
is controlled through continuous, life-long use of a 
combination of drugs targeting different steps of the 
virus cycle, HIV-1 is never completely eradicated from 
the body. Despite decades of research there is still no 
effective vaccine to prevent HIV-1 infection. Therefore, 
the possibility of an RNA interference (RNAi)-based 
cure has become an increasingly explored approach. 
Endogenous gene expression is controlled at both, 
transcriptional and post-transcriptional levels by non-
coding RNAs, which act through diverse molecular 
mechanisms including RNAi. RNAi has the potential to 
control the turning on/off of specific genes through 
transcriptional gene silencing (TGS), as well as fine-
tuning their expression through post-transcriptional 
gene silencing (PTGS). In this review we will describe in 
detail the canonical RNAi pathways for PTGS and TGS, 
the relationship of TGS with other silencing mechanisms 
and will discuss a variety of approaches developed to 
suppress HIV-1 via  manipulation of RNAi. We will briefly 
compare RNAi strategies against other approaches 
developed to target the virus, highlighting their potential 
to overcome the major obstacle to finding a cure, which 
is the specific targeting of the HIV-1 reservoir within 
latently infected cells.

Key words: Human immunodeficiency virus 1; RNA interfe
rence; Reservoirs; Epigenetics; Latency; Transcriptional 
gene silencing; Posttranscriptional gene silencing
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Core tip: The lack of progress in developing an effective 
human immunodeficiency virus 1 (HIV-1) vaccine has 
motivated the pressing need for alternate therapies to cure 
HIV. RNAi therapeutics represent an alternate approach 
to a functional cure by offering specific targeting of the 
HIV1 latent reservoir with the significant advantage of 
allowing cessation of combination antiretroviral therapy. 
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Abstract
While human immunodeficiency virus 1 (HIV1) infection 
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INTRODUCTION
Human immunodeficiency virus 1 (HIV-1) infection can 
be successfully controlled by combination antiretroviral 
therapy (cART). However, the development of an effective 
vaccine or an alternative therapy remains the ideal solution 
since cART has several disadvantages. Adverse effects[1], 
high costs of therapy, emergence of resistant viruses[2,3] 
and in particular, the fact that life-long continuous 
treatment is required[4-6] are just a few examples. Years 
of research pursuing an HIV-1 vaccine have shown how 
challenging this task continues to be, with even the most 
promising trials showing only marginal efficacy[7,8]. 

Two main obstacles must be overcome to obtain either 
a vaccine or a cure. First, the high mutation rate of the 
virus allows extensive accumulation of genetic changes. 
These genetic changes generate variation with minimal 
compromise of the virus identity[9-11]; Second, the virus 
is never eradicated from the body, even after prolonged 
therapy[6]. While cART has been largely able to deal with 
the variability of the virus by simultaneously targeting 
multiple key steps of its replication cycle, it has no 
direct effect upon latently infected cells[11,12]. The latter, 
commonly known as latent reservoirs, includes very long-
lived resting memory CD4+ T cells[13], macrophages and 
other cell types[14,15], all of which carry latent proviruses. 
Provirus refers to the viral form that has been integrated 
into the cell’s genome and is inherited through each cell 
division. Latent means it is transcriptionally inactive, but is 
able to re-activate after stimulation[16-19] and is capable of 
causing substantial viremia when therapy ceases[20,21].

The viral reservoir, a term used to refer to the latently 
infected cells as a whole, is maintained throughout the 
life span of an infected individual. During episodes of low-
level viremia and/or homeostatic proliferation of T cells 
the reservoir seems to be replenished, but contribution of 
each of these processes is still disputed[21-24].

Latently infected cells are considered the major 
obstacle to a cure for HIV. They remain immunologically 
and biochemically silent, becoming invisible to the 
immune system with no expression of viral antigens on 
their surface. The only known difference between latently 
infected cells and un-infected cells is a newly integrated 
“gene”: the genome of the HIV provirus.

Considerable effort has been put into understanding 
the molecular mechanisms of latency in order to develop 
strategies that specifically target either the latently 
infected cells or directly target the provirus within them. 
The establishment of latency results from a variety of 
molecular mechanisms, mainly transcriptional interference 
and epigenetic mechanisms. It is believed that there is a 
repressive epigenetic component in most of the inducible 

proviruses. This component is facultative heterochromatin, 
a compact yet dynamic state of chromatin that impedes 
proviral transcription[25-27]. Opposing approaches, which 
aim to modify the repressive epigenetic profile established 
at the HIV promoter, have been developed. These either 
activate proviral transcription by inducing chromatin 
relaxation or obstruct transcription through stabilization of 
heterochromatin.

The first strategy has already been tested in cells 
from HIV infected (+) patients and is currently being 
tested in a number of clinical trials (http://aidsinfo.nih.
gov/clinical-trials/search/b/0/reservoirs and http://
aidsinfo.nih.gov/clinical-trials/search/b/0/vorinostat), 
using pharmacological drugs or cytokines that directly 
and/or indirectly induce activation of HIV provirus through 
a variety of cellular pathways[28-30]. However, while viral 
transcripts from apparently latently infected cells have 
been detected, no significant change or reduction in 
the size of the latent reservoir-proviral integrated DNA-
has been observed[30,31]. There is currently a debate as 
to whether these cell associated viral RNA transcripts 
represent transcripts driven by the endogenous HIV 
promoter, the 5’LTR or whether these are so called “read 
through transcripts” which arise from altered expression 
from the promoter of the parent gene into which HIV has 
integrated[32]. The results of further trials of these agents 
are awaited. 

The second strategy is based on RNAi and has the 
advantage of being specifically directed to viral mRNAs or 
the provirus regardless of the cell type infected. Aiming 
to target persistent infection in the first place, most RNAi 
approaches are designed to directly cleave HIV mRNAs 
and were first designed in the early 2000s. Significant 
advances have transpired in the field, beginning from 
those manipulating PTGS to target viral mRNAs and 
cellular cofactors that support HIV replication, to those 
using TGS to induce heterochromatin at the HIV 
promoter. In this review we will discuss both PTGS and 
TGS RNAi based approaches for HIV, and provide a brief 
commentary on other gene therapy alternatives currently 
under development.

RNAi
RNAi is an evolutionarily conserved mechanism that is 
present from lower eukaryotes through to mammals. 
Because it is beyond the scope of this review to discuss 
each of these, we will mainly focus on the mammalian 
RNAi pathways. However, we will also include some other 
species-specific examples to illustrate pertinent points. 

The first evidence of RNAi was reported in transgenic 
tobacco plants expressing antisense or sense RNAs 
from the coat-protein gene of the tobacco etch virus 
(TEV)[33,34]. The plants did not show evidence of infection 
after challenged with TEV, suggesting the presence of 
a protective nucleic acid-dependent mechanism that 
was later proved to spread throughout the plant in a 
systemic way (reviewed in[35]). The precise mechanism 
was described in the worm Caenorhabditis elegans (C. 
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elegans), in which interference of endogenous gene 
expression through inoculation of homologous dsRNA 
molecules was demonstrated and the involvement of a 
catalytic and an amplification event was suggested[36-38]. 
It was further demonstrated that RNA interference, as 
it began to be known, resulted in genetic silencing and 
co-suppression of the targeted gene[37,38]. Following 
this discovery, vast exploitation of RNAi for discovery of 
gene function in reverse genetics of mammalian cells 

began and soon after was developed as a therapeutic 
tool, with several clinical trials currently underway for a 
variety of human diseases (http://www.clinicaltrials.gov/
ct2/results?term=RNAi&Search=Search)[39]. This RNAi 
pathway is known as PTGS (Figure 1). It functions in 
the cytoplasm and impedes translation of an mRNA into 
protein, by direct cleavage or by initiating degradation of 
the targeted mRNA sequence.  

It was not until 2004 that the nuclear RNAi pathway 
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Figure 1  Cytoplasmic and nuclear post-transcriptional gene silencing pathways. A: A primary-microRNA (pri-miRNA) is transcribed by the RNA Polymerase III 
(RNA Pol Ⅲ) from a miRNA gene cluster. The pri-miRNA is then processed by the microprocessor complex into the precursor-miRNA (pre-miRNA) which is exported 
to the cytoplasm by exportin-5. In the cytoplasm, dicer in complex with Tar-RNA-binding protein (TRBP) and protein kinase R activator of transcription (PACT), process 
the pre-miRNA into miRNA duplexes. MiRNA duplexes are ioaded into argonaute (AGO) proteins 1-4 with help from heat shock protein 90 (HSP90), forming the 
miRNA pre-RNA-induced silencing complex (pre-miRISC). The pathway is shown for AGO-2. The pre-RISC complex is activated after removal of the passenger strand 
from the duplex by C3PO, becoming the miRISC. TNRC6A becomes part of the complex. MiRISC finds a target region within the 3’UTR of an mRNA and induces 
deadenylation-dependent mRNA degradation; B: During viral infections double-strand RNA (dsRNA) intermediates of viral replication are processed by DICER/TRBP/
PACT and are loaded into AGO-2 to form the siRISC complex after removal of the passenger strand. Complete complementarity between the guide strand siRNA 
and the target region induces cleavage of the targeted mRNA. MiRNAs can also induce mRNA cleavage if this condition is satisfied; C: A nuclear post-transcriptional 
gene silencing pathway can occur when an activated siRISC is imported into the nucleus and identifies a target within a nuclear RNA such as a Long-non-coding-RNA 
(lncRNA) resulting in cleavage of the RNA molecule.
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directly through chromatin remodeling. 
During RNAi small non-coding RNAs (sncRNAs) are 

used as guides through sequence homology to target 
either mRNA transcripts or gene promoters[41-43]. These 

