NNRTI class drug. 
It is more potent than diarylpyrimidine (DAPY), and 
adverse effects are considerably reduced compared 
to older NNRTIs such as efavirenz. After clinical trials, 
rilpivirine was approved by the FDA in 2011, and its 
use is often combined with emtricitabine and tenofovir. 
Rilpivirine produces few changes in TC, LDL, HDL and 
TG in HIV-1 patients. In comparison to treatment with 
efavirenz, this drug promotes an increase in lipids 
and in the TC:HDL ratio, which is characterized by 
an increased risk of cardiovascular diseases in these 
patients[183,184]. MK-1439 is a new and effective drug 
against a variety of HIV-1 mutants that are resistant 
to NNRTIs[185]. Preclinical studies (Phase l clinical trial) 
that are currently in progress show that this drug has 
a good pharmacokinetic profile with the possibility of 
a low concentration daily dose needed to obtain an 
optimal effect. Additionally, it has good absorption, low 
potential for toxicity and the ability to be used with other 
antiretroviral agents. MK-1439 showed good results 
in cases where the K103N mutation of HIV-1 led to 
resistance against nevirapine and efavirenz, as well as in 
the presence of the Y1818C mutation, which leads to a 
lower susceptibility in treatment with nevirapine, rilpivirine 
and etravirine. In vitro data suggest that MK-1439 has 
beneficial properties that warrant additional development 
as a new antiviral drug; however, no data are available 
about its potential impact on lipid metabolism[185-187]. New 
drugs of the third generation of NNRTIs are in various 
experimental stages such as BILR 355 BS (Phase IIa), 
(+)-Calanolide A (Phase I), GSK 2248761 (Phase IIb), 
MK-4965 (Phase I), MK-6186 (Phase I), RDEA806 (Phase 
IIa), and UK-453061 (Phase IIb). These new drugs have 
not been approved by the FDA and still require different 
clinical trials prior to their release as drugs available for 
the treatment of HIV-1 infection, and they currently have 

no scientific information regarding their possible effects 
on lipid metabolism.

Fusion/entry inhibitors
The HIV-1 envelope glycoprotein (Env) complex, which 
is composed of three receptor-binding gp120 subunits 
and three fusion protein gp41 subunits, mediates virus 
entry by fusing viral and cellular membranes and offers 
an attractive target for developing antiviral agents[188]. 
In succession with enfuvirtide/T20, a number of 
design strategies have been applied to develop new 
peptide-based fusion inhibitors with improved stability, 
bioavailability and potency[188,189]. There are several drug 
classes that are in two experimental phases. Albuvirtide 
(FB006M), T649, T2634, T2544, T1249, SC34EK, 
and SC29EK are in the class of fusion inhibitors. BMS 
663068, BMS 626529, vicriviroc (SCH 417690), and 
cenicriviroc (TAK-652, TBR-652) are in the class of entry 
inhibitors. These and other drugs are in experimental 
stages or have been suspended, and there are no initial 
and/or conclusive data about their potential toxic effects 
and the impact on lipid metabolism.

