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Abstract
Renal tubular acidosis (RTA) encompasses many re-
nal tubular disorders characterized by hyperchloremic 
metabolic acidosis with a normal anion gap. Untreated 
patients usually complain of growth failure, osteoporo-
sis, rickets, nephrolithiasis and eventually renal insuffi-
ciency. Fanconi-Bickel syndrome (FBS) is an example of 
proximal RTA due to a single gene disorder; it is caused 
by defects in the facilitative glucose transporter 2 gene 
that codes for the glucose transporter protein 2 ex-
pressed in hepatocytes, pancreatic β-cells, enterocytes 
and renal tubular cells. It is a rare inherited disorder 
of carbohydrate metabolism manifested by huge hepa-
tomegaly [hence it is classified as glycogen storage 
disease (GSD) type XI; GSD XI], severe hypophospha-
temic rickets and failure to thrive due to proximal renal 
tubular dysfunction leading to glucosuria, phosphaturia, 
generalized aminoaciduria, bicarbonate wasting and hy-
pophosphatemia. The disorder has been reported from 
all parts of Europe, Turkey, Israel, Arabian countries, Ja-
pan and North America. Many mutant alleles have been 
described, its exact frequency is unknown and there is 
no single mutation found more frequently than the oth-
ers. The presence of consanguinity in affected families 
suggests an autosomal recessive pattern of inheritance. 
New cases of FBS have been recently reported in the 
Middle and Far East in collaboration with specialized 

centers. Two novel mutations have been discovered 
in two unrelated Egyptian families. The first was two 
bases deletion, guanine and adenine, (c.253_254delGA) 
causing a frameshift mutation (p. Glu85fs) and the sec-
ond is mutation in exon6 in splicing acceptor site with 
intron5 (c.776-1G>C or IVS5-1G>A). Moreover, a new 
different mutation was described in a 3 year old Indian 
boy.
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INTRODUCTION
Renal tubular acidosis (RTA) defines many renal tubular 
disorders characterized by hyperchloremic metabolic aci-
dosis with a normal anion gap. They represent chronic 
diseases with significant impact on the quality of  life of  
the affected patients when left untreated, possibly leading 
to growth failure, osteoporosis, rickets, nephrolithiasis 
and eventually renal insufficiency[1-6]. These disorders may 
be primary genetic defects of  tubular transport mecha-
nisms[7] or secondary to systemic diseases or adverse drug 
reactions[8,9]. Defects in proximal bicarbonate reclamation 
or distal acid secretion give rise to the respective clinical 
syndromes of  proximal or distal RTA[10-15]; proximal renal 
tubules are responsible for reabsorption of  80%-90% of  
the HCO3- filtered in glomeruli as well as generation of  
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“extra” HCO3- through the deamination of  glutamine to 
glutamate, then forming α-ketoglutarate and eventually 
glucose[1,2,16-19]. Fanconi-Bickel syndrome (FBS) is a single 
gene disorder (OMIM 227810) caused by defects in the 
facilitative glucose transporter 2 (GLUT2 or SLC2A2) 
gene mapped on chromosome 3q26.1-26.3, that codes 
for the glucose transporter protein 2 expressed in hepa-
tocytes, pancreatic β-cells, enterocytes and renal tubular 
cells[20-22]. FBS is a rare inherited disorder of  carbohydrate 
metabolism; it is characterized by the association of  huge 
hepatomegaly due to glycogen accumulation (hence it 
is classified as glycogen storage disease (GSD) type XI; 
GSD XI by Hug et al[23]), severe hypophosphatemic rick-
ets and failure to thrive due to proximal renal tubular 
dysfunction. Proximal renal tubular dysfunction is docu-
mented by glucosuria, phosphaturia, generalized amino-
aciduria, bicarbonate wasting and hypophosphatemia[24-28]. 
These findings are the characteristic laboratory evidence 
of  the disease[29,30]. The disorder has been reported from 
all parts of  Europe, Turkey, Israel, Arabian countries,  
Japan and North America. Many mutant alleles have been 
described, the exact frequency of  the disease or each mu-
tation is not known and there is no reported single muta-
tion found more frequently than the others. The presence 
of  consanguinity in most of  the affected families sug-
gests an autosomal recessive pattern of  inheritance[21,22]. 
No specific therapy is available for FBS patients. Symp-
tomatic treatment is directed towards a stabilization of  
glucose homeostasis and compensation for renal losses 
of  various substances[22]. The overall prognosis seems 
to be favorable; several patients have been reported to 
have reached adulthood in a stable condition[21] and the 
first reports on fertility of  female and male patients have 
recently been published[22,31,32]. Recently, two novel muta-
tions have been discovered in two unrelated Egyptian 
families[33] and another different mutation in an Indian 
boy aged 3 years[34].