TGS, involving chromatin compaction, was identified[40] 
(Figure 2). Presently, both PTGS and TGS have been 
found to be functional in the nucleus of mammalian 
cells, but only TGS seems to repress gene transcription 
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Figure 2  Endogenous and induced transcriptional gene silencing pathways. A: Synthetic siRNAs that have been designed to target the promoter region or the 3’ 
end termini of a gene are loaded into AGO-1, forming the pre-RISC complex. It is currently unknown if removal of passenger strand is required, nonetheless if it occurs 
it probably takes place in the cytoplasm following the same steps as used in PTGS. F-actin participates in the nuclear import of the RISC complex which, once in the 
nucleus becomes the RITS complex as histone-lysine-methyltransferases (HKMTs) and other epigenetic related proteins such as Histone-deacetylases (HDAC), DNA 
methyltransferases (DNMTs), Histone Protein 1 (HP1) and others assemble with it. It is unknown whether RISC related proteins remain in the RITS complex. The RITS 
complex may vary in its composition depending on the chromatin microenvironment and the small non-coding RNA (sncRNA) target region, therefore only some proteins 
are shown as an example. Establishment of repressive epigenetic marks (not highlighted for simplicity) and further recruitment of chromatin remodeling complexes 
(CRCs) results in heterochromatin formation and induces transcriptional gene silencing (TGS). Two independent target regions are pictured together to show the different 
regions of a gene that can be targeted to induce TGS; B: miRISC complexes whose guide strand targets a promoter region may be exported into the nucleus, form a RITS 
complex and induce TGS in the same way as was described for siRISC complexes; C: Lentiviruses can be used to drive transgene integration of a DNA cassette designed 
to express a shRNA that induces TGS. ShRNAs are transcribed by RNA Pol III and are processed through the microRNA pathway. In the cytoplasm they are converted to 
siRNA duplexes that are loaded into RISC complexes and follow the same import pathway to induce TGS as explained in A; D: Endogenous transcriptional gene silencing 
is induced by a long-non-coding RNA (lncRNA) whose secondary structure is recognized by members of the Polycomb Group repressive complex 1 (PRC1), such as 
enhancer of zeste 2 (EZH2), embryonic ectoderm development (EED) and suppressor of zeste 12 (SUZ12). The interaction recruits HP1 and other proteins of PRC1 
complexes like the (Chromobox) Cbx family that contain a chromodomain able to induce heterochromatin formation.  
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sncRNAs are loaded into Argonaute proteins forming the 
main effector complex; however, other cellular cofactors 
are required for the process to occur. There are three 
major kinds of sncRNAs involved in RNAi: small interfering 
RNAs (endogenous- and exogenous-siRNAs), microRNAs 
(miRNAs) and piwi-associated RNAs (piRNAs)[44], which 
we will describe briefly in the next section. The Argonaute 
proteins are further subdivided into the Argonaute 
subfamily (AGO-1, AGO-2, AGO-3 and AGO-4, in 
humans), and the Piwi subfamily (HILI or PIWIL2, HIWI1 

or PIWIL1, HIWI2 or PIWIL4 and HIWI3, in humans)[44,45]. 
There are also species-specific AGO proteins that we will 
not discuss (recently reviewed in[46]), with the exception of 
specific examples. 

Recently, many novel non-canonical sncRNAs involved 
in RNAi have been discovered[47-49]. However we will only 
focus on the three major classes previously mentioned. 
SncRNAs are generally classified depending on their 
biogenesis (Dicer/Drosha dependent or independent), 
their size (about 21-30 nt) and the Argonaute protein they 
bind (AGO 1-4). They can be endogenous or exogenous 
depending on their origin. The endogenous sncRNAs are 
produced from transcription units (Figure 1A), protein 
coding genes (exons and introns), convergent promoters, 
long non-coding RNAs (lncRNAs), gene clusters, repetitive 
elements or retro-elements, such as transposons, while 
the exogenous sncRNAs are either synthetic or of viral 
origin (Figure 1B). 

SncRNAs
SiRNAs: Exo-siRNAs and endo-siRNAs: SiRNAs are 
about 21-nt long duplexes generated in the cytoplasm 
by cleavage of endogenous or exogenous long dsRNA 
precursors (e.g., lncRNA) by the endonuclease Dicer 
(Figure 1B). These siRNAs are then loaded onto a specific 
AGO protein. When exogenous, synthetic siRNAs may be 
delivered to the cells by transfection/nucleofection protocols 
or may originate from expression of artificial integrated 
constructs (lentivirus transduction), such as short-hairpin 
RNAs (shRNAs). Naturally occurring exo-siRNAs in 
mammalian cells were not discovered until very recently, 
and were found to originate from dsRNA intermediates of 
viral replication in mouse embryonic stem cells[50]. On the 
other hand, mammalian endo-siRNAs were identified in 
somatic tissue and found to be processed through a non-
canonical Drosha-independent mechanism, from Dicer 
cleavage of a long nuclear hairpin RNA expressed from 
short interspersed nuclear elements (SINEs)[51]. 

Generally, siRNAs direct the cleavage of their cognate 
mRNA through PTGS when they mutually base pair with 
perfect complementarity[52-54]. Mutations in the siRNA or in 
the target region within the mRNA sequence usually reduce 
or abolish silencing, which is why RNAi is considered a very 
specific mechanism[55,56]. In addition, siRNAs can also induce 
TGS, a nuclear RNAi pathway, whenever they target a 
complementary sequence within the promoter or the 3’ end 
of a gene[57,58]. Additionally, siRNA-directed transcriptional 
gene activation (TGA) has also been reported for several 
genes[57,59].

miRNAs: In their canonical pathway miRNAs are first 
transcribed as primary-miRNAs (pri-RNA) by RNA Pol 
II, and are then processed by the nuclear RNAse III 
protein Drosha - an RNAse type III enzyme (Figure 1A). 
Drosha and co-factor DiGeorge syndrome critical region 
gene 8 (DGCR8) form the Microprocessor complex. This 
complex generates precursor-miRNAs (pre-miRNA) that 
are further processed, exported to the cytoplasm by 
Exportin 5, and cleaved by Dicer. Dicer generates 22-nt 
miRNA duplexes that are analogous to siRNA duplexes. 
Non-canonical pathways exist which are Drosha, Dicer or 
DGCR8 independent. Importantly, unlike siRNA-duplexes, 
miRNA-duplexes frequently contain mismatches and 
about the first 2-7 nts at the 5’ end of the guide strand, 
known as the seed region, may target the 3’ untranslated 
(3’ UTR) region of multiple mRNAs. Based on this 
multiple targeting ability, other biochemical characteristics 
and evolutionary conservation, microRNAs are clustered 
into families (http://www.mirbase.org/index.shtml). In 
miRNAs, complete base pair complementarity with target 
mRNA is found within this seed region, which allows for 
mismatches towards the 3’ end. MiRNAs predominantly 
direct deadenylation-dependent mRNA-decay that 
results in translational repression, but they are also 
able to induce sequestration. While common in plants, 
in mammals on rare occasions when miRNAs show 
complete complementarity to the target region they can 
induce cleavage of the mRNA[60-62]. Deadenylation and 
other ways of translational repression and sequestration 
result from partial complementarity between miRNA and 
the target mRNA[44,47,63,64]. In a similar way to siRNAs, 
when mature miRNAs show complete homology to a 
promoter region, they are able to induce TGS[65-67] (Figure 
1C). However, this miRNA pathway is not well described 
due to the few cases that have been reported.

piRNAs: PiRNAs are longer (about 25-31 nt) than 
siRNAs or mature miRNAs and have fundamental 
roles in maintenance of stemness, transgenerational 
inheritance and genome instability through targeting of 
repetitive sequences (e.g., endogenous retroviruses and 
transposon elements), among other functions (reviewed 
in[68]). In mammals, piRNAs are expressed in germ cells 
and somatic germ cells (SGC), but their role in somatic 
stem cells, such as hematopoietic stem cells, remains 
controversial[69,70]. Even though there is expression of 
piwi-pathway-specific AGO proteins in human CD34+ 
stem cells[71], further evidence is still required to confirm a 
functional piRNA pathway in somatic stem cells different to 
SGCs. 

Interestingly, piRNAs direct specific genome rearran-
gements in ciliates and this precise genome editing results 
in either somatic elimination[72] or retention[73], indicating 
the versatility of this particular RNAi pathway. PiRNAs can 
target mRNAs through a PTGS-like mechanism, however 
they may also induce TGS by directing heterochromatin 
formation at the target regions[74,75]. Intriguingly, members 
of the piRNA pathway are highly expressed in certain 
human cancer cells (reviewed in[76]), though it is still 
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unknown whether they are the cause or the effect. 
To our knowledge there are no reports regarding the 
use of synthetic piRNAs and since they have not been 
manipulated for human therapy we will not explore 
these further. However, the ability of piRNAs to establish 
a permanent, stable and inheritable silencing through 
directed epigenetic chromatin modifications and other 
mechanisms makes them of great interest for future 
study, especially since silencing mediated through their 
activities is inherited to every single cell of a multicellular 
organism.

RNAi pathways: PTGS and TGS
PTGS: In humans, RNAi induced mRNA cleavage is 
directed only by AGO-2[54,77].  Loading of the sncRNA 
duplex onto the AGO proteins is well described for AGO-2 
and involves the heat-shock protein 90 (HSP90) (Figure 1). 
HSP90 aids in the recruitment[78] and stabilization[79] 
of unloaded AGO within processing bodies (P-bodies). 
Inhibition of HSP90 results in unpaired siRNA- and/or 
miRNA-dependent silencing, respectively. These P-bodies 
are cytoplasmic structures that contain mRNA decay 
factors, untranslated mRNA, translational repressors 
and RNAi related factors[80]. The active silencing complex 
is named RISC or miRISC, depending on the type of 
sncRNA (siRNAs or miRNAs, respectively) that is loaded 
onto the AGO protein. We will refer to both as RISC, 
unless specified.

The sncRNA-duplex/AGO-2 complex is called pre-
RISC (pre-RNA-induced silencing complex) and requires 
the removal of one of the strands of the RNA, the 
passenger strand, in order to become an active RISC 
complex[81,82] (Figure 1). The strand that remains in RISC 
is known as the guide strand. Passenger/guide strand 
selection depends on the individual thermodynamic 
properties of each sncRNA molecule within the duplex; 
these properties generally create energetic asymmetry 
between the duplex ends, allowing differentiation and 
selection of the guide strand[83]. Asymmetry means that 
the duplex is energetically less stable at one 5’ end and 
causes unwinding to begin at this site. As a result, the 
strand whose 5’ end lies in the less stable end of the 
duplex will be loaded onto the AGO protein, becoming 
the guide strand. Whenever the energetic difference 
between the duplex ends is small or negligible, both 
strands may be randomly loaded[83,84].  