InSTIs
Cobicistat (GS-9350) is a new InSTIs drug recently 
approved by the FDA (2012). This drug, similar to 
ritonavir, has the ability to inhibit hepatic enzymes 
that metabolize other drugs used to treat HIV-1 
infection, such as raltegravir[190]. Cobicistat has become 
increasingly important, and its use has been associated 
with elvitegravir, permitting it to have higher blood 
concentrations with the use of smaller doses, which 
theoretically allows for greater suppression of viral 
replication when used with elvitegravir, and with fewer 
adverse effects. Cobicistat has been employed in 
combination with elvitegravir/emtricitabine/tenofovir 
(Stribild®)[190,191]. Cobicistat is a potent inhibitor of 
CYP3A enzymes that concurrently affect administered 
medications metabolized by this pathway. It also 
inhibits intestinal transport proteins, increasing the 
overall absorption of several drugs including atazanavir, 
darunavir, and tenofovir alafenamide fumarate. Phase 
III trials of the cobicistat-containing combination 
antiretroviral therapy regimens in ART-naïve patients 
have shown a small elevation of serum fasting lipid, 
with a relative increase in the levels of TC and TG, in 
addition to bilirubin elevations, jaundice, nausea and 
diarrhea[190-192]. Other drugs of the InSTI class are 
experimental, such as MK2048. MK-2048 represents 
a prototype second-generation InSTIs developed with 
the goal of retaining activity against viruses containing 
mutations associated with resistance to first-generation 
InSTIs (raltegravir and elvitegravir)[193]. It is a drug 
that acts by inhibiting the integrase enzyme four 
times longer and shows superior efficacy to raltegravir. 
Additionally, it is being investigated for use as part of 
a pre-exposure prophylaxis[193,194]. BI 224436 is the 
first non-catalytic site integrase inhibitor. It inhibits HIV 
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replication via binding to a conserved allosteric pocket of 
the HIV integrase enzyme. This makes the drug distinct 
in its mechanism of action compared to raltegravir 
and elvitegravir, which bind at the catalytic site[195,196]. 
Another experimental drug is GSK744 (S/GSK1265744, 
Cabotegravir®), which has a structure similar to that of 
carbamoyl pyridone and dolutegravir. In investigational 
studies, the therapeutic agent has been packaged 
into nanoparticles (GSK744LAP), which confer an 
exceptionally long half-life of 21–50 d following a single 
dose. In theory, this would make suppression of HIV 
possible when dosing as infrequently as once every 
three months. These drugs do not have sufficient data 
on their toxicity profile and/or on lipid metabolism; 
however, they have been previously considered to have 
low metabolic toxicity[197,198].

DIET AND LIFESTYLE
Changes in diet and lifestyle, and the adequacy of 
a hypocaloric diet, are recommendations that seek 
to reduce the concentrations of TC and its fractions, 
especially LDL[199-201]. These changes bring benefits 
over short periods of time and reduce the risk for 
cardiovascular and atherosclerotic diseases. These 
recommendations are addressed to the entire population, 
as well as HIV-1 infected patients, and are measures that 
should be applied to delay the need for lipid-lowering 
drugs, even before the treatment of dyslipidemia 
is needed[199-202]. Changes in diet can directly alter 
the levels of circulating LDL including saturated fats, 
cholesterol, and trans-unsaturated fats. The biggest 
impact comes from saturated fats, which are generally 
those that have a solid state at room temperature or 
under refrigeration. The major sources of saturated 
fats are meat and meat products (poultry, pork, beef, 
lard, and sausages), dairy (milk and cheeses), and 
vegetable oils (derived from palm or coconut). For an 
adequate daily diet, the recommended consumption 
is equal or < 7% of saturated fats, for the total daily 
caloric intake. Dietary cholesterol is exclusively found 
in animal products such as meats (particularly organ 
meats and tissues such as brain, kidney, and liver), egg 
yolks, and dairy products[203,204]. It is recommended to 
keep dietary cholesterol consumption to < 200 mg/d. 
Trans fats and unsaturated fats are found in breads 
and cookies, doughnuts, stick margarine, and fried 
foods. This type of fat is added to foods to enhance the 
substance or texture of the product, to replace some 
of the animal fats, and even to increase the shelf life of 
certain products. The recommendation is to keep the 
consumption of trans fats as low as possible. The amount 
of trans fat is not included in the < 7% of calories/day 
allowed from saturated fats[203-205]. The consumption of 
unsaturated fats is preferred; sources include fish such 
as salmon, mackerel, tuna, and vegetables such as 
avocado, olives and olive oil and vegetable oils[206]. Other 
foods that are recommended for their maintenance and/
or lipid-lowering effects are the omega-3 fats, which are 

polyunsaturated fats that can lower TG levels. Omega-3 
fats are frequently referred to as fish oils because the 
most common sources are fatty fishes such as salmon, 
tuna, mackerel, and halibut. However, they are also found 
in krill and flax seed oil. The current recommendation 
is that 25%-35% of daily calories can come from 
fat sources, including saturated fats, which should 
be < 7%[206]. In addition, physical activity improves 
cardiorespiratory function, promotes the reduction of 
LDL and TG, and decreases insulin resistance (in both 
uninfected and HIV-1 patients)[207,208]. Physical exercise is 
effective in reducing TC and TG, reducing total fat mass 
and increasing muscle mass in HIV-1 infected patients 
with hypertriglyceridemia[45,119,208]. Additionally, physical 
exercise is associated with greater cardiovascular 
fitness, improved muscle strength and endurance, and 
the reduction of depression and anxiety. In addition, 
exercise lessens problems resulting from lipodystrophy 
(dyslipidemia, insulin resistance, and osteoporosis) 
and cardiovascular disease[208-210]. However, there are 
several factors that can directly influence the reduction 
of metabolic disorders observed in seropositive patients. 
The common observation of gastrointestinal diseases in 
patients in advanced stages of infection may offset the 
positive effects of a balanced dietary regimen[209,210].