DIAGNOSIS OF RENAL TUBULAR 
ACIDOSIS
RTA should be suspected in any patient with hyperchlo-
remic metabolic acidosis and a normal anion gap (less 
than 12) after ruling out other causes of  bicarbonate loss 
e.g., diarrhea. Thus, in a young infant with diarrhea and 
underlying RTA, diagnosis may be initially obscured. In 
such situations, RTA is further suspected if  hyperchlo-
remic metabolic acidosis shows delayed resolution[35,36]. 
However, acidosis with a high gap (more than 20) rules 
out RTA and suggests added anions, whether endog-
enous (lactic acidosis, inborn errors of  metabolism) or 
exogenous (salicylates ingestion)[37].

Untreated children with RTA have nonspecific symp-
toms, such as failure to thrive[38], polydipsia, polyuria, an-
orexia, vomiting, constipation and restlessness[12]. There 
are also signs and symptoms which are more specific to 
some types of  RTA. Metabolic bone disease is frequent 
in Fanconi syndrome secondary to excessive losses of  

phosphates and calcium, nephrocalcinosis and hyper-
calciuria are common in patients with distal RTA[39] and 
muscle weakness in hypokalemic patients[40].

Urinary pH may help to distinguish distal from proxi-
mal RTA; if  less than 5.5, proximal RTA is possible, but 
if  more than 6, distal RTA is more probable. Moreover, 
urinary anion gap [(urinary Na+ and K+) - urinary Cl-] 
could add some confirmatory events in favor of  distal 
RTA; a positive gap means a defect in ammoniogenesis 
which points to distal RTA[41-44].

INHERITED FORMS OF PROXIMAL RTA
In recent years, remarkable progress has been made in 
the unraveling of  the molecular pathogenesis of  he-
reditary diseases caused by mutations in genes encod-
ing transporters in renal tubules[45,46]. Proximal RTA is 
a heterogeneous group of  disorders whose genes are 
dispersed in the human genome[47]. Fanconi syndrome, 
the most common prototype of  proximal RTA[48], is part 
of  a systemic disease, mostly autosomal recessive. Other 
forms of  inherited proximal RTA (Table 1) show gene 
localization of  some inherited forms of  proximal RTA, 
including cystinosis, tyrosinemia, galactosemia, Fanconi-
Bickel and many other syndromes[49].

FBS is a single gene disorder (OMIM 227810) caused 
by defects in the facilitative glucose transporter 2 (GLUT2 
or SLC2A2) gene mapped on chromosome 3q26.1-26.3, 
that codes for the glucose transporter protein 2 expressed 
in hepatocytes, pancreatic β-cells, enterocytes and renal 
tubular cells[20,50,51]. Clinical diagnosis of  FBS should be 
based on: (1) presence of  consanguinity being an autoso-
mal recessive disease[52]; (2) hepatomegaly with deranged 
carbohydrate metabolism (GSD type XI); (3) severe hypo-
phosphatemic rickets, with its other clinical stigmata; and 
(4) proximal RTA e.g., glucosuria, phosphaturia, general-
ized aminoaciduria and bicarbonaturia.

DISCUSSION
Santer et al[21] and Mueckler et al[53] considered GLUT2, 
the 524-amino acid isoform expressed in hepatocytes, 
pancreatic β cells and the basolateral membranes of  in-
testinal and renal tubular epithelial cells, to be a candidate 
gene for the defect in FBS. They identified mutations in 
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Table 1  Chromosomal mapping of some inherited forms of 
proximal renal tubular acidosis[49,69,70]

Inherited Fanconi syndromes Gene Mapping

Fanconi-Bickel syndrome SLC2A2 Chromosome 3q26.1-26.3
Autosomal recessive SLC4A4 Chromosome 4q21
Dent´s syndrome CLCN5 Chromosome Xp11.22
Cystinosis SLC3A1, 