Dicer seems to play a role in sensing and positioning 
the guide strand, facilitating removal of the passenger 
strand. This ability appears to be activated through its 
interaction with Transactivation Response (TAR) RNA-
Binding Protein (TRBP) and Protein Kinase RNA (PKR) 
Activator (PACT), both double-stranded RNA binding 
proteins (dsRBP)[85] (Figure 1). However, there is 
contradictory evidence regarding this role for Dicer[85,86], 
and further research may be needed to clarify these 
observations. Nonetheless, it is important to mention 
that proper selection of the guide ensures specificity 
towards silencing the intended target. 

Pre-RISC activation requires the slicer activity 

of AGO-2, specifically the nicking of the passenger 
strand[87-89]. After nicking, the endonuclease component 3 
promoter of RISC complex (C3PO), composed of Trax and 
Translin proteins in humans, is able to cleave and remove 
the passenger strand[87,90,91]. This results in activation of 
pre-RISC into the RISC complex. Within RISC, the guide 
strand is used to scan mRNAs for a region with full or 
partial base pair complementarity. Once the region is 
found the mRNA is either cleaved, deadenylated or stored 
during translational repression[63,92,93] (Figure 1). Storage 
and repression of translation may have a role in gene 
regulation of processes that require a quick response, as 
translation can be initiated from stored transcripts rather 
than relying on de novo transcription[94]. 

While AGO-2 can direct either cleavage or translational 
repression of mRNAs, non-catalytic AGO proteins like 
AGO-1 seem mostly involved in translational repression, 
since they are unable to cleave mRNA transcripts[46]. 
Furthermore, it is currently unknown how RISC activation 
occurs for non-catalytic AGO proteins (AGO-1, 3 and 
4). However, owing to their inability to cleave mRNAs, 
activation of the silencing complex must either be 
different or rely on help from additional cofactors.

For silencing to occur, human AGO-2 requires direct 
binding with TNRC6A, also known as GW182, a mRNA 
binding protein rich in glycine/tryptophan repeats[95,96]. 
Interaction between GW182 and AGO-2 proteins is 
crucial for miRNA-mediated silencing and appears to take 
place directly after the passenger strand is removed by 
C3PO[96,97]. Both AGO-2 and GW182/TNRC6A have been 
shown to co-localize with siRNA and miRNAs within GW 
bodies (GWB)[98], another term for P-bodies. Based on 
these observations, it has been proposed that silencing 
by miRNAs requires an effector complex formed of 
at least one AGO and one GW182/TNRC6A protein[99] 
(Figure 1). 

Interestingly, human GW182/TNRC6A was found to 
transport AGO-2 proteins to the nucleus during miRNA-
induced silencing of a nuclear non-coding RNA[100]. The 
latter constitutes evidence of a nuclear PTGS pathway 
(Figure 1C). Indeed, increasing evidence supports 
a functional nuclear PTGS pathway, with a recent 
study demonstrating not only the presence of PTGS 
related proteins in the nucleus of mammalian cells, 
but an active AGO-2-RISC complex able to efficiently 
cleave two nuclear lncRNAs, Malat1 and Neat1[101]. 
These studies add to previous evidence indicating the 
existence of a nuclear RNAi pathway and suggest that 
PTGS and TGS may be closely related.

 We have aimed to provide a detailed overview of the 
molecular mechanism of PTGS in order to understand 
the unknowns of TGS and further compare the mani-
pulation of PTGS or TGS for HIV gene therapy. PTGS 
pathways have been exploited for HIV therapeutics, and 
several clinical trials are currently testing PTGS-based 
gene therapy approaches directed to cellular and viral 
transcripts. A major disadvantage of using PTGS to treat 
HIV is that PTGS requires viral transcription because it 
acts on mRNAs. First, this gives the virus the chance 
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to evolve resistance mutations and escape silencing; 
Second, latent proviruses will not be targeted since they 
are not undergoing active transcription. Improvements 
in siRNA/miRNA design and expression have been 
developed aimed at overcoming these caveats and will 
be discussed in the HIV-1 section. 

TGS: TGS is a conserved mechanism of gene regulation 
across species and has been extensively studied in the 
plant model Arabidopsis thaliana (A. thaliana), the worm 
model Caenorhabditis elegans (C. elegans), and the 
fission yeast Schizosaccharomyceae pombe (S.pombe). 
The first evidence for TGS was observed in plants, and 
it was found to require siRNA-induced DNA methylation 
for heterochromatin formation (recently reviewed in[102]). 
However, the mechanism in S.pombe shed insight on the 
identification of TGS in mammals. In this microorganism, 
siRNAs generated from centromeric repeats are first 
processed by Dicer, then loaded onto AGO-1, and 
together with the proteins Chp1 and Tas3 form the 
silencing complex, namely the RNA-induced initiator 
of transcriptional gene silencing (RITS) complex. This 
RITS complex is analogous to the RISC complex from 
PTGS. RITS is then directed through siRNA base pair 
complementarity to a specific locus at which it induces 
recruitment of Clr4 (histone methyltransferase) and Swi6 
(chromo domain binding protein) in order to establish 
and spread heterochromatin domains[103-105]. 

Human sncRNA-directed TGS is mainly, but not excl-
usively directed by AGO-1 rather than AGO-2, and is gen-
erally triggered by promoter-targeted sncRNAs (Figure 2). 
Recent evidence suggests that it may be also triggered by 
sncRNAs that target the 3’ termini of genes[58,106]. While 
increasing evidence suggests a role for AGO-2 in nuclear 
gene silencing[100], it seems to be predominantly through 
a nuclear PTGS that involves RNA cleavage[101], with only 
few described exceptions[107]. There is also evidence of 
RNA-induced nuclear silencing without heterochromatin 
formation, involving both AGO1 and AGO2[108], and there 
seems to be various RNA-directed nuclear-pathways that 
control transcription at different stages[109]. However, it is 
generally accepted that heterochromatin and its associated 
markers (i.e., histone methylation and deacetylation) is a 
characteristic feature of TGS. Therefore, for this review we 
will focus on the different endogenous TGS mechanisms 
that involve heterochromatin formation induced by sncRNAs 
loaded into an AGO protein.

Heterochromatin is considered a hallmark of repressive 
silent chromatin, ubiquitous in eukaryotic organisms. 
In mammals, its establishment at a particular locus is a 
result of protein interactions and cross talk with multiple 
silencing mechanisms such as DNA methylation, genomic 
imprinting and Polycomb group of proteins (PcG)[65,103,110]. 
The epigenetic profiles across mammalian genomes are 
very heterogeneous and show a wide range of silencing 
dynamics. Silencing extends from permanent and 
inheritable to inducible, dynamic silencing. The former is 
mainly but not restricted to, constitutive heterochromatin 
and is found in centromeres and telomeres[111]; while the 

latter, predominantly within facultative heterochromatin, 
controls specific gene expression during differentiation and 
development[112].

SncRNA-directed TGS in mammalian cells has been 
a controversial topic since its discovery, nearly a decade 
ago, with some still doubting its existence. These doubts 
have relied on the inability to explain in detail the molecular 
mechanisms driving TGS. In particular, the much awaited 
identification and characterization of a functional nuclear 
mammalian RITS complex, because there are apparently 
no RNAi proteins with homology to Tas3 and Chp1 present 
in the nucleus and AGO-1 is non-catalytic. At present, most 
of the evidence of mammalian sncRNA-AGO-1 directed 
TGS relies on synthetic siRNAs or shRNAs driving TGS to 
control infectious agents, such as HIV-1[113], or cellular 
genes that support viral replication[114]. Nonetheless, the 
relatively slow accumulation of evidence has supported 
the existence of this functional pathway, with evidence 
for miRNA-induced TGS in senescence[107] and in 
differentiation[65]. We will explain the basis for the doubts 
and show the recent evidence supporting mammalian 
sncRNA-directed TGS.

The breakthrough proving the existence of a TGS 
mechanism in mammalian cells came with the identifi-
cation of the human ortholog for Clr4, known as 
Suppressor of variegation (Su(var)3-9) in D. melanogaster 
and Su(var)39H in humans; and then with the ortholog 
for Swi6, known as Histone Protein 1 - alpha (HP1-α) (in 
both D. melanogaster and humans)[115-117]. However, no 
human orthologs for Chp1 and Tas3 proteins from fission 
yeast RITS complex have been yet identified. At present, 
there are more questions than answers about the series 
of events in humans that result in siRNA-AGO-1 mediated 
heterochromatin formation and activation of the RITS 
complex. It is possible that both PTGS and TGS share a 
core multi-protein complex, which may differ in accessory 
subcellular or pathway-specific co-factors, because the 
initial steps of TGS may potentially resemble those of PTGS. 

There is also controversy regarding the activation of 
the RITS complex during TGS. It is assumed that removal 
of the passenger strand occurs during TGS to allow the 
RITS complex to scan for the target sequence that is 
complementary to the guide strand. However, since AGO-1 
lacks the catalytic amino acid tetrad DEDH responsible 
for the slicing function, it is not clear how this process 
occurs[118]. AGO-1 needs to nick the passenger strand from 
the siRNA duplex, so C3PO or a similar complex would be 
able to remove the passenger strand. 

On one side, it was shown in vitro from bacterially 
expressed human AGO proteins, that AGO-1 is able to 
cleave the passenger strand, but requires assistance 
for removal of the cleaved fragments[119]. This has been 
interpreted as non-catalytic AGO proteins being very 
inefficient catalysts and having an extremely low nickase 
activity. 

This is in agreement with findings in mouse embryonic 
stem cells, in which the absence of the four mammalian 
AGO proteins resulted in apoptosis, but the expression 
of any one of the other AGO proteins in isolation, was 
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enough to rescue the cells and restore a functional RNAi 
pathway, showing evidence for functional redundancy[120].  
In addition, another study showed that non-catalytic 
AGO proteins are loaded within the duplex but removal of 
passenger strand takes place approximately 2 to 3 d[121]. 
The process of passenger strand removal is currently 
unknown.

In contrast, the crystallographic structures of human 
AGO-1 in association with endogenous RNA (1.75 Å) and 
in association with Let-7 miRNA (2.5 Å) were used to show 
that while highly similar to hAGO-2-RNA structures, there 
was an absolute requirement for the introduction of the 
catalytic tetrad by introduction of a single point mutation 
as well as the reconstitution of a loop called PL3, in order 
to restore the slicer functionality of AGO-1[122]. These 
observations argue against a catalytic role for AGO-1.