PERSPECTIVES
The advances in antiretroviral therapy are clear, and 
practical results are observed in clinical practice where 
HIV-1 infected patients enjoy a better quality of life 
and a higher rate of survival, something unthinkable 
upon the discovery of HIV/AIDS in the early 1980s. 
New challenges for curing HIV-1 infection continue, and 
different approaches are the focus of several studies. 
The development of vaccines, the use of cell therapy, 
and the continuous development of new drugs that 
are more effective and have fewer side effects are 
obstacles that persist. Recently, approaches that target 
the intracellular trafficking of viral proteins and post-
translational modifications of viral proteins have been 
considered as promising new treatments. Knowledge 
of the intracellular trafficking of viral proteins and the 
role of the polyprotein Gag of HIV-1 suggests that this 
process, once locked, would change the viral replication 
cycle by preventing formation of mature forms of the 
virus. Therefore, inhibitors could block viral maturation 
by interrupting the final stage of processing the Gag 
protein or by inhibiting intermolecular bond to the capsid 
protein immature.

This immature form, when connected to a new host 
cell, would suffer a disruption of the protein structure by 
the action of potent intracellular factors that restrict the 
subsequent phase of viral replication[211-213]. Additionally, 
viral PIs for HIV-1 that block viral maturation have 
become a therapeutic target. In addition to the 
maturation inhibitors that inhibit the formation of 
viral capsids, another issue of interest is that the cells 
themselves have intrinsic antiviral factors that may 
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inhibit or restrict viral replication. One of the major 
families of cell restriction factors is tripartite motif 5 
(TRIM5) composed of proteins that block retroviral 
infection, represented by two distinct forms of TRIM: 
TRIM5, which is expressed in most primates[214,215], 
and TRIM-Cyp, which is expressed in monkeys[216]. 
Both recognize the viral capsid but by different routes. 
The TRIM5 proteins are trimeric structures bind to 
one or two sites on the surface of the viral capsid and 
prevent the accumulation of reverse transcriptase. 
However, in late stages of viral replication, blocking is 
observed under some conditions of viral restriction[217]. 
The TRIM5α is associated with an accelerated degree 
of dissociation of the viral capsid, suggesting that this 
protein and its cofactors destabilize the structure of the 
capsid[218,219]. 

Other therapeutic factors that restrict the cellular 
antiviral protein APOBEC (apolipoprotein B mRNA-
editing catalytic polypeptide) are the group of cytidine 
deaminases, which include APOBEC1 (A1), AID, 
APOBEC2 (A2), a subgroup of APOBEC3 (A3) proteins 
in humans and recently a protein, APOBEC4 (A4), 
expressed in some humans. These proteins have been 
presented as intracellular antiviral factors capable of 
blocking viral replication[220,221]. The function of the A3 
gene remains unknown, but it has been reported that 
human A3G has the ability to block viral replication[222]. 
Similarly, A3G, A3B and A3F are also able to inhibit viral 
replication of HIV-1 and of other viruses, such as simian 
immunodeficiency virus and Hepatitis B virus[221-223]. 
Additionally, the tetherin protein, originally described 
as BST-2 (CD137/HM1.24), was identified as a new 
surface marker of malignant B cells and characterized as 
an antiviral intrinsic factor with the ability to restrict the 
exit of viral capsids from the membrane surface[224,225]. 
The same protein was also recognized as a target of 
the Vpu protein of HIV-1, a potential antagonist against 
tetherin[226,227]. Further studies on TRIM5, tetherin and 
APOBEC proteins, as well as potential inhibitors of the 
viral capsid maturation acting on the Gag polyprotein 
are necessary; however, the information obtained so far 
allow us to suggest that understanding the intracellular 
trafficking of viral proteins and mechanisms for post-
translational modification of viral proteins could turn 
out to elucidate the complex replication cycle of HIV-1 
from HIV-1 fusion in the host cell until the final stage of 
release of mature, infectious viral particles.
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