SLC7A9
Chromosome 2p21, 
Chromosome 19p13.1

Tyrosinemia type 1 FAH Chromosome 15q23-q25
Galactosemia GALT Chromosome 9p13
Wilson´s disease ATP7B Chromosome 

13q14.3-q21.1
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the GLUT2 gene in 3 families with FBS, including the pa-
tient originally described by Fanconi and Bickel[54]. These 
mutations represent the first detection of  a congenital 
defect within a whole family of  membrane proteins (fa-
cilitative glucose transporters). Sakamoto et al[20] studied 3 
Japanese patients with FBS and found 4 novel mutations 
in the GLUT2 gene, including a splice site mutation, a 
nonsense mutation and 2 missense mutations. Several 
family members who had a heterozygous missense muta-
tion were shown to have glucosuria but a family member 
heterozygous for the nonsense mutation did not. It was 
speculated that mutant GLUT2 proteins may have a 
dominant-negative effect and that heterozygosity for a 
nonsense mutation may not lead to glucosuria because 
of  selective and efficient degradation of  the nonsense 
mRNA[55].

In the last decade, many mutations concerning 
GLUT2 gene have been described in FBS patients. 
Later, Santer et al[22] reported a total of  109 cases from 
88 families worldwide who had been diagnosed as FBS. 
They reported their results of  mutation analysis in 49 
patients from 39 families from Turkey, Europe, the Near 
East, North Africa and North America. Homozygos-
ity or compound heterozygosity for GLUT2 mutations 
was found in 49 patients among these cases and 23 novel 
mutations of  the GLUT2 gene were detected. These 
mutations were scattered over the whole coding sequence 
of  the GLUT2 gene and mutations were found in all ex-
ons. None of  these mutations was particularly frequent, 
thus making the molecular diagnosis more laborious. It 
is interesting that most of  the GLUT2 mutations were 
private and confined to a single family. Of  these patients, 
12 were Turkish and all had a different mutation[55]. Since 
the first report of  mutations in the GLUT2 gene[56], more 
than 30 different mutations have been identified and 
most of  the reported mutations are confined to a single 
family[55].

Some FBS patients did not have any detected mu-
tations in the protein-coding region of  the GLUT2 
gene[57,58]; this situation could be explained by the pres-
ence of  heterozygous long-range deletions which are not 
detectable with the usually applied PCR-based method[58].

Recently, two new mutations were detected in two unre-
lated Egyptian families that presented with cases of  FBS[33].

Selected examples of  allelic variant of  SLC2A2 
(GLUT2) gene are tabulated (Table 2). The first one rep-
resents a mutation type causing non-insulin dependent 
diabetes mellitus and the other 14 types are responsible 
for FBS with different phenotypes.

The first allelic variant is for non-insulin dependent 
DM, SLC2A2 and VAL197ILE, reported with 2 amino 
acid substitutions in the human GLUT2 gene. A thr110-
to-ile substitution was present at equal frequency in 
diabetic and control populations, whereas a val197-to-ile 
substitution was discovered in a single allele of  a patient 
with non-insulin dependent diabetes[57]. Mueckler et al[53] 
tested the effect of  these amino acid changes on glucose 
transport activity by expression of  the mutant proteins in 

Xenopus oocytes. The polymorphism at threonine-110 
had no effect on the expression of  GLUT protein or the 
uptake of  2-deoxyglucose. On the other hand, the highly 
conserved val197-to-ile amino acid change abolished 
transport activity of  the GLUT2 transporter expressed in 
Xenopus oocytes. This was the first known dysfunctional 
mutation in a human facilitative glucose transporter pro-
tein. The presence of  the mutation in a diabetic patient 
suggested that defects in GLUT2 expression may be 
causally involved in the pathogenesis of  non-insulin de-
pendent diabetes mellitus[58]. Santer et al[22] stated that the 
patient reported by Tanizawa et al[57] was a woman of  Af-
rican American descent with gestational diabetes mellitus 
and that the mutation was heterozygous.