It seems more likely that other proteins aid non-
catalytic AGOs during this step. These cofactors would 
be present in the AGO knockout mice study and in the 
cells used to show removal of passenger strand after 
a few days, but not in the bacterial system, in which 
cleaved fragments remained loaded to the AGO proteins. 
Comprehensive studies are required to address this 
question definitively.

An increasing number of studies have found PTGS-
related proteins in the nucleus of mammalian cells, such 
as GW182/TRNC6A and the endonucleases hC3PO and 
Dicer[100,123-125]. These proteins appear to have functions 
related to both to the mechanisms underpinning PTGS 
in the nucleus and to the regulation of chromatin and 
transcription. 

For example, human Dicer has been shown to interact 
with NU153, a non-canonical nuclear transport nucleoporin, 
as demonstrated by co-localization within the nucleus[125]. 
In addition, human Dicer has been shown to associate 
with the chromatin structures of ribosomal DNA[124]. It also 
has a role in termination of transcription[126], in regulation 
of intergenic transcription in the human β-globin gene 
cluster[127] and in regulation of nuclear receptor (NR) 
signaling, as evidenced by direct binding of Dicer to NR 
promoter regions[128]. Further, Dicer has been reported 
to be required in heterochromatin formation in fission 
yeast[129] and in vertebrates[130], suggesting its presence 
in the nucleus of human cells could be due to an as yet 
unidentified role in mammalian TGS (Figure 2B). 

We previously mentioned that GW182/TNRC6A 
shuffles AGO-2 proteins between the nucleus and cyto-
plasm through a non-canonical nuclear localization 
signal[100]. Additionally, GW182/TNRC6 associates with all 
four RNA loaded-AGO proteins during PTGS. Therefore, 
it is a possibility that Dicer is contained within a loaded 
AGO-1-TRNC6A complex during the nuclear shuffling 
that occurs during TGS[131] (Figure 2). Furthermore, the 
interaction between GW182/TNRC6 and AGO-1 occurs 
through binding of the GW repeats of GW182/TNRC6 to 
the Piwi domain of AGO-1[77]. This is intriguing because 
the fission yeast RITS member protein, Tas3, has a GW-
repeat-containing motif and interacts with AGO-1 to 
promote TGS[132]. It is therefore possible that, the Tas3/

AGO-1 interaction in fission yeast could be analogous, 
not homologous, to the AGO-1 and GW182/TNRC6 
interaction in humans. Consistent with this hypothesis, 
the plant specific PTGS-related GW protein NERD was 
found to be involved in TGS in A. thaliana[133]. Thus, there 
is evolutionary evidence supporting the likelihood of a link 
between the two mammalian pathways in the nucleus. 

Protein complexes containing AGO-2, TNRC6A, Dicer 
and TRBP have been immunoprecipitated from human 
isolated cell nuclei. These protein complexes were able to 
induce PTGS, with the specific cleavage of four different 
nuclear lncRNAs mediated by corresponding siRNAs[101]. 
Similar complexes were immunoprecipitated with nuclear 
AGO-1 and found to harbor the same PTGS proteins, 
supporting the notion of a core complex for both pathways. 
However, this study did not identify proteins that have 
been implicated in the loading of sncRNA onto AGO 
proteins, such as C3PO and HSP90 within mammalian 
cell nuclei. In previous studies the identification of these 
proteins could have been the result of contamination 
from cytoplasmic remnants. This study highlighted the 
importance of ensuring that isolated nuclei are free from 
endoplasmic reticulum (ER) to avoid contamination with 
cytoplasmic AGO-containing complexes. Recently, a 
comprehensive protocol was developed to ensure that 
purified nuclei are free from ER contamination[134].

It is important to note that the majority of studies 
aimed at understanding the mechanisms of loading 
and activation of silencing complexes incorporating non-
catalytic AGO proteins have done it in the context of 
PTGS, either in the cytoplasm or in the nucleus. These 
studies have not specifically targeted genes embedded in 
chromatin. Therefore, a possibility remains that siRNAs or 
miRNAs that are only homologous to specific regions such 
as promoter regions, can be identified and differentially 
processed. In this way, complexes could share a common 
core, but would vary in accessory proteins that modify 
their function to induce either TGS or PTGS. 

Consistent with this model, a recent study unveiled a 
sorting mechanism in humans, which directs differential 
loading of AGO-1 proteins for unique sncRNAs in the 
setting of a viral infection[135]. However the determinants 
of this selection remain unknown. Nonetheless, most 
sncRNAs were loaded in equivalent ratios to AGO-1 and 
AGO-2 proteins and thus these unsorted sncRNAs may 
be used to scan targets in both cellular compartments. 
Therefore we hypothesize that when there are targets 
in both compartments, both pathways are likely to 
occur, depending how efficient each of these sncRNAs is 
for the pathway. 

While the understanding of the molecular mechan-
isms of PTGS is reasonably complete, and there is some 
evidence of commonalities with TGS, there are far many 
more uncertainties in the TGS mechanism. Several 
important early steps in the TGS mechanism remain to 
be fully deciphered, including the precise mechanism that 
determines RITS recognition of target, the characteristics 
or type of target and the determinants of induction of 
different epigenetic heterochromatin profiles. In addition, 



August 12, 2015|Volume 4|Issue 3|WJV|www.wjgnet.com 227

Méndez C et al . Gene silencing, transcriptional gene silencing and HIV

while human TGS can be thought of at a single cell level, 
its implication needs to be considered within the context 
of a multicellular organism. Many changes or epigenetic 
check points occur early during embryogenesis and 
development or during cell differentiation. While some 
changes are dynamic allowing differentiation of cells down 
different pathways, once certain check points are reached 
epigenetic profiles are more stable and are inherited to 
daughter cells through multiple cell divisions. 

At present, there is evidence supporting two main 
models describing target recognition. The first is a 
siRNA/DNA-binding model[65,136], during which the RITS 
complex binds directly to chromatin. This binding seems 
to be dependent on the interaction between the siRNA 
and its DNA-target sequence. Once the interaction has 
taken place it triggers the in situ recruitment of chromatin 
remodeling factors that induce heterochromatin and 
establish silencing (Figure 3A). We previously introduced 
the unresolved question of how the passenger strand is 
removed. In the TGS model however, each strand of the 
duplex will find a target on DNA, in the same location 
but on different DNA strands. Therefore, for the sake of 
identifying the target region, both strands are potentially 
useful. In HIV-1, a siRNA guide-strand targeting a 
promoter region will find two target sites. One on the 5’
LTR of the sense strand, and the other in the antisense 
strand in the region that is complementary to the 3’LTR of 
the sense strand (Figure 3B). 

In the second model the RITS complex binds to an 
RNA intermediate, finding its target in either an antisense 
transcript or in a sense nascent transcript (recently reviewed 
in[59] and in[137]). In this model, only one strand of the 
duplex acts as the guide strand (Figure 3C). Presently, there 
is more experimental evidence supporting the RNA model 
given that, owing to its similarity with lncRNAs silencing 
mechanisms, more studies have tested this hypothesis. 
Though, there are still critical gaps in the data and more 
evidence is required to further evaluate the DNA model. It 
is possible that each of the models occur under particular 
conditions and potentially a variety of mechanisms control 
the diverse and precise regulation of gene expression in 
humans. 

Establishment of heterochromatin is a progressive 
process. Once the RITS complex has found its target 
region a series of events follow, which generally initiate 
with removal and or replacement of specific histone-tail 
post-translational modifications to alter the biochemistry 
and structure of the associated chromatin (Table 1). 
Numerous histone modifications important for histone 
structure and gene regulation have been described[138], 
however we will only be discussing canonical acetylation 
and methylation marks that have been related to TGS 
and HIV-1. The different histone tail modifications are 
generated and recognized by histone deacetylases 
(HDACs), histone and DNA methyltransferases (HMTs 
and DNMTs, respectively), and chromatin modifying 
complexes. Ultimately, the combination of histone tail 
modifications and the recruitment of protein complexes 
make up a pattern that relates to the specific transcription 

state of a gene (a recent review can be found in[139]). 
HDACs are required early in heterochromatin formation 

and remove acetylation (Ac) marks that are frequently 
found in actively transcribing chromatin. HDACs appear to 
be continuously recruited to epigenetically repressed loci[140], 
however, in very robust silencing, HDACs may not be 
continuously recruited. HDACs are recruited to chromatin 
by different mechanisms that are in some cases dependent 
on DNA methylation in CpG islands (discussed below). This 
differential recruitment is attributed to HDACs being able to 
form higher order complexes that may or may not include 
methyl-CpG-binding domain (MBD)-containing proteins[141]. 

The removal of Ac marks is necessary for the 
establishment of methylation repressive marks and 
chromatin compaction[142]. Several lysine residues from 
histone tails can be methylated by specific histone 
lysine methyltransferases (HKMTs) in order to repress 
chromatin (Table 1). Methylated residues are recognized 
by HP1 and HKMTs, both of which bind to chromatin and 
dimerize to induce chromatin compaction[143]. Nucleosome 
compaction exposes hidden lysine residues that become 
accessible to further methylation by HKMTs. Progressive 
methylation recruits more HP1-α and chromatin remodeling 
complexes. Chromatin remodeling complexes promote the 
establishment and spread of heterochromatin through a 
positive feedback loop with HP1[144] (Figure 3A). 

Heterochromatin is also the final outcome of DNA 
methylation, genomic imprinting[145] and Polycomb (PcG) 
mediated silencing[65,146]. Therefore, RNAi-induced TGS has 
the potential to induce a variety of epigenetic profiles.  

CpG islands (CGIs) are genomic regions that 
are unusually high in their CG or CpG content when 
compared to the genomic average of these nucleotides. 
CGIs are predominantly found in promoter regions and 
are demethylated during active gene transcription[40]. 
Conversely, methylation of promoter CGIs is associated 
with epigenetic gene repression. Thus, DNA methylation 
accounts for another layer of control of gene expression. 
It is well known that DNA-nucleotide-methyl-transferases 
(DNMT) methylate CpG residues[147] and seem to catalyse 
the reverse reaction[148]. However, the Ten-Eleven-
Translocation enzymes (TET) are considered the main 
CpG DNA demethylases[149] while proteins containing 
DNA-methyl-CpG-binding domain (MBD) recognize the 
methylated status[150] in order to induce heterochromatin. 
However, it is not known how methylation is selectively 
established at precise promoters.

Genomic DNA methylation of CpG islands is fundame-
ntal for the programmed repression of genes during 
embryogenesis in mammalian cells. The methylation 
pattern is erased in the early embryo in order to establish 
the totipotent state, but is re-established during implan-
tation with pluripotency genes being methylated and thus 
repressed[151,152]. Methylation of CGIs is then recognized 
by HKMTs that contain a methyl-binding domain (MBD) 
domain, in this case G9a. G9a establishes H3K9me3 
and recruits HDACs, inducing HP1-α binding and local 
heterochromatinization. Heterochromatinization of HP1 
promotes de novo DNA methylation by DNMT3 and 



August 12, 2015|Volume 4|Issue 3|WJV|www.wjgnet.com 228

Méndez C et al . Gene silencing, transcriptional gene silencing and HIV

Figure 3  Models describing possible molecular mechanisms of siRNA-induced transcriptional gene silencing in human immunodeficiency virus 1. A: DNA 
model in which the siRNA guide-strand finds its target in the 5’LTR promoter of the HIV-1 genome binding directly to the DNA. This binding triggers the recruitment 
of HDACs and HKMTs, which further recruit CRCs to induce chromatin compaction. Two mutually exclusive pathways are shown simultaneously, for simplicity. While 
both pathways may be initiated with the DNA methylation of CpG dinucleotides, they differ in the proteins that are recruited to the locus. The pathway characterized by 
H3K27me3 is shown above and involves initial recruitment of PCR2 (EZH2-SUZ12-EED) followed by the specific CRCs readers of H3K27me3. The H3K9me3 recruits 
G9a or SUV39H1/2 followed by specific CRCs as well. In this model heterochromatin is likely to spread in only one direction; B: In this DNA model, both strands of 
the siRNA duplex find a target on opposite DNA strands given that both, the 5’LTR and 3’LTR from the HIV-1 genome, have the same sequence. Regardless of the 
epigenetic pathway that is induced, heterochromatin will spread in the 5’ to 3’ direction from each end of the HIV-1 genome; C: In the RNA binding model, antisense 
transcription generates a HIV-1 specific lncRNA that covers all the HIV-1 genome. The siRNA guide-strand will bind the 3’UTR of this transcript, which corresponds 
to the 5’LTR sequence. The binding recruits PCR2, which establishes H3K27me3 and may also interact with the secondary structures of the lncRNA. Higher order 
interactions may bring together the 3’end of the HIV-1 genome, recruiting CRCs and inducing heterochromatin. A binding site for the same siRNA strand remains 
in the DNA sense strand at the 3’LTR, which could potentially contribute to heterochromatin formation. HIV-1: Human immunodeficiency virus 1; DNMT3 A/B: DNA 
methyl-transferase A/B; HDAC: Histone deacetylase; MBD-protein: Methy-CpG-binding protein; Cbx: Chromobox family; HKMT: Histone lysine (K) methyl-transferase; 
CRC: Chromatin remodelling complex.
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further spreads silencing by repeating the loop[151] (Figure 
3A). In humans, DNMT3 establishes de novo methylation 
and is responsible for tissue-specific DNA methylation 
patterns[153,154]. 

In the case of TGS, recent studies have shown that 
DNA methylation of CGIs is not required for siRNA-
guided heterochromatin formation in fission yeast, as 
was initially described[155]. Similarly, the signatures of TGS 
in mammals appear to be somewhat diverse and may 
require DNA methylation in some cases. Interestingly, 
there is an RNAi-directed DNA methylation process that 

triggers TGS in plants[156], which is reminiscence of a 
mechanism in mammalian cells: piRNAs are known to 
direct DNA methylation in the male germ line in order to 
repress expression of transposable elements, but a similar 
mechanism has not been described on somatic cells[157]. 
However, there is some indirect evidence of a similar 
mechanism in mammalian somatic cells when transduced 
with lentiviral vectors. In fact, reduced expression of the 
introduced transgene was observed during differentiation 
in a murine model and silencing was found to be the result 
of DNA methylation of the promoter of the lentivirus driven 
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Table 1  Canonical histone modifications implicated in TGS and TGA

Histone residue Modification Function Writers Erasers Readers Reviewed in

H3K4 Ac Transcription 
activation

[228]

me1 (enhancer 
sequences)
me2/me3 

(regulatory elements 
at the 5' end of 

active genes, and in 
poised genes)

Transcription 
activation

Transcription 
activation, resolution 

of bivalency from 
poised genes

SET1 (tri)[229], SET7 
(mono)[230], MLL[231], 

SMYD2[232]

LSD1 (mono and 
di)[233], JARID1A/

KDM5A JARID1B/
KDM5B (di and 

tri)[234]

CHD1[235], RAG2[236], 
TAF3[237], BPTF[238], 

BHC80[239], ING 
FAMILY[240], PYGO2[241]

[166,242]

H3T6 Phosphorylation Transcription 
activation

PKC B LSD1 [243]

H3K9 Ac
me1/me2

me3 (non-genic 
regions, centromeric 

heterochromatin, 
satellite sequences, 

long terminal 
repeats)

Transcription 
activation, histone 

deposition

GCN5/PCAF[244] SIRT6[245] BRD4[246] [247]

Transcritional 
silencing, 

heterochromatin

SUV39H1/2[143], G9a[248], 
SETDB1[249]

JMJD1A/KDM3A[250], 
JMJD1B/KDM3B[251], 

JMJD1C/TRIP8, 
JMJD2A/KDM4A 

(B/C/D)[252]

HP1[253], EED 17406994), 
TDRD7[254], MPP8[255], 
UHRF1/2[256], GLP[248], 

CDY FAMILY[257]

H3K27 me1/me2/me3, 
heterochromatin 
and  facultative 

heterochromatin

Transcritional 
silencing, 

heterochromatin, 
poised genes

EZH2, EZH1[258] JMJD1A/KDM3A, 
JMJD1B/KDM3B, 

KDM6A/UTX, 
JMJD3/KDM68, 

JMJD3/KDM6B[259]

Cbx proteins[165], EED[260] [166,261]

H3K36 Ac Transcription 
activation

GCN5, PCAF[244] [262]

me1/me2 (in the 
body and 3' end of 

genes)
me2/me3 (gene 

bodies)

Transcription 
elongation

NSD1, NSD2[263], SET2[264], 
SMYD2[232], MMSET[265]

ASH1[266], JHDM1[267], 
JHDM1A/KDM2A, 

JHDM1B/KDM2B[268]

ISW1B[269]

H4K20 me1 
me2

me3 (non-genic 
regions, centromeric 

heterochromatin, 
satellite sequences, 

long terminal 
repeats

Transcritional 
silencing, 

heterochromatin, 
repression of 

proinflammatory 
genes

PR-SET7/SET8[270]

 SUV420H1, SUV420H2[274]

SUV420H2[274], SMYD5[275]

PHF8[271]

PHF2[275]

PHF2[275]

L3MBTL1[272]

PHF20[276], L3MBTL1[277]

NcoR[275]

[273]

H: Histone; K: Lysine residue; T: Threonine residue; me1: Monomethlyation; me2: Di-methylation; m3: Tri-methylation; SET1: Su(var)3-9, Enhacer of Zeste, 
Trithorax protein 1; SMYD2: SET and MYND domain containing protein 2; MLL: Mixed lienage leukemia protein; PKC-β: Protein kinase C beta; GCN5: 
general control nonderepressible-5; PCAF: P300/CBP associated factor; SUV39H1/2: Suppressor of variegation 3-9 homolog 1 or 2; SETDB1: SET domain 
bifurcated 1; NSD1: Nuclear receptor binding SET domain protein 1; MMSET: Multiple myeloma SET domain; PR-SET7/SET8: SET domain containing 
lysine methyltransferase 8; LSD1: Lysine (K) specific demethylase 1; JARID1A/KMT5: Jumonji/ARID 1 domain containing protein 1A; SIRT6: Sirtuin 6; 
JMJD1A: Jumonji domain containing protein 1A; ASH1: Absent small or homeotic like 1; JHMD1: Jmjc domain containing histone demethylase 1; PHF8: 
PHD finger protein 8; CHD1: Chromodomain-helicase-DNA binding protein 1; RAG2: Recombination activating gene 2; TAF3: TATA box binding protein 
(TBP)-associated factor; BPTF: Bromodomain and PHD finger containing transcription factor; ING Family: Inhibitor of growth; PYGO2: Pygopus family 
PHD finger 2; BRD4: Bromodomain-containing protein 4; TDRD7: Tudor domain-containing protein 7; MPP8: Methyl-H3K9-binding protein 8; UHRF1/2: 
Ubiquitin-like containing PHD and RING finger domains 1 or 2; CDY Family: Chromodomain Y chromosome family; GLP: G9a-like protein; ISWI1B: 
Imitation switch protein 1B; L3MBTL1: Lethal (3) malignant brain tumor-like protein 1; NcoR: Nuclear receptor coRepresor.
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gene[158]. Furthermore, it is well known that a considerable 
amount of integrated vectors become silent[159], and this 
effect seems to be dependent on the promoter chosen 
to drive the ectopic expression of the gene[160,161]. These 
observations could be related to ubiquitous RNA guided-
DNA methylation pathway mechanism in mammalian 
cells aimed at controlling endogenous retroviruses. It is 
clear though, that de novo DNA methylation can provide 
stability for the inheritance of gene repression patterns 
through generations[151]. In this instance, TGS involving 
DNA methylation is likely to characterize robust silencing of 
a gene. 

The PcG defines a group of genes that play a fundame-
ntal role in development and whose deletion results in 
early embryonic lethality in mice[162]. The PcG perform an 
antagonistic role to the trithorax group (TrxG) of proteins by 
inducing epigenetic gene repression. Both, PcG and TrxG, 
ensure the maintenance of proper expression patterns 
throughout the life span of a multicellular organism. There 
are two main repressive multi-subunit complexes formed 
by PcG: Polycomb-repressive complexes 1 and 2 (PCR1 
and PCR2)[163,164].