Three allelic variants, all of  which are nonsense caus-
ing premature termination of  protein synthesis[21]: (1) 
SLC2A2, 1-BP Del, in the two Turkish sibs with FBS 
described by Muller et al[59]. They were homozygous for 
a single-base deletion in a stretch of  4 thymine residues 
(positions 446 to 449) in exon 3 causing a frameshift with 
a premature TGA stop at codon 74 in the same exon, re-
sulting in a truncated protein of  45 regular and 28 aber-
rant amino acids. This mutation had been found in four 
other patients, including those originally described by 
Fanconi et al[54]; (2) SLC2A2, ARG365TERin a Turkish 
boy with FBS who was homozygous for a C-to-T transi-
tion (CGA to TGA) at nucleotide 1405 in exon 8, caus-
ing a nonsense arg365-to-ter mutation (R365X); and (3) 
SLC2A2, ARG301TER, in the patient originally reported 
by Fanconi et al[54] and confirmed later[60]. A homozygous 
C-to-T transition (CGA to TGA) at nucleotide 1251 in 
exon 6 was described, causing a nonsense arg301-to-
ter (R301X) mutation resulting in a truncated GLUT2 
protein with only 6 of  the 12 membrane-spanning seg-
ments[57]. The patient was found still alive at the age of  52 
years, 140 cm tall but with persistent clinical and chemical 
features of  FBS.
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Table 2  Allelic variants of SLC2A2 gene; first allele causes non-
IDDM and the other 14 variants cause fanconi-Bickel syndrome; 
in addition to the newly diagnosed Egyptian variants[33]

No. Phenotype Mutation dbSNP

  1 Non-IDDM SLC2A2, VAL197ILE (22, 53, 56) [rs121909741]
  2 FBS SLC2A2, 1-BP DEL-(21, 50)
  3 FBS SLC2A2, ARG365TER (21, 22) [rs121909742]
  4 FBS SLC2A2, ARG301TER (21, 22) [rs121909743]
  5 FBS SLC2A2, PRO417LEU (62) [rs121909744]
  6 FBS SLC2A2, TRP420TER (66) [rs121909745]
  7 FBS SLC2A2, 1-BP DEL, 1363G (22)
  8 FBS SLC2A2, 1405C-T (22)
  9 FBS SLC2A2, 1-BP INS, 793C (22)
10 FBS SLC2A2, 1264G-A (22)
11 FBS SLC2A2, 469C-T (22)
12 FBS SLC2A2, VAL423GLU (20) [rs28928874]
13 FBS SLC2A2, IVS2, A-G, -2-(20)
14 FBS SLC2A2, GLN287TER (20) [rs121909746]
15 FBS SLC2A2, LEU389PRO (20) [rs121909747]

FBS: Fanconi-Bickel syndrome.

Al-Haggar M. Genetic heterogeneity in FBS



A homozygous missense mutation, SLC2A2, PRO-
417LEU, was described in a large family with a high degree 
of  consanguinity; it showed several affected individuals of  
both sexes, markedly reduced liver phosphorylase kinase 
activity was found in association with the characteristic 
clinical features and laboratory findings of  FBS[61], thus 
suggesting that FBS is genetically heterogeneous and that 
there may be another subtype of  PHK deficiency (possibly 
associated with a distinctive genotype) that gives rise to 
hepatorenal glycogenosis. Affected members of  this fam-
ily were shown to have a homozygous missense mutation 
(P417L) in GLUT2 gene[62]. The affected proline residue is 
completely conserved in all mammalian glucose permease 
isoforms and even in bacterial sugar transporters and is 
believed to be critical for the passage of  glucose through 
the permease. Homozygosity for this mutation was found 
in 7 affected individuals from different branches of  that 
family. Recently, this mutation has been detected in a third 
Egyptian family (Al-Haggar, personal communication) but 
it is re-enumerated to exon 10 (not 9 as in the initial report) 
due to the changes of  gene structure.

Five allelic variants were described by Santer et al[22], 
mostly missense mutations: (1) SLC2A2, 1-BP Del, 1363G, 
in two sibs of  English ancestry with FBS[63] in whom the 
use of  cornstarch provided a successful management, com-
pound heterozygosity for 1363delG and 1405C-T substitu-
tion; (2) SLC2A2, 1405C-T, substitution of  C>T at 1405; (3) 
SLC2A2, 1-BP Ins, 793C, in two sibs of  Turkish-Assyrian 
ancestry who presented in infancy with failure to thrive 
because of  intestinal malabsorption but without hepato-
megaly[64], homozygous for a splice acceptor site 1-bp inser-
tion, 793-4insC; (4) SLC2A2, 1264G-A, in a white Ameri-
can infant with FBS presented with renal hyperfiltration[65], 
compound heterozygosity for 1264G-A and 469C-T; and (5) 
SLC2A2, 469C-T, substitution of  C>T at 496.