PCR1 efficiently compacts chromatin through a variety 
of subunits that either identify and bind to H3K27me3, 
or mono-ubiquitilate Lys119 of histone 2 variant 2 (H2A), 
both of which promote nucleosome compaction. PCR1 is 
actually a group of functionally related but diverse protein 
complexes made up of different subunits that vary its 
function[165]. In addition to its role in development, roles in 
senescence, self-renewal, cancer and even gene activation 
have been recently identified for PCR1[165]. Interestingly, 
both complexes appear related, with PCR1 eventually acting 
downstream of PCR2 on certain loci. 

PCR2 establishes the repressive epigenetic signature, 
H3K27me2/3 through its enhancer of zeste 1 and 2 
subunits (EZH1, EZH2)[164] and induces chromatin 
compaction. In addition to H3K27me3, the activation mark 
H3K4me3 is also established by PCR2. Characteristically, 
genes co-expressing both, K3K37me3 and H3K4me3 
epigenetic marks, are poised for transcription in undifferen-
tiated cells. This state of epigenetic bivalency is resolved by 
the exclusive expression of H3K4me3 in transcriptionally 
active loci or H3K27me3 in transcriptionally repressed 
loci[166]. 

A direct link between PCR2 and TGS during regulation 
of granulopoyesis was elegantly demonstrated. Further this 
process was shown to be fundamental in driving progenitor 
lineage decisions at checkpoints of differentiation, in 
particular at the NF1-A gene. In this study, miRNA-223 
directly bound to the NFI-A promoter region through 
its seed region and induced TGS of this gene through 
recruitment of the PcG proteins, YY1 and SUZ12, along 
with AGO-1 and Dicer[65]. This evidence supports previous 
findings of a siRNA-directed TGS, involving AGO-1, 
recruitment of EZH2, induction of H3K9me2 and the PTGS 
protein TRBP2[114]. Furthermore, the primary miRNA-208b 
has recently been shown to interact with EZH2, a Polycomb-
group protein associated with gene silencing through 
chromatin remodeling[146]. Together, these studies clearly 

show that not only siRNAs, but also endogenous promoter-
targeted miRNAs are able to trigger TGS in mammalian 
cells through recruitment of PcG proteins.

Interestingly, genes that are repressed by PcG express 
short-RNAs (about 50-200 nts) that interact with PCR2 
to promote silencing[167]. However, no AGO proteins are 
involved in this case and the mechanism resembles 
that of X-chromosome inactivation (Xi) (explained in the 
next section), with SUZ12 subunit of PCR2 binding to a 
short RNA-stem loop from the BSN gene that mimics 
Xist A-Repeat (RepA) stem-loop. The important concept 
to highlight is that short RNAs can be transcribed from 
repressed loci and are used to guide repressor complexes 
to maintain these loci in a silent state. 

Genomic imprinting is the mechanism by which parental-
origin specific expression of imprinted genes is controlled 
in somatic cells (reviewed in[168]). It requires the DNA 
methylation of a region within the imprinting control region 
(ICR) that lies in the cluster of imprinted genes. This ICR is 
only demethylated in the germ cells but is then specifically 
re-methylated during fertilization depending on whether 
the maternal or the paternal allele is to be expressed in the 
somatic cells[169]. It is considered to be a very strong and 
stable silencing.

A well-studied case, that would be an example for 
the second TGS model, is Xi. During Xi, expression of 
the lncRNA Xist represses transcription from the paternal 
chromosome[110]. However, Xist is further regulated by 
the antisense lncRNA Tsix. After transcription, lncRNA Tsix 
induces silencing of Xist by recruiting PCR2, establishing 
H3K27me3 marks and enhancing de novo hyper 
methylation by DNMT3A[170]. The crucial link between 
RNAi and genomic imprinting in Xist regulation seems to 
be in the cleavage of the Xist-Tsix duplex by Dicer, which 
generates siRNAs targeting Xist leading to heterochromatin 
formation. These siRNAs in turn silence Xist and in this 
system deletion of Dicer appears to abolish silencing[145]. 
Currently, there is a dispute regarding the role of Dicer in 
this process and thus of RNAi in Xi, because Dicer knockout 
embryonic stem cells have shown contrasting results with 
either a defect in Xi (arguing in favor) or no defect at all 
(arguing against). A very detailed discussion about these 
contrasting results can be read in[171]. It is worth noting 
that other nuclear endonucleases could potentially induce 
cleavage in the absence of Dicer. However, recent findings 
showed that depletion of Dicer in human female cells has 
no effect in the epigenetic silencing of Xi, but results in up-
regulation of X-linked genes, indicating that Dicer may 
be important for dosage compensation of those genes in 
differentiated cells[172]. 

Xi is just one of several examples of genomic imprinting 
during which specific DNA methylation and a lncRNA drive 
long-range epigenetic heterochromatic silencing through 
recruitment of PcG (Figure 2D). Because genomic imp-
rinting involves recruitment of PcG proteins to an RNA 
intermediate, establishment of epigenetic repressive 
marks and short RNAs derived from the targeted genes, 
it supports the model of an RNA intermediate in sncRNA-
directed TGS. 
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All these endogenous silencing mechanisms are an 
example of the different possibilities that may result when 
inducing TGS through sncRNAs (Figures 2 and 3). TGS 
is part of an enormous gene regulation network that 
involves a wide variety of mechanisms and protein 
interactions, whose combination yield diverse specific 
gene silencing outcomes. While we do not know yet how 
to induce each of these different epigenetic profiles, this 
mechanism has the power to silence the HIV-1 promoter 
in an inheritable, stable and permanent fashion, which 
we have reported through siRNA-induced TGS.  

VIRUS: HIV
HIV establishes a long-term infection in dividing and non-
dividing cells. The integrated proviral form is flanked 
by two long terminal repeats (LTRs) that originate from 
reverse transcription and are fundamental for viral repli-
cation[173]. HIV provirus behaves like a cellular gene; it 
has its own promoter located in the 5’ LTR and is rich 
in responsive elements for binding of several cellular 
transcription factors (Figure 4). It also has a 3’ LTR, which 
ensures the viral mRNAs are polyadenylated and capped 
mimicking cellular transcripts[174]. Of note, both LTRs have 
the same sequence and the 3’LTR is transcribed into the 3’
UTR of the viral transcripts.

Upon integration, the provirus goes through an initial 
phase of abortive transcription. This phase is characterized 
by the presence of a non-processive RNA Pol II at the 
promoter region that is overcome upon expression of the 
viral trans-activating protein (Tat). Tat is imported back 
to the nucleus and binds the trans-activator response 
element (TAR), an RNA hairpin structure coded by the HIV 

promoter, greatly enhancing transcription[175]. Although 
most integrated proviruses are able to overcome abortive 
transcription, some become latent[27]. 

HIV latency
HIV latency is an interesting model to study because 
it is likely to be the result of various endogenous TGS 
mechanisms. Studies have described a variety of 
epigenetic profiles at the HIV promoter some of which 
are associated with extremely robust silencing such that 
reactivation of HIV is resistant in the face of substantial 
cell activation.

Generally, H3K9me3 is considered to be mutually 
exclusive with H3K27me3, and are found in different loci. 
More specifically, H3K9me3 is associated with silencing of 
endogenous retroviruses and retro-transposons, and is 
also enriched in constitutive heterochromatin regions and 
pericentromeric heterochromatin[176]. On the other hand, 
H3K27me3 is associated with a more dynamic silencing of 
varying strengths, which may depend on the presence of 
the H3K4me3 activation mark, as well as other undefined 
factors.

In HIV-1 infection, H3K27me3 has been found enriched 
in the 5’LTR promoter in cell line models of latent infection 
in which the virus reactivates upon stimulation[177]. This is 
consistent with H3K27me3 being generally a more flexible 
epigenetic repressive mark and with the likelihood that 
most of the inducible latent provirus is silenced through 
pathways involving H3K27me3, rather than H3K9me3. 
H3K9me3 has only been found in a few HIV-1 latency 
studies and re-activation of latent provirus carrying this 
mark has either not been observed after strong stimulation 
(with Phorbol-Myristate-Acetate treatment) or has required 
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Figure 4  Map of the human immunodeficiency virus 1 genome showing in magnification the 5’LTR region with the location of transcription factor binding 
sites. The specific coordinates within the HIV-1 genome for each of the shown DNA regulatory elements is listed on Table 1. 5’LTR: 5’ long terminal repeat; gag: Group 
specific antigen; pol: Polymerase; vif: Viral infectivity factor; vpr: Viral protein R; vpu: Viral protein unique; tat: Trans-activator of transcription; rev: RNA export element; 
env: Envelope; nef: Negative factor; 3’LTR: 3’ long terminal repeat; Ap-1: Activator protein 1; COUP-TF: Chicken ovalbumin upstream transcription factor; c-myc: V-myc 
avian myelocytomatosis viral oncogene homolog; USF 1/2: Upstream stimulatory factor 1 or 2; NFAT: Nuclear factor activated T cells; GR: Glucocorticoid receptor 
responsive element; YY1: Ying-yang 1; TFII-I: Transcription factor II-I; NF-κB: Nuclear factor κ beta; SP: Specificity protein; LSF: Late SV40 factor; U3: Untranslated 
region 3; R: R region; U5: Untranslated region 5; Nuc-0: Nuclesome 0; Nuc-1: Nucleosome 1. 
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silencing of HP1-γ or other factors through RNAi[178,179]. This 
supports H3K9me3 as a more robust repressive epigenetic 
mark.

Similarly, Suv39H1, another HKMT responsible for 
H3K9me3, has been found to be recruited to latent HIV 
promoter in microglial cells[180], while in a different T-cell 
latency model, G9a, another HKMT responsible for H3K9 
methylation), was found to be a determinant of proviral 
latency[181]. Moreover, the HKMT LSD1 is also recruited to 
the HIV promoter by the cofactor CTIP2 and establishes 
H3K9me3 to promote latency, rather than activation[178]. 
Additionally, EZH2, one of the PCR2 subunits that 
establish H3K27me3, has been found to be present at 
the LTR of latent provirus. Knockdown of EZH2 resulted 
in higher transcriptional activation of the HIV promoter 
than when knocking down Suv39H1[177], indicating 
that the former is associated with a more responsive 
epigenetic silencing. 