By 2000, five allelic variants had been described in Jap-
anese. One nonsense mutation[66], a homozygous G-to-A 
transition at nucleotide 1159 in exon 9 was found and the 
four allelic variants published by Sakamoto et al[20]. They 
described three missense mutations and the fourth was 
frameshift: (1) SLC2A2, Val 423 Glu, patient was homo-
zygous 1580T>A change; (2) SLC2A2, GLN287TER, 
in a Japanese patient diagnosed with FBS after hyperga-
lactosemia was detected by neonatal screening, hetero-
zygosity for two mutations 1171C>T change in exon 6 
(resulting in a gln287-to-ter substitution), inherited from 
the father, and 1478T>C change in exon 8, resulting in 
a leu389-to-pro substitution, inherited from the mother. 
The father did not have glucosuria but the mother had 
glucosuria with a normal oral glucose tolerance test; (3) 
SLC2A2, LEU389PRO; and (4) SLC2A2, IVS2, A-G, -2, 
in a Japanese patient with FBS and mental retardation, a 
homozygous A-to-G substitution at position -2 of  the 
splice acceptor site of  intron 2 of  the SLC2A2 gene caus-
ing skipping of  exon 3 and resulting in a frameshift and 
creation of  a premature termination codon. The princi-
pal investigator made the mutation analysis for the three 
Egyptian families, including the two new allelic variants.

Molecular analysis on three Japanese patients found 
four novel mutations: a splice-site mutation (IVS2-
2A>G), a nonsense mutation (Q287X) and two missense 
mutations (L389P and V423E)[20]. Şimşek et al[67] found a 
novel mutation of  the GLUT2 gene in a Turkish patient; 
two bases were deleted with a homozygous pattern in 
exon 6 of  the GLUT2 gene (c.835_836delGA).

Recently, Al-Haggar et al[33] defined three different 
mutations in three Egyptian families with FBS, one mu-
tation specific for each family. The first two mutations 
are novel: one in exon 3, two bases (GA) are deleted 
(c.253_254delGA causing a frameshift mutation p. 
Glu85fs), which presents with an early grave course de-
spite adequate treatment, and the second novel mutation 
exists in exon 6 in the splicing acceptor site with intron5 
(c.776-1G>C or IVS5-1G>A). The third mutation had 
previously been described in Arab families from Saudi 
Arabia[62]; a missense mutation C-to-T substitution at 
c.1250 (c.1250C>T) causing change of  417 codon (CCG) 
for proline to CTG for leucine (p. P417L). The last 
known mutation had been previously localized in exon 9; 
however, we re-enumerated it to exon 10 due to the fact 
that between exons 3-5, two exons (exon 4-a and exon 
4-b) had been discovered[68]. In other words, discovery 
of  new exons in a gene should make changes in exon re-
numbering. This phenomenon is actually very frequent, 
especially in splicing mutations; about 15% of  11 000 
splicing mutations when recently manually revisited at 
HGMD should have their exons re-numbered. This is 
because the structure of  many genes has “changed” since 
the initial reports of  mutations (Al-Haggar M, personal 
communication).

Generally speaking p. P417L mutation can be easily 
and unambiguously recognized irrespective of  its exon 
number, especially for experts in this lesion, with no dif-
ficulty in locating it within GLUT2 gene. However, re-
numbering its location to exon 10 is highly recommended 
in subsequent publications, especially those submitted to 
journals not specialized in the genetics domain, in order 
to remove any confusion among young researchers.

In the three Egyptian families, the following findings 
are striking: (1) Consanguinity was positive in all families; 
(2) Three mutations (one specific for each family) were 
detected and the most severe form was the frameshift 
mutation (p. Glu85fs); (3) Two new mutations were 
found as well as the third known mutation; and (4) All 
affected cases were homozygous and all the heterozy-
gous individuals were asymptomatic. These observations 
should yield the following conclusions: (1) FBS is an au-
tosomal recessive disease; (2) Compound heterozygous is 
rare among Egyptian FBS patients; (3) Neither the new 
mutations nor the reported one are particularly more 
frequent; and (4) The third mutation (c.1250C>T) needs 
more attention in survey studies, especially if  carried out 
in Arab patients, as it is re-enumerated.
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