Recently, a nuclear lncRNA expressed as an antisense 
transcript initiated from the viral 3’LTR, was found to 
modulate HIV-1 replication[182]. This lncRNA was further 

shown to exert epigenetic modulation of the 5’LTR 
HIV promoter by recruiting both DNMT3 and EZH2, 
resembling a genomic imprinting mechanism[183]. These 
observations are consistent with HIV CpG islands being 
methylated in a latency model[184]. It has been described 
that transcriptional silencing by Xist requires RepA, which 
is a short RNA transcript containing the A-repeat that 
forms an RNA secondary structure to which EZH2 and 
other PcG members bind, and whose deletion prevents 
silencing[185]. Given the similarity of the HIV antisense 
lncRNA mechanism to that of Xist, the TAR RNA-loop 
secondary structure fundamental for HIV transcription 
could potentially be involved in an interaction with EZH2. 
While the latter statement is hypothetical, the evidence 
thus far points towards a robust silencing of HIV by this 
lncRNA. The scope of this discovery may be extrapolated 
to the barriers to achieving reactivation of latent provirus 
as a therapeutic approach. Reactivation strategies to purge 
the latent reservoir, such as the use of histone deacetylase 
inhibitors (HDACis) have not been successful, despite using 
a variety of agents like Vorinostat and Panabinostat, with 
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Table 2  Coordinates of transcription factor binding sites in the HIV-1 5’LTR

Name Position1 Function Cell type Notes Ref.

Nuc-0 About 
40-200

Structural Consistent across 
different cell types

Stable. Stability seems independent of transcription [278]

AP-1/COUP-TF About 103 Activation/Repression [279]
c-myc/RBF-2 
(USF1/2)

118-124 Repression/Activation HeLa-CAT-CD4 and 
J-Lat J89 (Jurkat) 

Binds the sequence CACTGAC in HIV promoter, but 
the canonical sequence is CACGTGAC

[280,281]

Recruited by Sp1, can bind directly to the promoter to 
recruit HDAC1

RBF-2 can potentially bind to the CTGAC of this motif.
AP-1/COUP-TF About 135 Repression/Activation Cell type variation COUP-TF binds to the nuclear responsive element [180,279]
NFAT 173 Activation Consistent across 

different cell lines
NFAT consensus sequence TGGAAA maps on 

antisense strand
[282]

GRE-I 192-197 Repression/Activation Cell type variation GRE-like element AGAACA [283-285]
AP-1 About 208 AP-1 recently found to be crucial for latency [286]
YY1/RBF-2 About 336 Repression/Activation Jurkat, HeLa Putative E-box element RBEIII. Sequence overlaps 

YY1, RBF-2/TFII-I and AP-1 binding sites 
[281,287,288]

NFAT/NF-kB 350 Activation/Repression Consistent across 
different cell types

Two shared in-tandem binding sites for each 
transcription factor. NF-kB in the sense strand, NFAT 

in the antisense

[289-291]

C O U P - T F / S p 1 /
CTIP-2

About 388 Activation/Repression Microglial, 
Oligodendrocytes, T 

lymphocytes

COUP-TF synergises and interacts with SP1 to activate, 
while CTIP2 directly binds to SP1 and represses 

transcription

[279,292,293]

Nuc-1 450-610 Structural Consistent across 
different cell types

This nucleosome is remodelled to induce HIV latency 
or transcriptional gene silencing

[278]

RBF-2/AP-4 435-440 Activation/Repression HEK293T, Jurkat Both bind the E-box element CAGCTG, which has 
been named RBEI

[288,294-296]

GRE-II 450-455 Activation/Repression Cell type variation GRE-like element TGTACT [283-285]
LSF/YY1 about 

440-483
Repression HeLa LSF recruits YY1. This interaction recruits HDCA1 to 

initiate repression 
[281,297,298]

GRE-III 471-476 Repression/Activation Cell type variation GRE-like element AGACCA [283-285]
COUP-TF/AP-1/
SP3

About 485 Repression/Activation Microglial Synergises and interacts with SP3 [180,279]

RBF-2 About 576 Activation/Repression Jurkat Binds an atypical RBEIII element: ACTGCTGA [288,294]
NFAT 618 Activation Consistent across 

different cell lines
NFAT consensus sequence TGGAAA maps on sense 

strand
[291]

1Genomic coordinates are based on the HBX2 numbering system. Nuc-0: Nucleosome 0; AP-1: Activator protein 1; COUP-TF: Chicken ovalbumin upstream 
transcription factor; c-myc: V-myc avian myelocytomatosis viral oncogene homolog; RBF-2: Ras-responsive binding factor 2; USF1/2: Upstream stimulatory 
factor 1 or 2; NFAT: Nuclear factor of activated T cells; GRE-I: Glucocorticoid responsive element I; YY1: Ying-yang 1; NF-κB: Nuclear factor kappa beta; 
Sp1: Specificity protein 1; CTIP-2: COUP-TF interacting protein 2; Nuc-1: Nucleosome 1; AP-4: Activator protein 4; GRE-II: Glucocorticoid responsive 
element II; Sp3: Specificity protein 3. 



different potencies and specificities in inducing HIV specific 
chromatin relaxation[32]. The mechanism by which this HIV 
antisense lncRNA maintains latency might explain in part 
this difficulty, because a very robust and deep silencing 
may be established in a great deal of latent proviruses that 
make up the reservoir. Moreover, it could be potentially 
harmful to aim at disrupting this HIV lncRNA silencing 
because strategies directed to it could have an impact 
on other genomic regions strongly repressed by similar 
mechanisms. 

Pan-HDACis have been developed that target more 
than one class of HDACs and the development of HDACis 
with isozyme specificity are on the scope[186]. However, 
HDACis will not specifically target only HIV, instead these 
drugs induce general chromatin relaxation on cellular 
genes and so have effects that are no HIV-specific. 
In  addition, given the evident epigenetic complexity of 
HIV latency, more than one type of enzyme involved in 
epigenetic silencing will be needed to fully disrupt the 
latent provirus. 

Collectively, the characteristic heterogeneity observed 
in the studies describing either HIV latency or on those 
aimed at re-activation of the latent provirus may be 
explained by the considerable density of binding sites for 
cellular transcription factors within the 5’LTR (Figure 4 and 
Table 2), in conjunction with the modulation executed by 
the HIV antisense lncRNA. Thus, it is possible that inducing 
TGS through siRNAs/shRNAs that target different regions 
within these DNA binding elements could result in the 
establishment of varied epigenetic profiles.

RNAI FOR HIV
PTGS for HIV
Initial applications of RNAi to HIV were designed to target 
viral mRNA transcripts through the PTGS pathway[187]. 
These first attempts used transfection of one siRNA 
directed against important viral transcripts such as gag[187], 
env[188] and rev[189], and also cellular genes important 
for HIV-1 replication cycle, such as CD4[190] and CCR5 or 
CXCR4 chemokine receptors[191]. Suppression was not 
sustained whenever only viral mRNAs were targeted due 
to the emergence of resistant variants[192-194]. It became 
clear that a combinatorial RNAi against HIV would provide 
better protection and this correlated with delayed viral 
escape[195]. Further analysis of resistant viruses was 
useful to guide the design of more effective shRNAs[194]. 
Indeed, escape-proof shRNAs were identified that exerted 
potent and prolonged HIV suppression[196]. However, 
this approach was not completely robust as escape was 
observed from combinatorial shRNAs despite these being 
specifically designed to target previously characterized 
resistant viral variants[197]. Since then, multiple design 
approaches have been developed using a variety of 
strategies in search of the best combination of siRNA/
shRNAs molecules that might prevent viral escape[198,199].

Following these findings, shRNAs targeting both 
conserved viral genes and host cellular genes required 
for viral replication became the preferred way to 

overcome this problem. Indeed, targeting only cellular 
genes such as CD4[190] and CXCR4 and particularly the 
CCR5 chemokine receptor dramatically reduced the 
emergence of resistant viruses[200]. Currently, PTGS is 
not envisaged as a stand-alone strategy for treating 
HIV. Rather its putative use is in combination with 
other types of gene therapy technologies, which we 
will discuss in the section for alternative gene therapy 
approaches.

TGS for HIV
The field of sncRNA-induced TGS for HIV therapeutics is 
less developed and has been hampered by the doubts 
regarding the existence of the pathway in mammalian 
nuclei. Nonetheless, siRNA and shRNA approaches have 
been efficiently developed that achieve long-term in 
vitro suppression of HIV replication, accompanied by 
epigenetic profiles which resemble those described in 
studies of the latent form of HIV-1.

We designed a siRNA, designated PromA, directed 
to the tandem repeat of NF-κB binding sites found in 
the HIV promoter (Figure 4). It can induce prolonged 
suppression of active HIV-1 infection in vitro and 
induces methylation of the CpG dinucleotide that maps 
to the sequence linking NF-κB tandem sites[201]. This HIV 
suppression was associated with recruitment of AGO-1 
and HDAC1, and increased presence of H3K9me2 at the 
HIV promoter and involved nucleosome remodeling[202]. 
Later, long-term suppression (about 90 d) in conjunction 
with enrichment of H3K27me3 was observed when 
using stable expression of a shRNA targeting the same 
region[203]. H3K9me2 and H3K9me3 were also enriched 
but at much lower levels (H3K27me3 >>> H3K9me2 > 
H3K9me3). Suppression was then proved to be specific, 
as mutations in the shRNA sequence impaired virus 
suppression[204]. Interestingly, we identified F-actin as a 
key player in nuclear transportation of promoter-targeted 
siRNAs in mammalian cells, using the same siRNA 
constructs[205]. Results from this study are consistent with 
selective transport of promoter-targeted sncRNAs, which 
has also been shown for AGO-1 by other groups[135], as 
mentioned earlier. 

Using a TGS-based gene therapy for treating HIV 
infection has several advantages over other therapies. 
First, TGS acts directly at the HIV promoter giving the 
virus virtually no opportunity to develop resistance; 
Second, it is likely able to act on latent provirus, whereby 
it potentially locks the virus in the latent state impeding 
future re-activation; Third, small doses of the effector 
molecules are sufficient to induce silencing since 
integrated provirus in a clinical setting is limited to less 
than 2 to 3 copies per cell[206]; And fourth, the silencing 
could potentially be inherited, though this remains to be 
definitely demonstrated.

Furthermore, an interesting point to note is that 
since the 5’LTR promoter contains the same sequence 
as the 3’LTR, a siRNA/shRNA designed to target the 
promoter region will also have a second target in the 
proviral 3’LTR. This could be potentially beneficial, as 

August 12, 2015|Volume 4|Issue 3|WJV|www.wjgnet.com 233

Méndez C et al . Gene silencing, transcriptional gene silencing and HIV



heterochromatin could be induced from both ends of 
the provirus (Figure 3B). Other potential targets are 
the 3’UTRs of viral mRNAs, whose targeting mainly 
depends on the efficiency of a siRNA to induce PTGS, or 
both PTGS and TGS simultaneously. In the latter case, 
PTGS would function until TGS is established, impeding 
transcription of viral mRNAs. However, an efficient 
siRNA/shRNA targeting both PTGS and TGS pathways 
has not yet been identified. Indeed, our siRNA PromA 
targeting the NF-κB did not show a significant PTGS 
effect on viral mRNAs[202] when we measured the effect 
in a setting mimicking an active HIV transcription owing to 
its clinical relevance, rather than using a weak promoter. 
In addition, the 1-LTR and 2-LTR circle intermediates of 
abortive HIV integration, which reside within the nucleus, 
may be targeted as well. While transcription and 
translation of viral genes from these unintegrated DNA 
forms has been observed, the contribution of these to 
actual infection is not clear[207]. And lastly, the linear DNA 
intermediate, that is synthesized in the cytoplasm by the 
RT enzyme and will become integrated as provirus, also 
contains the two viral LTRs, and several host proteins 
are known to interact with it[207]. While PTGS acts only 
post-HIV integration on viral mRNAs, rather than on 
incoming viral RNA genomes[208], the effect of promoter-
targeted siRNAs in the incoming reverse-transcribed 
HIV genome and other unintegrated DNA forms has not 
been investigated.

Essentially, if sequence complementarity and/or 
sequence features of the promoter-targeted siRNA 
are the main determinant for target binding, then an 
activated RITS complex could potentially bind to any 
type of molecule containing the target sequence. 

OTHER GENE THERAPY STRATEGIES 
FOR HIV 
Hope for an HIV cure re-emerged after the successful 
bone marrow transplantation of Timothy Ray Brown-
the leukemia patient known as the Berlin patient - with 
stem cells homozygous for the Δ32 deletion in the CCR5 
gene (CCR5Δ32)[209]. This gene encodes an important 
co-receptor used by the virus to enter the host cells 
and individuals carrying the homozygous mutation 
have proven resistant to HIV infection by CCR5-tropic 
viruses[210]. Timothy was cured from both leukemia 
and HIV. Years after the transplant, he remains virus-
free even when no longer under cART[211]. Since then, 
researchers have been developing various strategies to 
transform hematopoietic stem cells (CD34+) into HIV 
resistant cells, with the aim of reproducing this outcome.

Consequently, CCR5 has become the favorite cellular 
factor to target, especially since HIV CCR5-tropic strains are 
predominantly present during early stages of the disease 
and often persist into later stages[212,213]. Moreover, 
individuals with this mutation appear to be otherwise 
healthy apart from an as yet unconfirmed increase in 
susceptibility to West Nile infection[214] and hepatitis B virus 

infection[215]. These statements have raised the concern 
of whether CCR5 is implicated in immune system-related 
diseases[216]. An interesting discussion in this topic can be 
read in[217]. Thus, the effect of knocking down CCR5 could 
results in unpredicted effects.

Presently, different genetic therapy technologies 
are being tested for their in vivo ability to generate 
HIV resistant cells. From combined PTGS approaches, 
to genome editing with Zinc finger nucleases (ZFN), 
transcription activator-like effector nucleases (TALENs) or 
clustered regularly interspaced short palindromic repeats 
elements (CRISPR) associated caspase 9 (Cas9).

The most recent strategies involving PTGS use 
triple combination vectors. For example, a viral vector 
expressing shRNA against CCR5, an shRNA against 
TRIM5α isoform and a TAR-decoy against HIV[218] was 
successfully tested in a humanized NOD-RAG-/-IL2rγ-/- 
knockout mouse model. Similarly, a strategy using a 
viral vector expressing an shRNA against HIV tat/rev, 
a TAR-decoy element and ribozyme against CCR5[219] 
was initially tested using modified autologous CD4+ T 
cells in HIV positive patients who had failed therapy 
(NTC01153646), and is now been tested as an adjunct 
therapy using modified CD34+ T cells in patients with 
acquired-immune deficiency syndrome (AIDS)-related 
non-Hodgkin Lymphoma (NHL) (NCT01961063) and 
in patients with AIDS-related NHL requiring stem cell 
transplantation (NCT00569985). Importantly, long-term 
expression of the effector molecules from this construct 
has been detected in multiple cell lineages from treated 
patients, in which a combination of transduced and 
untransduced CD34+ cells were used[220].

ZFN strategies predominantly target CCR5. Recently, 
a phase I clinical trial (NTC00842634) testing the 
transfusion of CCR5 ZFN-modified autologous CD4+ T cells 
into HIV positive patients[221] showed that the procedure 
was feasible and safe. During an anti viral therapy 
treatment interruption the modified cells had a higher 
survival over non-modified cells. Also, patients showed 
decreased HIV DNA levels in blood. Currently, the effect 
of repeated doses of the ZFN-modified CD4+ T cells is 
being tested (NCT02225665). Although, these clinical 
trials use modified CD4+ T cells rather than CD34+ 
cells, recent studies in a humanized mice model showed 
low engraftment, but proper multi-lineage differentiation 
of the CCR5-ZFN CD34+ cells[222]. 

TALENs and CRISPR have not yet been trialed in 
humans. However, the results from in vitro studies are 
very promising[223], with CRISPR editing able to excise 
the provirus from infected cells, and thus able to target 
latent proviruses[224]. ZFNs have also been used to 
target the provirus, using lentivirus to achieve stable 
expression of the nucleases[225]. However, the above-
mentioned ZFN-related clinical trials used adenovirus 
vectors. Generally, genome-editing approaches use 
non-integrative adenoviral vectors. Adenoviral vectors 
are diluted after each cell division and direct transient 
expression of the editing nuclease. Transient expression 
has been the choice for genome-editing approaches on 
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the grounds that a continuous expression of a selected 
editing nuclease could be potentially risky as it may 
result in off-target genome editing. To date, it remains to 
be addressed if ZFN/TALEN/CRISPR genetically modified 
CD34+ are safe to use in humans and whether they are 
feasible approaches towards a functional cure. 

CONCLUSION
Presently, a variety of strategies are being tested in order 
to breakthrough this highly challenging treatment barrier. 
There are still several large hurdles to be surmounted.  
Currently there is a lack of adequate delivery systems for 
targeting cells with HIV infection and the latent reservoir. 
Further TGS/PTGS approaches require stable expression 
from vectors, such as lentiviral vectors but this must be 
combined with high transduction and engraftment rates, 
for therapy to be effective. In the same way, genome-
editing approaches rely on vectors that drive transient 
expression of the editing enzyme, but get diluted after 
each cell division. Thus, achieving high genome editing 
efficiency is one of the limitations.

Importantly, TGS and CRISPR genome editing have 
the potential to target proviruses directly, and therefore 
could be effective in targeting latent provirus. Yet this 
strength may also be an inherent weakness and thus a 
careful selection of the targeted sequences of HIV-1 is 
fundamental. Unfortunately, 5’LTR sequences from proven 
replication competent proviruses are the least represented 
in curated databases in comparison to other HIV genomic 
regions. Nonetheless, combinatorial strategies are also 
an option within these therapies, and may be designed to 
target an additional host factor as well.

Gene therapy technologies that target only CCR5 
may be unable to target latent provirus that is already 
present. In addition, they may select HIV-1 viruses with 
tropism for the CXCR4 co-receptor, allowing escape and 
potentially more rapid disease progression. This evolution 
is more likely if latent provirus remains in untargeted 
compartments.

The combinatorial strategies from PTGS, which 
target the virus and a host factor such as CCR5, provide 
an additional mechanism that directly restricts the virus 
and could possibly delay or imped viral evolution. In 
this regard, it could potentially provide some protection 
from CXCR4-tropic emerging viruses or re-activating 
from latent proviruses. 

Basically, with present technologies none of the effector 
molecules for these therapies can be directly administered 
to an infected patient. Rather, autologous cells are 
obtained, genetically modified, and then transferred 
back to the patient. Generally, these therapies aim at 
modifying CD34+ cells in order to develop multi-lineage 
HIV resistance and thus long-term protection to the 
infection. Indeed, the limitation of most of these therapies 
relies on the efficiency of several steps throughout the 
complete intervention process. For instance, the efficiency 
or success to which the autologous cells are first, 
modified ex vivo; Second, re-mobilized or transplanted; 

third, engrafted within the bone marrow; and fourth, 
either achieve a sustained and prolonged multi-lineage 
expression of the modified trait/gene or achieve a certain 
percentage of modified cells from all the lineages enough 
to provide protection. Furthermore, the engrafted modified 
cells will share a niche with the wild-type cells, unless 
ablation of the immune system is performed before. 
Therefore, understanding the interactions and signaling 
between these two populations sharing a niche could give 
us a better prediction of the long-term success of these 
therapies. Factors such as symmetric and asymmetric 
cell division[226], unidentified endogenous mechanisms of 
genomic mosaicism detection in stem cells[227] and other 
cellular and molecular pathways may play an important 
role. For instance, if it is confirmed that Piwi proteins 
are expressed in hematopoietic stem cells, this could 
potentially have an impact in those therapies that rely on 
integrative gene therapy vectors.

Finally, other concerns remain such as the worldwide 
implementation of these gene-therapy strategies and 
their cost, particularly in developing countries. Consequ-
ently, the development of delivery methods that facilitate 
the clinical application of these therapies is an important 
quest.

The various RNAi strategies to target HIV reviewed 
here provide a potential alternate approach to combating 
HIV infection and the latent reservoir, with the results of 
current and future RNAi therapeutic trials poised to reveal 
whether this approach represents a possible pathway 
towards a functional HIV cure. 
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